1
|
Jomnonkhaow U, Plangklang P, Reungsang A, Peng CY, Chu CY. Valorization of spent coffee grounds through integrated bioprocess of fermentable sugars, volatile fatty acids, yeast-based single-cell protein and biofuels production. BIORESOURCE TECHNOLOGY 2024; 393:130107. [PMID: 38016585 DOI: 10.1016/j.biortech.2023.130107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
Recovering nutrients from waste for biological processes aligns with sustainability principles. This study aimed to convert spent coffee grounds (SCG) into valuable products, including fermentable sugars, volatile fatty acids (VFAs), yeast-based single-cell protein and biofuels. Alkaline pretreatment was conducted before enzymatic hydrolysis, in which the pretreated SCG was hydrolyzed with varying enzyme loadings (20-60 filter paper units (FPU)/g-solid) and solid loadings (3-15 % w/v). The hydrolyzed slurry was utilized for VFAs and hydrogen production, yielding high values of 0.66 g/g-volatile solids (VS) and 109 mL/g-VS, respectively, using an enzyme loading of 50 FPU/g-solid and a solid loading of 3 % (w/v). The derived VFAs were used to cultivate a newly isolated yeast, Candida maltosa KKU-ARY2, resulting in an accumulated protein content of 43.7 % and a biomass concentration of 4.6 g/L. This study highlights the conversion of SCG into essential components, emphasizing the benefits of waste utilization through cascade bioprocesses.
Collapse
Affiliation(s)
- Umarin Jomnonkhaow
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pensri Plangklang
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Alissara Reungsang
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand; Academy of Science, Royal Society of Thailand, Bangkok 10300, Thailand.
| | - Chi-Yen Peng
- Master's Program of Green Energy Science and Technology, Feng Chia University, Taichung 40724, Taiwan; Institute of Green Products, Feng Chia University, Taichung 40724, Taiwan
| | - Chen-Yeon Chu
- Master's Program of Green Energy Science and Technology, Feng Chia University, Taichung 40724, Taiwan; Institute of Green Products, Feng Chia University, Taichung 40724, Taiwan
| |
Collapse
|
2
|
Rodrigues TL, Pedroso PDC, de Freitas JHC, Carvalho ACP, Flores WH, Morais MM, da Rosa GS, de Almeida ARF. Obtaining of a rich-cellulose material from black wattle (Acacia mearnsii De Wild.) bark residues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113055-113067. [PMID: 37848795 DOI: 10.1007/s11356-023-30254-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/26/2023] [Indexed: 10/19/2023]
Abstract
Black wattle (Acacia mearnsii De Wild.) barks are residues produced by tannin industries in huge quantities, which are normally discharged on environmental or used for energy production. Therefore, this study aimed to evaluate the use of black wattle bark residues as a raw material on obtaining of a rich-cellulose material by alkaline (MET1), acetosolv (MET2), and organosolv (MET3) procedures. The results obtained indicated that the alkaline methodology, followed by a bleaching step (MET1), promoted klason lignin and hemicellulose removals more efficiently. It was possible to observe that better results were achieved using NaOH concentration of 6% (wt%), at 65 °C for 2.5 h, presenting a yield of 63.24 ± 1.25%, and a reduction on klason lignin content of almost 90.45%. Regarding the bleaching step, it was possible to obtain a material free of non-cellulosic compounds with a yield of 78.28 ± 1.48%. Thermogravimetric analysis indicated the removal of lignin and hemicellulose as well as an increase in cellulose degradation temperature, due to changes in crystalline phases. According to X-ray diffraction (XRD), the procedures employed have led to an increase in crystallinity from 66.27 to 91.78% due to the removal of non-cellulosic compounds. Scanning electron microscopy (SEM) showed morphological alterations in accordance with the removal of non-cellulosic compounds.
Collapse
Affiliation(s)
- Tereza Longaray Rodrigues
- Graduate Program in Materials Science and Engineering, Federal University of Pampa, Bagé, RS, 96413-172, Brazil
| | | | | | | | - Wladimir Hernández Flores
- Graduate Program in Materials Science and Engineering, Federal University of Pampa, Bagé, RS, 96413-172, Brazil
| | | | - Gabriela Silveira da Rosa
- Graduate Program in Materials Science and Engineering, Federal University of Pampa, Bagé, RS, 96413-172, Brazil
- Chemical Engineering, Federal University of Pampa, Bagé, RS, 96413-172, Brazil
| | - André Ricardo Felkl de Almeida
- Graduate Program in Materials Science and Engineering, Federal University of Pampa, Bagé, RS, 96413-172, Brazil.
- Chemical Engineering, Federal University of Pampa, Bagé, RS, 96413-172, Brazil.
| |
Collapse
|
3
|
Lee YG, Cho EJ, Maskey S, Nguyen DT, Bae HJ. Value-Added Products from Coffee Waste: A Review. Molecules 2023; 28:molecules28083562. [PMID: 37110796 PMCID: PMC10146170 DOI: 10.3390/molecules28083562] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Coffee waste is often viewed as a problem, but it can be converted into value-added products if managed with clean technologies and long-term waste management strategies. Several compounds, including lipids, lignin, cellulose and hemicelluloses, tannins, antioxidants, caffeine, polyphenols, carotenoids, flavonoids, and biofuel can be extracted or produced through recycling, recovery, or energy valorization. In this review, we will discuss the potential uses of by-products generated from the waste derived from coffee production, including coffee leaves and flowers from cultivation; coffee pulps, husks, and silverskin from coffee processing; and spent coffee grounds (SCGs) from post-consumption. The full utilization of these coffee by-products can be achieved by establishing suitable infrastructure and building networks between scientists, business organizations, and policymakers, thus reducing the economic and environmental burdens of coffee processing in a sustainable manner.
Collapse
Affiliation(s)
- Yoon-Gyo Lee
- Bio-Energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Eun-Jin Cho
- Bio-Energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Shila Maskey
- Bio-Energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Dinh-Truong Nguyen
- School of Biotechnology, Tan Tao University, Duc Hoa 82000, Long An, Vietnam
| | - Hyeun-Jong Bae
- Bio-Energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| |
Collapse
|
4
|
Titiri E, Filippi K, Giannakis N, Vlysidis A, Koutinas A, Stylianou E. Optimisation of alkaline pretreatment of spent coffee grounds for microbial oil production by Cryptococcus curvatus. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
Ariaeenejad S, Motamedi E, Kavousi K, Ghasemitabesh R, Goudarzi R, Salekdeh GH, Zolfaghari B, Roy S. Enhancing the ethanol production by exploiting a novel metagenomic-derived bifunctional xylanase/β-glucosidase enzyme with improved β-glucosidase activity by a nanocellulose carrier. Front Microbiol 2023; 13:1056364. [PMID: 36687660 PMCID: PMC9845577 DOI: 10.3389/fmicb.2022.1056364] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/21/2022] [Indexed: 01/06/2023] Open
Abstract
Some enzymes can catalyze more than one chemical conversion for which they are physiologically specialized. This secondary function, which is called underground, promiscuous, metabolism, or cross activity, is recognized as a valuable feature and has received much attention for developing new catalytic functions in industrial applications. In this study, a novel bifunctional xylanase/β-glucosidase metagenomic-derived enzyme, PersiBGLXyn1, with underground β-glucosidase activity was mined by in-silico screening. Then, the corresponding gene was cloned, expressed and purified. The PersiBGLXyn1 improved the degradation efficiency of organic solvent pretreated coffee residue waste (CRW), and subsequently the production of bioethanol during a separate enzymatic hydrolysis and fermentation (SHF) process. After characterization, the enzyme was immobilized on a nanocellulose (NC) carrier generated from sugar beet pulp (SBP), which remarkably improved the underground activity of the enzyme up to four-fold at 80°C and up to two-fold at pH 4.0 compared to the free one. The immobilized PersiBGLXyn1 demonstrated 12 to 13-fold rise in half-life at 70 and 80°C for its underground activity. The amount of reducing sugar produced from enzymatic saccharification of the CRW was also enhanced from 12.97 g/l to 19.69 g/l by immobilization of the enzyme. Bioethanol production was 29.31 g/l for free enzyme after 72 h fermentation, while the immobilized PersiBGLXyn1 showed 51.47 g/l production titre. Overall, this study presented a cost-effective in-silico metagenomic approach to identify novel bifunctional xylanase/β-glucosidase enzyme with underground β-glucosidase activity. It also demonstrated the improved efficacy of the underground activities of the bifunctional enzyme as a promising alternative for fermentable sugars production and subsequent value-added products.
Collapse
Affiliation(s)
- Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran,*Correspondence: Shohreh Ariaeenejad, ;
| | - Elaheh Motamedi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Rezvaneh Ghasemitabesh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Razieh Goudarzi
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran,Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia,Ghasem Hosseini Salekdeh,
| | - Behrouz Zolfaghari
- Department of Integrated Art and Sciences, Faculty of Education, Waseda University, Tokyo, Japan
| | - Swapnoneel Roy
- School of Computing, University of North Florida, Jacksonville, FL, United States
| |
Collapse
|
6
|
Barreto Peixoto JA, Silva JF, Oliveira MBPP, Alves RC. Sustainability issues along the coffee chain: From the field to the cup. Compr Rev Food Sci Food Saf 2023; 22:287-332. [PMID: 36479852 DOI: 10.1111/1541-4337.13069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/07/2022] [Accepted: 10/11/2022] [Indexed: 12/14/2022]
Abstract
The coffee industry is one of the most important commercial value chains worldwide. Nonetheless, it is also associated to several social, economic, and environmental concerns that impair its sustainability. The present review is focused on these main sustainability concerns from the field to the coffee cup, as well as on the strategies that are being developed and/or implemented to attain sustainability and circular economy principles in the different chain segments. In this context, distinct approaches have been applied, such as sustainable certifications (e.g., voluntary sustainability standards), corporate sustainability initiatives, direct trade, relationship coffee concepts, geographical indication, legislations, waste management, and byproducts valorization, among others. These strategies are addressed and discussed throughout this review, as well as their recognized advantages and limitations. Overall, there is still a long way to go to attain the much-desired sustainability in the coffee chain, being essential to join the efforts of all actors and entities directly or indirectly involved, namely, producers, retailers, roasters, governments, educational institutions (such as universities and scientific research institutes), and organizations.
Collapse
Affiliation(s)
- Juliana A Barreto Peixoto
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Joana F Silva
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - M Beatriz P P Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Rita C Alves
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
7
|
Ribeiro AR, Silva EL. Potato waste as feedstock to produce biohydrogen and organic acids: A comparison of acid and alkaline pretreatments using response surface methodology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116308. [PMID: 36261996 DOI: 10.1016/j.jenvman.2022.116308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The effects of physicochemical pre-treatment were evaluated on hydrogen (H2) production and organic acids from hydrolyzed potato peel. Central composite design (CCD) and response surface methodology (RSM) were used to evaluate the effects of different substrate concentrations on a wet basis (38.8-81.2 g.L-1) and hydrolyser ratios (6M NaOH and 30% HCl: 1.6-4.4% v.v-1; and H2SO4: 2.2-7.8% v.v-1). The experiments were conducted in batch reactors at 37 °C, using a heat-treated microbial consortium. The maximum H2 production potential (P), lag phase (λ), and maximum H2 production rate (Rm) were evaluated for untreated and pre-treated potato peel waste. H2 production was positively influenced under hydrolyzed substrate concentrations ≥75 g.L-1 in the three CCDs performed. Only the increase in the H2SO4 proportions (≥5% v.v-1) had a negative influence on H2 production. Increasing the 30% HCl and 6M NaOH proportions did not significantly influence the cumulative H2 production. The highest hydrogen production was obtained after alkaline pre-treatment by dark fermentation (P: 762.09 mL H2.L-1; λ: 14.56 h; Rm: 38.39 mL H2.L-1.h-1). Based on the CCD and RSM, the highest H2 production (1060.10 mL H2.L-1) was observed with 81.2 g.L-1 hydrolyzed potato peel with 3.0% v.v-1 of 6M NaOH. The highest yield liquid metabolites were acetic (513.70 mg. g-1 COD) and butyric acids (491.90 mg. g-1 COD).
Collapse
Affiliation(s)
- Alexandre Rodrigues Ribeiro
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Av. João Dagnone, 1100 - Jd. Santa Angelina - CEP 13563-120 - São Carlos/SP, Brazil
| | - Edson Luiz Silva
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luis, km 235 - CEP 13565-905 - São Carlos/SP, Brazil.
| |
Collapse
|
8
|
Preliminary Characterization of Phytochemicals and Polysaccharides in Diverse Coffee Cascara Samples: Identification, Quantification and Discovery of Novel Compounds. Foods 2022; 11:foods11121710. [PMID: 35741907 PMCID: PMC9222401 DOI: 10.3390/foods11121710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/05/2022] Open
Abstract
Coffee cascara is the first and most significant by-product of the coffee processing industry, whose valorization has become an urgent priority to reduce harmful environmental impacts. This work aimed to provide an improved understanding of phytochemicals and polysaccharides in coffee cascara in order to offer information for the better evaluation of potential applications. Phytochemicals in 20 different coffee cascara samples were ultrasonically extracted and analyzed by HPLC-UV and HPLC-MS/MS. Four novel compounds were isolated for the first time from coffee cascara, including two still unknown tautomers (337 Da), and two dihydroflavonol glycosides (dihydromyricetin glycoside and dihydromyricetin rhamnosylglycoside). Their presence can contribute to the design of new value-added applications of coffee cascara. Chemical characterization of two polysaccharides from two of the coffee cascara pulp samples showed that they were mainly composed of homogalacturonan, with rhamnose and arabinose as minor neutral sugars. In addition, principal component analysis results indicated that coffee cultivar and/or country significantly impacted the phytochemical composition of coffee cascara, although differences may be reduced by the external environment and processing method. It is suggested that processing method should be carefully designed when generating coffee cascara from the same cultivar and country/farm.
Collapse
|
9
|
Changes in Bioactive Compounds of Coffee Pulp through Fermentation-Based Biotransformation Using Lactobacillus plantarum TISTR 543 and Its Antioxidant Activities. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of biotransformation has become a popular trend in the food and cosmetic industry. Lactic acid bacteria (LAB) are widely used due to their safety and beneficial effects on human health. Coffee pulp, a by-product obtained from coffee production, has antioxidant activity because it contains different classes of phenolic compounds. To investigate the factors affecting the biotransformation process of coffee pulp using L. plantarum TISTR 543, a systematic study using 23 factorial designs in a completely randomized design (CRD) was done. After the coffee pulp was bio-transformed, its bacterial count, pH, phenol contents, flavonoid contents, tannin contents, changes in bioactive compounds by LC-QQQ, and antioxidant properties were studied. The highest phenolic content was obtained in the sample containing the substrate, water, and sugar in the ratio of 3:10:3 with a 5% starter. After the fermentation was done, for 24–72 h, total bacteria count, total phenol contents, and antioxidant activities significantly increased compared to their initial values. Protocatechuic acid also markedly increased after 24 h of the biotransformation process. Hence, the fermentation of coffee pulp with L. plantarum TISTR 543 can produce substances with a higher biological activity which can be further studied and used as functional foods or active ingredients in cosmetic application.
Collapse
|
10
|
Chen J, Wang X, Zhang B, Yang Y, Song Y, Zhang F, Liu B, Zhou Y, Yi Y, Shan Y, Lü X. Integrating enzymatic hydrolysis into subcritical water pretreatment optimization for bioethanol production from wheat straw. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145321. [PMID: 33515886 DOI: 10.1016/j.scitotenv.2021.145321] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
The conversion of lignocellulosic biomass to bioethanol is a potential approach to alleviate the energy crisis and environmental deterioration. To improve the conversion efficiency of bioethanol from wheat straw (WS), the optimization of subcritical water pretreatment and high solid hydrolysis were investigated in this study. Response surface methodology (RSM) accompanied with glucose concentration after enzymatic hydrolysis as a more reasonable response value was applied for the pretreatment optimization, and the optimum conditions were obtained as 220.51 °C of extraction temperature, 22.01 min of extraction time and 2.50% (w/v) of substrate loading. After pretreatment, the hemicellulose decreased by 18.37%, and the cellulose and lignin increased by 25.92% and 8.81%, respectively, which were consistent with the destroyed microstructure and raised crystallinity. The high efficiency of separate hydrolysis and fermentation (SHF) was verified by five commercial cellulases, and yields of hydrolysis and fermentation were 77.85-89.59% and 93.34-96.18%, respectively. Based on the high solid (15%) hydrolysis and fermentation, the ethanol concentration was significantly improved to 37.00 g/L. Interestingly, 64.47% of lignin was accumulated in the solid residue after enzymatic hydrolysis and it did not affect the efficiency of SHF, which further suggested that subcritical water mainly affected the structure of WS rather than the removal of lignin. Therefore, subcritical water pretreatment combined with high solid hydrolysis is a more effective solution for bioethanol conversion, which is also a promising strategy to utilize all components of lignocellulosic biomass.
Collapse
Affiliation(s)
- Jiaxin Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Biying Zhang
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yifan Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yangbo Song
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fan Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bianfang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuan Zhou
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yanglei Yi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuanyuan Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
11
|
Heredia S, Costa D, Choez I, Barragan A, Quijano MF, Cárdenas W, Manzano P, Reyes C, Sosa del Castillo D, Alvarez-Barreto JF. Porous Sponges from the Mesocarp of Theobroma Cacao L. Pod Shells for Potential Biomaterial Applications. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.01.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Lignocellulosic materials have garnered significant attention in recent years to generate biomaterials, but nothing has been investigated with cacao residues of significant importance in Ecuador. This study's objective was to generate porous, three-dimensional sponges from cacao pod shell mesocarp with potential use in biomaterial application. Discs from the mesocarp of cacao pod shells were subjected to neutral, acid, and alkaline treatments, at 25oC and 100oC, followed by washing and lyophilization. Sponge composition was evaluated, with the alkaline treatment resulting in the highest cellulose content and the lowest percentage of lignin, with the removal of hemicellulose corroborated by FITR. The sponges presented high water absorption capacities, which increased with the treatment temperature; mainly, the alkaline generated structures had the largest capacity. The sponges' porosity also depended on the treatment, with the acid and alkaline treatments generating larger pores, which significantly grew with treatment temperature. Preliminary in vitro cytotoxicity tests were carried out using Wharton's jelly mesenchymal stem cells, according to ISO 10993.5.2009, with none of the materials being cytotoxic; however, those with greater lignin contents resulted in lower cell viability. In general, it is considered that the alkaline generated sponges presented the more significant potential for biomaterial applications, which could be further tested with In vitro cell proliferation and differentiation studies and possible in vivo assays.
Collapse
Affiliation(s)
- Sandra Heredia
- Escuela Superior Politecnica del Litoral, ESPOL. Centro de Investigaciones Biotecnologicas del Ecuador, CIBE. Guayaquil, Ecuador
| | - Diego Costa
- Laboratorio para Investigaciones Biomédicas, FCV, Escuela Superior Politécnica del Litoral. Guayaquil, Ecuador
| | - Iván Choez
- Escuela Superior Politecnica del Litoral, ESPOL. Centro de Investigaciones Biotecnologicas del Ecuador, CIBE. Guayaquil, Ecuador
| | - Ana Barragan
- Escuela Superior Politecnica del Litoral, ESPOL. Centro de Investigaciones Biotecnologicas del Ecuador, CIBE. Guayaquil, Ecuador
| | - María F. Quijano
- Escuela Superior Politecnica del Litoral, ESPOL. Centro de Investigaciones Biotecnologicas del Ecuador, CIBE. Guayaquil, Ecuador
| | - Washington Cárdenas
- Laboratorio para Investigaciones Biomédicas, FCV, Escuela Superior Politécnica del Litoral. Guayaquil, Ecuador
| | - Patricia Manzano
- Escuela Superior Politecnica del Litoral, ESPOL. Centro de Investigaciones Biotecnologicas del Ecuador, CIBE. Guayaquil, Ecuador
| | - Carol Reyes
- Biomaterials Laboratory. Institute for the Development of Alternative Energies and Materials, IDEMA. Department of Chemical Engineering. College of Sciences and Engineering. Universidad San Francisco de Quito. Quito, Ecuador
| | - Daynet Sosa del Castillo
- Escuela Superior Politecnica del Litoral, ESPOL. Centro de Investigaciones Biotecnologicas del Ecuador, CIBE. Guayaquil, Ecuador
| | - Jose F. Alvarez-Barreto
- Biomaterials Laboratory. Institute for the Development of Alternative Energies and Materials, IDEMA. Department of Chemical Engineering. College of Sciences and Engineering. Universidad San Francisco de Quito. Quito, Ecuador
| |
Collapse
|
12
|
Phuong DV, Tan Quoc LP, Van Tan P, Doan Duy LN. Production of bioethanol from Robusta coffee pulp (Coffea robusta L.) in Vietnam. FOODS AND RAW MATERIALS 2019. [DOI: 10.21603/2308-4057-2019-1-10-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Coffee pulp is the first waste product obtained during the wet processing of coffee beans. Coffee pulp makes up nearly 40% of the total weight of the coffee cherry. Coffee pulp contains 25.88% of cellulose, 3.6% of hemicel- luloses, and 20.07% of lignin. Coffee pulp is considered as an ideal substrate of lignocellulose biomass for micro- bial fermentation to produce such value-added products as ethanol. In this study, we used alkaline pre-treatment of the coffee pulp with NaOH (0.2 g/g biomass) in a microwave system at 120°C during 20 min. This method gave the best results: 71.25% of cellulose remained, and 46.11% of hemicellulose and 76.63% of lignin were removed. After that, the pre-treated biomass was hydrolyzed by Viscozyme Cassava C (enzyme loading was 19.27 FPU/g) at 50°C for 72 hours. The results showed that the highest reducing sugars and glucose concentration after hydrolysis were 38.21 g/l and 30.36 g/l, respectively. Then, the hydrolysis solution was fermented by S. cerevisiae (3.108 cells/ml) at 30°C for 72 hours. The highest concentration of ethanol obtained was 11.28 g/l. The result illustrated that, available and non- edible as it is, coffee pulp could be a potential feedstock for bioethanol production in Vietnam.
Collapse
Affiliation(s)
- Do Viet Phuong
- Industrial University of Ho Chi Minh City
- Can Tho University
| | | | - Pham Van Tan
- Sub-Institute of Agricultural Engineering and Post-Harvest Technology
| | | |
Collapse
|
13
|
Fang S, Wang W, Tong S, Zhang C, Liu P. Evaluation of the Effects of Isolated Lignin on Cellulose Enzymatic Hydrolysis of Corn Stover Pretreatment by NaOH Combined with Ozone. Molecules 2018; 23:molecules23061495. [PMID: 29925811 PMCID: PMC6099953 DOI: 10.3390/molecules23061495] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/16/2018] [Accepted: 06/17/2018] [Indexed: 11/26/2022] Open
Abstract
In this experiment, corn stover was treated with optimal combined pretreatment conditions: 2% NaOH at 80 °C treated 2 h combined with initial pH 9 at the ozone concentration of 78 mg/mL treated 25 min. The effect of lignin removal rate on the enzymatic hydrolysis degree of cellulose during the treatment process was studied. At the same time, the lignin in the optimal pretreated corn stover was separated and extracted by enzymatic acidolysis, and its structure and connection were characterized. The results showed that the alkali combined with ozone pretreatment improved the enzymatic hydrolysis degree of the cellulose while exfoliating and degrading the macromolecular lignin into small molecules. The stable crosslink structure of the lignin-cellulose-hemicellulose was destroyed, and the lignocellulosic structure changed in favor of the enzymatic hydrolysis of the cellulose.
Collapse
Affiliation(s)
- Shuo Fang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Wenhui Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Shisheng Tong
- Bio-Pharmaceutical College, Beijing City University, Beijing 100094, China.
| | - Chunyan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Ping Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
14
|
Optimization of Saccharification Conditions of Lignocellulosic Biomass under Alkaline Pre-Treatment and Enzymatic Hydrolysis. ENERGIES 2018. [DOI: 10.3390/en11040886] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Kim HM, Choi YS, Lee DS, Kim YH, Bae HJ. Production of bio-sugar and bioethanol from coffee residue (CR) by acid-chlorite pretreatment. BIORESOURCE TECHNOLOGY 2017; 236:194-201. [PMID: 28411491 DOI: 10.1016/j.biortech.2017.03.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 06/07/2023]
Abstract
Nowadays, coffee residue (CR) after roasting is recognized as one of the most useful resources in the world for producing the biofuel and bio-materials. In this study, we evaluated the potential of bio-sugar and bioethanol production from acid-chlorite treated CR. Notably, CR treated three times with acid-chlorite after organic solvent extraction (OSE-3), showed the high monosaccharide content, and the efficient sugar conversion yield compared to the other pretreatment conditions. The OSE-3 (6% substrate loading, w/v) can produce bio-sugar (0.568g/g OSE-3). Also, simultaneous saccharification and fermentation (SSF) produced ethanol (0.266g/g OSE-3), and showed an ethanol conversion yield of 73.8% after a 72-h reaction period. These results suggest that acid-chlorite pretreatment can improve the bio-sugar and bioethanol production of CR by removing the phenolic and brown compounds.
Collapse
Affiliation(s)
- Ho Myeong Kim
- Bio-Energy Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yong-Soo Choi
- Department of Agricultural Biology, RDA, National Academy of Agriculture Sciences, Wanju 55365, Republic of Korea
| | - Dae-Seok Lee
- Bio-Energy Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yong-Hwan Kim
- College of Life and Resource Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Hyeun-Jong Bae
- Bio-Energy Research Center, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|