1
|
Wisdom KS, Bhat IA, Pathan MA, I. CT, Kumar P, Babu P. G, Walke P, Nayak SK, Sharma R. Teleost Nonapeptides, Isotocin and Vasotocin Administration Released the Milt by Abdominal Massage in Male Catfish, Clarias magur. Front Endocrinol (Lausanne) 2022; 13:899463. [PMID: 35846286 PMCID: PMC9280678 DOI: 10.3389/fendo.2022.899463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
In the present work the nonapeptides i.e., isotocin and vasotocin alone or in a combination were tested in C. magur to evaluate their effect on stripping by abdominal massage. Also, we used chitosan-carbon nanotube nanocomposites to conjugate the nonapetides isotocin (abbreviated as COOH-SWCNTCSPeP) and isotocin and vasotocin (COOH-SWCNTCSPePs) with the aim of sustaining the effect for a longer duration. The conjugation of nonapeptides with nanocomposites was confirmed by Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). Two experiments were conducted to study the effect of naked (without nanoparticles) and conjugated nonapeptides on the milt release by stripping. Both the experiments consisted of eight treatments which included four naked groups two nanoconjugated groups and two controls. Both naked and nonconjugated formulations were successful in stripping the male catfish. The mRNA expression of selected reproductive genes was analysed to decipher the effect of nanopeptides at the molecular level. Nonapeptide treatment either naked or nanoconjugated, resulted in the upregulation of the transcript level of genes. Histological analysis revealed the concentration of spermatozoa was more in peptide injected groups than in the controls. The synergistic effects of nonapeptides and Ovatide had a positive impact on GSI. Thus, the present formulations were successful in stripping the male catfish to obtain the milt with significant reproductive success. Even though the naked groups perform better but the number of males required to fertilize the eggs in nanoconjuagted groups was smaller making it worth using for the delivery of nonapeptides.
Collapse
Affiliation(s)
- K. S. Wisdom
- Division of Fish Genetics and Biotechnology, Indian Council of Agricultural Research (ICAR)-Central Institute of Fisheries Education Mumbai, Mumbai, India
| | - Irfan Ahmad Bhat
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Mujahidkhan A. Pathan
- Division of Fish Genetics and Biotechnology, Indian Council of Agricultural Research (ICAR)-Central Institute of Fisheries Education Mumbai, Mumbai, India
| | - Chanu T. I.
- Department of Aquaculture, ICAR-Central Institute of Fisheries Education Mumbai, Mumbai, India
| | - Pravesh Kumar
- Department of Aquaculture, College of Fisheries, Dr. Rajendra Prasad Central Agricultural University, Pusa, India
| | - Gireesh Babu P.
- Animal Biotechnology, ICAR-National Research Centre on Meat Chengicherla, Boduppal Post Hyderabad, India
| | - Pravin Walke
- National Center for Nanoscience and Nanotechnology, University of Mumbai, Mumbai, India
| | - Sunil Kumar Nayak
- Division of Fish Genetics and Biotechnology, Indian Council of Agricultural Research (ICAR)-Central Institute of Fisheries Education Mumbai, Mumbai, India
| | - Rupam Sharma
- Division of Fish Genetics and Biotechnology, Indian Council of Agricultural Research (ICAR)-Central Institute of Fisheries Education Mumbai, Mumbai, India
- *Correspondence: Rupam Sharma,
| |
Collapse
|
2
|
Ayodele OO, Adesina AO, Pourianejad S, Averitt J, Ignatova T. Recent Advances in Nanomaterial-Based Aptasensors in Medical Diagnosis and Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:932. [PMID: 33917467 PMCID: PMC8067492 DOI: 10.3390/nano11040932] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Rapid and accurate diagnosis of various biomarkers associated with medical conditions including early detection of viruses and bacteria with highly sensitive biosensors is currently a research priority. Aptamer is a chemically derived recognition molecule capable of detecting and binding small molecules with high specificity and its fast preparation time, cost effectiveness, ease of modification, stability at high temperature and pH are some of the advantages it has over traditional detection methods such as High Performance Liquid Chromatography (HPLC), Enzyme-linked Immunosorbent Assay (ELISA), Polymerase Chain Reaction (PCR). Higher sensitivity and selectivity can further be achieved via coupling of aptamers with nanomaterials and these conjugates called "aptasensors" are receiving greater attention in early diagnosis and therapy. This review will highlight the selection protocol of aptamers based on Traditional Systematic Evolution of Ligands by EXponential enrichment (SELEX) and the various types of modified SELEX. We further identify both the advantages and drawbacks associated with the modified version of SELEX. Furthermore, we describe the current advances in aptasensor development and the quality of signal types, which are dependent on surface area and other specific properties of the selected nanomaterials, are also reviewed.
Collapse
Affiliation(s)
| | | | | | | | - Tetyana Ignatova
- Nanoscience Department, The Joint School of Nanoscience & Nanoengineering, University of North Carolina, Greensboro, NC 27401, USA; (O.O.A.); (A.O.A.); (S.P.); (J.A.)
| |
Collapse
|
3
|
Guo ZR, Zhao Z, Zhang C, Jia YJ, Qiu DK, Zhu B, Wang GX. Carbon nanotubes-loaded subunit vaccine can increase protective immunity against rhabdovirus infections of largemouth bass (Micropterus Salmoides). FISH & SHELLFISH IMMUNOLOGY 2020; 99:548-554. [PMID: 32109609 DOI: 10.1016/j.fsi.2020.02.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Micropterus Salmoides rhabdovirus (MSRV), as a common aquatic animal virus, can cause lethal and epidemic diseases in the cultivation of largemouth bass. In this study, we reported a kind of immersion single-walled carbon nanotubes-loaded subunit vaccine which composited by glycoprotein (G) of MSRV, and evaluated its protective effect on largemouth bass. The results showed that a stronger immune response including serum antibody levels, enzyme activities (superoxide dismutase, acid phosphatase, alkaline phosphatase and total antioxidant capacity), complement C3 content and immune-related genes (IgM, TGF-β, IL-1β, IL-8, TNF-α, CD4) expression can be induced obviously with single-walled carbon nanotubes-glycoprotein (SWCNTs-G) groups compared with G groups when largemouth bass were vaccinated. After bath immunization with G or SWCNTs-G for 28 days, fish were challenged with a lethal dose of MSRV. The survival rates for control group (PBS), SWCNTs group (40 mg L-1), pure G protein groups (40 mg L-1) and three SWCNTs-G groups (5 mg L-1, 10 mg L-1 and 40 mg L-1) were 0%, 0%, 39.5%, 36.7%, 43.6%and 70.1%, respectively. Importantly, with the assistance of SWCNTs, the immune protective rate of the SWCNTs-G group (40 mg L-1) increased by approximately 30.6%. This study suggested that SWCNTs-G is a promising immersion subunit vaccine candidate against the death caused by MSRV.
Collapse
Affiliation(s)
- Zi-Rao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Zhao Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Chen Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yi-Jun Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - De-Kui Qiu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
4
|
Pishavar E, Oroojalian F, Ramezani M, Hashemi M. Cholesterol-conjugated PEGylated PAMAM as an efficient nanocarrier for plasmid encoding interleukin-12 immunogene delivery toward colon cancer cells. Biotechnol Prog 2019; 36:e2952. [PMID: 31846226 DOI: 10.1002/btpr.2952] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/12/2019] [Accepted: 12/07/2019] [Indexed: 12/12/2022]
Abstract
IL-12 is a pleiotropic cytokine, which shows an ideal applicant for tumor immunotherapy, because of its features of creating an interconnection between innate (NK cells) and adaptive (cytotoxic T lymphocyte) immunity. IL-12 gene therapy is a useful technique to deliver an immune-modulatory gene directly into tumor site thereby limiting the adverse effects of systemic administration of IL-12 proteins. One of the most largely investigated non-viral gene carriers is polyamidoamine (PAMAM). In the current research, 5 and 3% of PAMAM primary amines were substituted to transmit the plasmid encoding IL-12 gene to cells by cholesteryl chloroformate and alkyl-PEG, respectively. The features of modified PAMAMs containing size and surface charge density, cytotoxicity, and transfection efficiency were investigated in colon cancer cells. in vitro experiment showed that this modified carrier with average size of about 160 nm and zeta potential of 30 mV was able to increase the level of IL-12 production up to two folds as compared to that of the unmodified PAMAM. Improvement of the polymer hydrophobic balance along with of the modulation of the surface positive charge could provide an efficient and safe non-viral IL-12 gene for colon cancer immunogene therapy.
Collapse
Affiliation(s)
- Elham Pishavar
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.,Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Ramezani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Wolski P, Wojton P, Nieszporek K, Panczyk T. Interaction of Human Telomeric i-Motif DNA with Single-Walled Carbon Nanotubes: Insights from Molecular Dynamics Simulations. J Phys Chem B 2019; 123:10343-10353. [PMID: 31735024 DOI: 10.1021/acs.jpcb.9b07292] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work deals with molecular dynamics simulations of human telomeric i-motif DNA interacting with functionalized single-walled carbon nanotubes. We study two kinds of i-motifs differing by the protonation state of cytosines, i.e., unprotonated ones representative to neutral pH and with half of the cytosines protonated and representative to acidic conditions. These i-motifs interact with two kinds of carbon nanotubes differing mainly in chirality (diameter), i.e., (10, 0) and (20, 0). Additionally, these nanotubes were on-tip functionalized by amino groups or by guanine- containing residues. We found that protonated i-motif adsorbs strongly, although not specifically, on the nanotube surfaces with its 3' and 5' ends directed toward the surface and that adsorption does not affect the i-motif shape and hydrogen bonds existing between C:C+ pairs. The functional groups on the nanotube tips have minimal effect either on position of i-motif or on its binding strength. Unprotonated i-motif, in turn, deteriorates significantly during interaction with the nanotubes and its binding strength is rather high as well. We found that (10, 0) nanotubes destroy the i-motif shape faster than (20, 0). Moreover the i-motif either tries to wrap the nanotube or migrates to its tip and becomes immobilized due to interaction with guanine residue localized on the nanotube tip and attempts to incorporate its 3' end into the nanotube interior. No hydrogen bonds exist within the unprotonated i-motif prior to and after adsorption on the nanotube. Thus, carbon nanotubes do not improve the stability of unprotonated i-motif due to simple adsorption or just physical interactions. We hypothesize that the stabilizing effect of carbon nanotubes reported in the literature is due to proton transfer from the functional group in the nanotube to cytosines and subsequent formation of C:C+ pairs.
Collapse
Affiliation(s)
- Pawel Wolski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences , ul. Niezapominajek 8 , 30239 Cracow , Poland
| | - Patrycja Wojton
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences , ul. Niezapominajek 8 , 30239 Cracow , Poland
| | - Krzysztof Nieszporek
- Department of Chemistry , Maria Curie-Sklodowska University , pl. M. Curie-Sklodowskiej 3 , 20031 Lublin , Poland
| | - Tomasz Panczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences , ul. Niezapominajek 8 , 30239 Cracow , Poland
| |
Collapse
|
6
|
Pei B, Wang W, Dunne N, Li X. Applications of Carbon Nanotubes in Bone Tissue Regeneration and Engineering: Superiority, Concerns, Current Advancements, and Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1501. [PMID: 31652533 PMCID: PMC6835716 DOI: 10.3390/nano9101501] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/10/2019] [Accepted: 10/17/2019] [Indexed: 12/19/2022]
Abstract
With advances in bone tissue regeneration and engineering technology, various biomaterials as artificial bone substitutes have been widely developed and innovated for the treatment of bone defects or diseases. However, there are no available natural and synthetic biomaterials replicating the natural bone structure and properties under physiological conditions. The characteristic properties of carbon nanotubes (CNTs) make them an ideal candidate for developing innovative biomimetic materials in the bone biomedical field. Indeed, CNT-based materials and their composites possess the promising potential to revolutionize the design and integration of bone scaffolds or implants, as well as drug therapeutic systems. This review summarizes the unique physicochemical and biomedical properties of CNTs as structural biomaterials and reinforcing agents for bone repair as well as provides coverage of recent concerns and advancements in CNT-based materials and composites for bone tissue regeneration and engineering. Moreover, this review discusses the research progress in the design and development of novel CNT-based delivery systems in the field of bone tissue engineering.
Collapse
Affiliation(s)
- Baoqing Pei
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| | - Wei Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| | - Nicholas Dunne
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, Dublin 9, Ireland.
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
7
|
Elzahhar P, Belal ASF, Elamrawy F, Helal NA, Nounou MI. Bioconjugation in Drug Delivery: Practical Perspectives and Future Perceptions. Methods Mol Biol 2019; 2000:125-182. [PMID: 31148014 DOI: 10.1007/978-1-4939-9516-5_11] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For the past three decades, pharmaceutical research has been mainly converging to novel carrier systems and nanoparticulate colloidal technologies for drug delivery, such as nanoparticles, nanospheres, vesicular systems, liposomes, or nanocapsules to impart novel functions and targeting abilities. Such technologies opened the gate towards more sophisticated and effective multi-acting platform(s) which can offer site-targeting, imaging, and treatment using a single multifunctional system. Unfortunately, such technologies faced major intrinsic hurdles including high cost, low stability profile, short shelf-life, and poor reproducibility across and within production batches leading to harsh bench-to-bedside transformation.Currently, pharmaceutical industry along with academic research is investing heavily in bioconjugate structures as an appealing and advantageous alternative to nanoparticulate delivery systems with all its flexible benefits when it comes to custom design and tailor grafting along with avoiding most of its shortcomings. Bioconjugation is a ubiquitous technique that finds a multitude of applications in different branches of life sciences, including drug and gene delivery applications, biological assays, imaging, and biosensing.Bioconjugation is simple, easy, and generally a one-step drug (active pharmaceutical ingredient) conjugation, using various smart biocompatible, bioreducible, or biodegradable linkers, to targeting agents, PEG layer, or another drug. In this chapter, the different types of bioconjugates, the techniques used throughout the course of their synthesis and characterization, as well as the well-established synthetic approaches used for their formulation are presented. In addition, some exemplary representatives are outlined with greater emphasis on the practical tips and tricks of the most prominent techniques such as click chemistry, carbodiimide coupling, and avidin-biotin system.
Collapse
Affiliation(s)
- Perihan Elzahhar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ahmed S F Belal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Fatema Elamrawy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Nada A Helal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mohamed Ismail Nounou
- Department of Pharmaceutical Sciences, School of Pharmacy & Physician Assistant Studies (SOPPAS), University of Saint Joseph (USJ), Hartford, CT, USA.
| |
Collapse
|
8
|
Mohajeri M, Behnam B, Sahebkar A. Biomedical applications of carbon nanomaterials: Drug and gene delivery potentials. J Cell Physiol 2018; 234:298-319. [PMID: 30078182 DOI: 10.1002/jcp.26899] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022]
Abstract
One of the major components in the development of nanomedicines is the choice of the right biomaterial, which notably determines the subsequent biological responses. The popularity of carbon nanomaterials (CNMs) has been on the rise due to their numerous applications in the fields of drug delivery, bioimaging, tissue engineering, and biosensing. Owing to their considerably high surface area, multifunctional surface chemistry, and excellent optical activity, novel functionalized CNMs possess efficient drug-loading capacity, biocompatibility, and lack of immunogenicity. Over the past few decades, several advances have been made on the functionalization of CNMs to minimize their health concerns and enhance their biosafety. Recent evidence has also implied that CNMs can be functionalized with bioactive peptides, proteins, nucleic acids, and drugs to achieve composites with remarkably low toxicity and high pharmaceutical efficiency. This review focuses on the three main classes of CNMs, including fullerenes, graphenes, and carbon nanotubes, and their recent biomedical applications.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behzad Behnam
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Teradal NL, Jelinek R. Carbon Nanomaterials in Biological Studies and Biomedicine. Adv Healthc Mater 2017; 6. [PMID: 28777502 DOI: 10.1002/adhm.201700574] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/12/2017] [Indexed: 12/31/2022]
Abstract
The "carbon nano-world" has made over the past few decades huge contributions in diverse scientific disciplines and technological advances. While dramatic advances have been widely publicized in using carbon nanomaterials such as fullerenes, carbon nanotubes, and graphene in materials sciences, nano-electronics, and photonics, their contributions to biology and biomedicine have been noteworthy as well. This Review focuses on the use of carbon nanotubes (CNTs), graphene, and carbon quantum dots [encompassing graphene quantum dots (GQDs) and carbon dots (C-dots)] in biologically oriented materials and applications. Examples of these remarkable nanomaterials in bio-sensing, cell- and tissue-imaging, regenerative medicine, and other applications are presented and discussed, emphasizing the significance of their unique properties and their future potential.
Collapse
Affiliation(s)
- Nagappa L. Teradal
- Department of Chemistry and Ilse Katz Institute for Nanotechnology; Ben Gurion University of the Negev; Beer Sheva 84105 Israel
| | - Raz Jelinek
- Department of Chemistry and Ilse Katz Institute for Nanotechnology; Ben Gurion University of the Negev; Beer Sheva 84105 Israel
| |
Collapse
|
10
|
Munk M, de Souza Salomão Zanette R, de Almeida Camargo LS, de Souza NLGD, de Almeida CG, Gern JC, de Sa Guimaraes A, Ladeira LO, de Oliveira LFC, de Mello Brandão H. Using carbon nanotubes to deliver genes to hard-to-transfect mammalian primary fibroblast cells. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa7927] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Riley MK, Vermerris W. Recent Advances in Nanomaterials for Gene Delivery-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E94. [PMID: 28452950 PMCID: PMC5449975 DOI: 10.3390/nano7050094] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 01/02/2023]
Abstract
With the rapid development of nanotechnology in the recent decade, novel DNA and RNA delivery systems for gene therapy have become available that can be used instead of viral vectors. These non-viral vectors can be made of a variety of materials, including inorganic nanoparticles, carbon nanotubes, liposomes, protein and peptide-based nanoparticles, as well as nanoscale polymeric materials. They have as advantages over viral vectors a decreased immune response, and additionally offer flexibility in design, allowing them to be functionalized and targeted to specific sites in a biological system with low cytotoxicity. The focus of this review is to provide an overview of novel nanotechnology-based methods to deliver DNA and small interfering RNAs into biological systems.
Collapse
Affiliation(s)
- Michael K Riley
- Graduate Program in Plant Cellular and Molecular Biology, University of Florida, Gainesville, FL 32611, USA.
- UF Genetics Institute, University of Florida, Gainesville, FL 32611, USA.
| | - Wilfred Vermerris
- Graduate Program in Plant Cellular and Molecular Biology, University of Florida, Gainesville, FL 32611, USA.
- UF Genetics Institute, University of Florida, Gainesville, FL 32611, USA.
- Department of Microbiology & Cell Science, University of Florida, Cancer/Genetics Research Complex 302, 2033 Mowry Road, Gainesville, FL 32610, USA.
| |
Collapse
|
12
|
Hashem Nia A, Behnam B, Taghavi S, Oroojalian F, Eshghi H, Shier WT, Abnous K, Ramezani M. Evaluation of chemical modification effects on DNA plasmid transfection efficiency of single-walled carbon nanotube-succinate- polyethylenimine conjugates as non-viral gene carriers. MEDCHEMCOMM 2017; 8:364-375. [PMID: 30108752 PMCID: PMC6072421 DOI: 10.1039/c6md00481d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/28/2016] [Indexed: 11/21/2022]
Abstract
Polyethylenimine (PEI) is a widely used non-viral vector for DNA delivery. One major obstacle of higher molecular weight PEIs is the increased cytotoxicity despite the improved transfection efficiency and numerous chemical modifications that have been reported to overcome this problem. Carbon nanotubes (CNT) are carbon nanomaterials capable of penetrating into cell membranes with no cytotoxic effects. Covalent and noncovalent functionalization methods have been used to improve their solubility in aqueous media. The idea of conjugating PEIs and CNT through different chemical bonds and linkers seems promising as it may result in highly effective carriers due to combination of the transfection ability of PEI with cell internalization of CNT. In this study, six different water-soluble PEI conjugates of single-walled carbon nanotubes (SWNTs) were prepared by grafting PEI with one of three molecular weights (1.8, 10 and 25 kDa) through succinate as a linker which refers to "an organic moiety through which a SWNT is conjugated to PEI." The succinate linker was introduced to the surface of SWNTs through two different chemical strategies: a) ester and b) acyl linkages. The resulting SWNT-PEI vectors were characterized by IR spectroscopy, thermogravimetric analysis (TGA) and SEM imaging. All synthesized carriers were evaluated and compared for their cytotoxicity and transfection efficiency in murine neuroblastoma cells as polyplexes with plasmid DNA for luciferase and green fluorescent protein (GFP). The most efficient carriers were prepared by attaching PEI with the lowest molecular weight (1.8 kDa) through acyl linkage, which gave a transfection efficiency 190-fold greater than that of the corresponding free PEI. Transfection efficiency was the highest in polyplexes prepared with acyl-linked conjugates in all the plasmid/vector ratios studied.
Collapse
Affiliation(s)
- Azadeh Hashem Nia
- Pharmaceutical Research Center , School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran . ; ; Tel: +98513 7112470
- Department of Chemistry , Faculty of Sciences , Ferdowsi University of Mashhad , Mashhad , Iran
| | - Behzad Behnam
- Pharmaceutics Research Center , Institute of Neuropharmacology , Kerman University of Medical Sciences , Kerman , Iran
| | - Sahar Taghavi
- Pharmaceutical Research Center , School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran . ; ; Tel: +98513 7112470
| | - Fatemeh Oroojalian
- Nanobiotechnology Group , Department of Life Science Engineering , Faculty of New Sciences and Technologies , University of Tehran , Tehran , Iran
| | - Hossein Eshghi
- Department of Chemistry , Faculty of Sciences , Ferdowsi University of Mashhad , Mashhad , Iran
| | - Wayne T Shier
- Department of Medicinal Chemistry , University of Minnesota-Twin Cities , Minneapolis , MN 55455 , USA
| | - Khalil Abnous
- Pharmaceutical Research Center , School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran . ; ; Tel: +98513 7112470
| | - Mohammad Ramezani
- Pharmaceutical Research Center , School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran . ; ; Tel: +98513 7112470
| |
Collapse
|
13
|
Hwang Y, Park SH, Lee JW. Applications of Functionalized Carbon Nanotubes for the Therapy and Diagnosis of Cancer. Polymers (Basel) 2017; 9:E13. [PMID: 30970690 PMCID: PMC6432390 DOI: 10.3390/polym9010013] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 11/28/2022] Open
Abstract
Carbon nanotubes (CNTs) are attractive nanostructures that serve as multifunctional transporters in biomedical applications, especially in the field of cancer therapy and diagnosis. Owing to their easily tunable nature and remarkable properties, numerous functionalizations and treatments of CNTs have been attempted for their utilization as hybrid nano-carriers in the delivery of various anticancer drugs, genes, proteins, and immunotherapeutic molecules. In this review, we discuss the current advances in the applications of CNT-based novel delivery systems with an emphasis on the various functionalizations of CNTs. We also highlight recent findings that demonstrate their important roles in cancer imaging applications, demonstrating their potential as unique agents with high-level ultrasonic emission, strong Raman scattering resonance, and magnetic properties.
Collapse
Affiliation(s)
- Yongsung Hwang
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea.
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea.
| | - Sung-Hoon Park
- Department of Mechanical Engineering, Soongsil University, Dongjak-gu, Seoul 06978, Korea.
| | - Jin Woo Lee
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 21999, Korea.
| |
Collapse
|
14
|
Kumar S, Rani R, Dilbaghi N, Tankeshwar K, Kim KH. Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chem Soc Rev 2017; 46:158-196. [DOI: 10.1039/c6cs00517a] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Remarkable advances achieved in modern material technology, especially in device fabrication, have facilitated diverse materials to expand the list of their application fields.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Bio and Nano Technology
- Guru Jambheshwar University of Science and Technology
- Hisar
- India
| | - Ruma Rani
- Department of Bio and Nano Technology
- Guru Jambheshwar University of Science and Technology
- Hisar
- India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology
- Guru Jambheshwar University of Science and Technology
- Hisar
- India
| | - K. Tankeshwar
- Department of Bio and Nano Technology
- Guru Jambheshwar University of Science and Technology
- Hisar
- India
- Department of Physics
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering
- Hanyang University
- Seoul 04763
- Republic of Korea
| |
Collapse
|
15
|
Nia AH, Amini A, Taghavi S, Eshghi H, Abnous K, Ramezani M. A facile Friedel–Crafts acylation for the synthesis of polyethylenimine-grafted multi-walled carbon nanotubes as efficient gene delivery vectors. Int J Pharm 2016; 502:125-37. [DOI: 10.1016/j.ijpharm.2016.02.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 10/22/2022]
|
16
|
Tonelli FMP, Lacerda SMSN, Paiva NCO, Lemos MS, de Jesus AC, Pacheco FG, Corrêa-Junior JD, Ladeira LO, Furtado CA, França LR, Resende RR. Efficient and safe gene transfection in fish spermatogonial stem cells using nanomaterials. RSC Adv 2016. [DOI: 10.1039/c6ra07010h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The nanomaterials MWCNTs, NGO and NRs can be functionalized and complexed to DNA to promote efficient gene delivery to Nile tilapia spermatogonial stem cells inducing less cell death than electroporation and the commercial reagents tested.
Collapse
|
17
|
Wang Y, Liu GL, Li DL, Ling F, Zhu B, Wang GX. The protective immunity against grass carp reovirus in grass carp induced by a DNA vaccination using single-walled carbon nanotubes as delivery vehicles. FISH & SHELLFISH IMMUNOLOGY 2015; 47:732-742. [PMID: 26497092 DOI: 10.1016/j.fsi.2015.10.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 09/22/2015] [Accepted: 10/18/2015] [Indexed: 06/05/2023]
Abstract
To reduce the lethal hemorrhagic disease caused by grass carp reovirus (GCRV) and improve the production of grass carp, efficient and economic prophylactic measure against GCRV is the most pressing desired for the grass carp farming industry. In this work, a novel SWCNTs-pEGFP-vp5 DNA vaccine linked vp5 recombinant in the form of plasmid pEGFP-vp5 and ammonium-functionalized SWCNTs by a chemical modification method was prepared to enhance the efficacy of a vp5 DNA vaccine against GCRV in juvenile grass carp. After intramuscular injection (1, 2.5 and 5 μg) and bath administration (1, 10, and 20 mg/L), the ability of the different immune treatments to induce transgene expression was analyzed. The results showed that higher levels of transcription and expression of vp5 gene could be detected in muscle tissues of grass carp in SWCNTs-pEGFP-vp5 treatment groups compare with naked pEGFP-vp5 treatment groups. Moreover, antibody levels, immune-related genes, and relative percentage survival were significantly enhanced in fish immunized with SWCNTs-pEGFP-vp5 vaccine. In addition, we found that a good immune protective effect was observed in bath immunization group; which at a concentration of 20 mg/L could reach the similar relative percentage survival (approximately 100%) in injection group at a dose of 5 μg. All these results indicated that ammonium-functionalized SWCNTs could provide extensive application prospect to aquatic vaccine and might be used to vaccinate fish by intramuscular injection or bath administration method.
Collapse
Affiliation(s)
- Yuan Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling 712100, China
| | - Guang-Lu Liu
- College of Science, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Dong-Liang Li
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling 712100, China
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling 712100, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling 712100, China.
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling 712100, China.
| |
Collapse
|
18
|
Tonelli FMP, Lacerda SMSN, Paiva NCO, Pacheco FG, Scalzo Junior SRA, de Macedo FHP, Cruz JS, Pinto MCX, Corrêa Junior JD, Ladeira LO, França LR, Guatimosim S, Resende RR. Functionalized nanomaterials: are they effective to perform gene delivery to difficult-to-transfect cells with no cytotoxicity? NANOSCALE 2015; 7:18036-18043. [PMID: 26486874 DOI: 10.1039/c5nr04173b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nanodiamonds (NDs), multiwalled carbon nanotubes (MWCNTs) and gold nanorods (NRs) can be functionalized to promote gene delivery to hard-to-transfect cells with higher transfection efficiency than cationic lipids, and inducing less cell death.
Collapse
Affiliation(s)
- F M P Tonelli
- Cell Signaling and Nanobiotechnology Laboratory, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil. and Nanocell Institute, Divinópolis, Brazil
| | - S M S N Lacerda
- Cell Biology Laboratory, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - N C O Paiva
- Cell Signaling and Nanobiotechnology Laboratory, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil. and Nanocell Institute, Divinópolis, Brazil
| | - F G Pacheco
- Chemistry of Nanostructures Laboratory, Nuclear Technology Development Center, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - S R A Scalzo Junior
- Cell Electrophysiology Laboratory, Department of Physiology and Pharmacology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - F H P de Macedo
- Excitable Membranes Laboratory, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - J S Cruz
- Excitable Membranes Laboratory, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - M C X Pinto
- Cell Signaling and Nanobiotechnology Laboratory, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil. and Nanocell Institute, Divinópolis, Brazil
| | - J D Corrêa Junior
- Laboratory of Chemical-Biological Interactions and Animal Reproduction, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - L O Ladeira
- Nanomaterials Laboratory, Department of Physics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - L R França
- Cell Biology Laboratory, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - S Guatimosim
- Cell Electrophysiology Laboratory, Department of Physiology and Pharmacology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - R R Resende
- Cell Signaling and Nanobiotechnology Laboratory, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil. and Nanocell Institute, Divinópolis, Brazil
| |
Collapse
|
19
|
Zhang B, Xie S, Wei R, Ma H, Yu M, Li L, Li J. Radiation induced graft polymerization of multi-walled carbon nanotubes for superhydrophobic composite membrane preparation. Sci China Chem 2015. [DOI: 10.1007/s11426-015-5472-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Liu L, Gong YX, Zhu B, Liu GL, Wang GX, Ling F. Effect of a new recombinant Aeromonas hydrophila vaccine on the grass carp intestinal microbiota and correlations with immunological responses. FISH & SHELLFISH IMMUNOLOGY 2015; 45:175-83. [PMID: 25862971 DOI: 10.1016/j.fsi.2015.03.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/28/2015] [Accepted: 03/30/2015] [Indexed: 05/20/2023]
Abstract
Intestinal microbiota has become an integral component of the fish, and plays a key role in host metabolism, immunity and health maintenance. However, information on the immune responses after vaccine administration in relation to the intestinal microbiota is absent in fish. The present study focused on the effect of a new recombinant Aeromonas hydrophila vaccine (Aera) by using a novel functionalized, single-walled carbon nanotubes (SWCNTs) as a delivery vehicle on the intestinal microbiota of grass carp (Ctenopharyngodon idella) through the bath immunization, and further explored the immunological responses in intestine, kidney and spleen. By performing deep sequencing, a total of 81,979 valid reads and 609 OTUs obtained from 4 intestine samples were analyzed. We detected 141 genuses, most of which belonged to Firmicutes, Fusobacteria and Proteobacteria. Of note, the quantity of Aeromonas in library Aera (after 6 h Aera vaccine pretreatment, fish were transferred to tanks without SWCNTs-Aera for 28 d) and Aera-GD (6 h Aera vaccine pretreated prior to the group injected by A. hydrophila) was declined 6.5% and 14.6% compared with the control, respectively. Moreover, the expression of seven immune-related genes (IFN-I, TNF-α, CRP, IL-8, IgM, MHC I and CD8α) in the intestine, kidney and spleen of Aera treated fish was significantly enhanced, which indicated that a better tissue immune response in grass carp was induced by the SWCNTs-Aera vaccine. Therefore, a new recombinant SWCNT-Aera vaccine may represent potentially efficient and immunological role in grass carp intestine to resist A. hydrophila infection.
Collapse
Affiliation(s)
- Lei Liu
- Northwest A&F University, Yangling 712100, People's Republic of China
| | - Yu-Xin Gong
- Northwest A&F University, Yangling 712100, People's Republic of China
| | - Bin Zhu
- Northwest A&F University, Yangling 712100, People's Republic of China
| | - Guang-Lu Liu
- Northwest A&F University, Yangling 712100, People's Republic of China
| | - Gao-Xue Wang
- Northwest A&F University, Yangling 712100, People's Republic of China.
| | - Fei Ling
- Northwest A&F University, Yangling 712100, People's Republic of China.
| |
Collapse
|
21
|
Gong YX, Zhu B, Liu GL, Liu L, Ling F, Wang GX, Xu XG. Single-walled carbon nanotubes as delivery vehicles enhance the immunoprotective effects of a recombinant vaccine against Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2015; 42:213-220. [PMID: 25462556 DOI: 10.1016/j.fsi.2014.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 06/04/2023]
Abstract
To reduce the economic losses caused by diseases in aquaculture industry, more efficient and economic prophylactic measures should be urgently investigated. In this research, the effects of a novel functionalized single-walled carbon nanotubes (SWCNTs) applied as a delivery vehicle for recombinant Aeromonas hydrophila vaccine administration via bath or injection in juvenile grass carp were studied. The results showed that SWCNT as a vector for the recombinant protein aerA, augmented the production of specific antibodies, apparently stimulated the induction of immune-related genes, and induced higher level of survival rate compared with free aerA subunit vaccine. Furthermore, we compared the routes of bath and intramuscular injection immunization by SWCNTs-aerA vaccine, and found that similar antibody levels induced by SWCNTs-aerA were observed in both immunization routes. Meanwhile, a similar relative percentage survival (approximately 80%) was found in both a 40 mg/L bath immunization group, and a 20 μg injection group. The results indicate that functionalized SWCNTs could be a promising delivery vehicle to potentiate the immune response of recombinant vaccines, and might be used to vaccinate juvenile fish by bath administration method.
Collapse
Affiliation(s)
- Yu-Xin Gong
- Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Bin Zhu
- Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Guang-Lu Liu
- Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Lei Liu
- Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Fei Ling
- Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Gao-Xue Wang
- Northwest A&F University, Yangling, 712100, People's Republic of China.
| | - Xin-Gang Xu
- Northwest A&F University, Yangling, 712100, People's Republic of China.
| |
Collapse
|
22
|
Du X, Miao Z, Zhang D, Fang Y, Ma M, Chen Q. Facile synthesis of β-lactoglobulin-functionalized multi-wall carbon nanotubes and gold nanoparticles on glassy carbon electrode for electrochemical sensing. Biosens Bioelectron 2014; 62:73-8. [DOI: 10.1016/j.bios.2014.06.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/03/2014] [Accepted: 06/12/2014] [Indexed: 02/07/2023]
|