1
|
Makaluza S, Midzi N, Olorundare FOG, Sipuka DS, Sebokolodi TI, Nkosi D, Arotiba OA. A nitrogen-doped carbon nanosheet/poly(amidoamine) dendrimer-based electrochemical sensor for nicotine in flavored hookah pipe tobacco. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 39370887 DOI: 10.1039/d4ay01257g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Towards the nicotine addiction challenge in the smoking of hookah pipe products, we hereby present the development of an electrochemical sensor for nicotine detection. A nitrogen-doped carbon nanosheet (N-CNS)/poly(amidoamine) dendrimer (PAMAM) nanocomposite-modified electrode was prepared as a sensor for the detection of nicotine in analytical and real samples. The N-CNSs were prepared by a hydrothermal method and dropcast on a glassy carbon electrode followed by electro-deposition of the PAMAM dendrimer to form the sensor (GCE/N-CNSs/PAMAM). The N-CNSs were characterized with electron microscopy, Raman spectroscopy and FTIR. The sensor was characterized with voltammetry and electrochemical impedance spectroscopy. The N-CNS/PAMAM enhanced the electrochemical performance of the electrode towards the oxidation of nicotine. The sensor achieved a detection limit of 0.05 μM in a linear concentration range of 1.93-61.64 μM nicotine standard samples. The sensor showed good reproducibility, repeatability, and selectivity. The sensor was successful in selectively detecting nicotine in two local brands of hookah pipe tobacco with a 113-121 percent recovery. Nicotine, up to a concentration of 0.35-0.39 mg g-1, was found in the sampled hookah pipe tobacco products suggesting possible harm to human health.
Collapse
Affiliation(s)
- Sesethu Makaluza
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, 2028, South Africa.
- Centre for Nanomaterials Science Research, University of Johannesburg, South Africa
| | - Nyasha Midzi
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, 2028, South Africa.
- Centre for Nanomaterials Science Research, University of Johannesburg, South Africa
| | - Foluke O G Olorundare
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Dimpo S Sipuka
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, 2028, South Africa.
- Centre for Nanomaterials Science Research, University of Johannesburg, South Africa
| | - Tsholofelo I Sebokolodi
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, 2028, South Africa.
- Centre for Nanomaterials Science Research, University of Johannesburg, South Africa
| | - Duduzile Nkosi
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, 2028, South Africa.
- Centre for Nanomaterials Science Research, University of Johannesburg, South Africa
| | - Omotayo A Arotiba
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, 2028, South Africa.
- Centre for Nanomaterials Science Research, University of Johannesburg, South Africa
| |
Collapse
|
2
|
Karakaya S, Dilgin Y. The application of multi-walled carbon nanotubes modified pencil graphite electrode for voltammetric determination of favipiravir used in COVID-19 treatment. MONATSHEFTE FUR CHEMIE 2023; 154:1-11. [PMID: 37361695 PMCID: PMC10249926 DOI: 10.1007/s00706-023-03082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/11/2023] [Indexed: 06/28/2023]
Abstract
This study describes the first application of an improved procedure on a pencil graphite electrode decorated with functionalized multi-walled carbon nanotubes (f-MWCNTs/PGE) for the determination of the COVID-19 antiviral drug, favipiravir (FVP). The electrochemical behavior of FVP at f-MWCNTs/PGE was examined by cyclic voltammetry and differential pulse voltammetry (DPV) methods, and it was noted that the voltammetric response significantly increased with the modification of f -MWCNTs to the surface. The linear range and limit of detection from DPV studies were determined as 1-1500 µM and 0.27 µM, respectively. In addition, the selectivity of the method was tested toward potential interferences, which can be present in pharmaceutical and biological samples, and it was found that f-MWCNTs/PGE showed high selectivity for the determination of FVP in the presence of probable interferences. The results with high accuracies and precisions from the obtained feasibility studies also revealed that the designed procedure can be used for accurate and selective voltammetric determination of FVP in real samples. Graphical abstract
Collapse
Affiliation(s)
- Serkan Karakaya
- Chemistry Department of Science Faculty, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Yusuf Dilgin
- Chemistry Department of Science Faculty, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
3
|
Erşan T, Dilgin DG, Kumrulu E, Kumrulu U, Dilgin Y. Voltammetric Determination of Favipiravir Used as an Antiviral Drug for the Treatment of Covid-19 at Pencil Graphite Electrode. ELECTROANAL 2022; 35:ELAN202200295. [PMID: 36712592 PMCID: PMC9874810 DOI: 10.1002/elan.202200295] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/21/2022] [Indexed: 02/01/2023]
Abstract
This work describes the sensitive voltammetric determination of favipiravir (FAV) based on its reduction for the first time with a low-cost and disposable pencil graphite electrode (PGE). In addition, the determination of FAV was also performed based on its oxidation. Differential pulse (DP) voltammograms recorded in 0.5 M H2SO4 for the reduction of FAV show that peak currents increase linearly in the range of 1.0 to 600.0 μM with a limit of detection of 0.35 μM. The acceptable recovery values (98.9-106.0 %) obtained from a pharmaceutical tablet, real human urine, and artificial blood serum samples spiked with FAV confirm the high accuracy of the proposed method.
Collapse
Affiliation(s)
- Teslime Erşan
- Faculty ScienceDepartment of ChemistryÇanakkale Onsekiz Mart University17100TurkeyÇanakkale
| | - Didem Giray Dilgin
- Department of Mathematics and Science EducationFaculty of EducationÇanakkale Onsekiz Mart UniversityÇanakkaleTurkey
| | - Elif Kumrulu
- POLİFARMA İlaç San. ve Tic. A.Ş.ErgeneTekirdağTurkey
| | - Umur Kumrulu
- POLİFARMA İlaç San. ve Tic. A.Ş.ErgeneTekirdağTurkey
| | - Yusuf Dilgin
- Faculty ScienceDepartment of ChemistryÇanakkale Onsekiz Mart University17100TurkeyÇanakkale
| |
Collapse
|
4
|
A review on structural aspects and applications of PAMAM dendrimers in analytical chemistry: Frontiers from separation sciences to chemical sensor technologies. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Ozcan HM, Aydin UD. A simple immunosensor for thyroid stimulating hormone. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 49:61-70. [PMID: 33410369 DOI: 10.1080/21691401.2020.1867153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Determination of thyroid-stimulating hormone (TSH) level in serum or plasma is defined as a sensitive method for the diagnosis of hyperthyroidism and hypothyroidism and also in many diseases thought to be related to TSH levels. In this study, a novel simple impedimetric immunosensor based on polyamidoamine dendrimer was developed. Anti TSH antibody was immobilized on the gold electrode by using cysteamine self-assembled monolayer strategy. In constructing the immunosensor, a polyamidoamine dendrimer was used to increase the surface area in which Antı-TSH was immobilized and glutaraldehyde was used as a cross-linker. After each immobilization step, the electrode surface was monitored by electrochemical impedance spectroscopy, cyclic voltammetry, scanning electron microscopy and energy-dispersive X-ray spectroscopy techniques and optimization studies were performed. The reproducibility, repeatability, linearity and sensitivity of the immunosensor were examined. Also, the interference experiments for glucose, salts and proteins in serum were performed. The limit of detection and limit of quantification values of the proposed immunosensor were 0.026 mIUL-1 and 0.086 mIUL-1, respectively and it was able to detect the amount of TSH within a linear range of 0.1-0.6 mIUL-1.
Collapse
Affiliation(s)
- Hakki Mevlut Ozcan
- Faculty of Science, Department of Chemistry, Trakya University, Edirne, Turkey
| | - Umut Deniz Aydin
- Faculty of Science, Department of Chemistry, Trakya University, Edirne, Turkey
| |
Collapse
|
6
|
Asav E. Development of a functional impedimetric immunosensor for accurate detection of thyroid-stimulating hormone. Turk J Chem 2021; 45:819-834. [PMID: 34385869 PMCID: PMC8329345 DOI: 10.3906/kim-2012-69] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/26/2021] [Indexed: 12/03/2022] Open
Abstract
Thyroid-stimulating hormone (TSH), which regulates the synthesis of thyroid gland hormones affecting the whole metabolism, is a pituitary hormone. Determination of TSH is crucial for monitoring thyroid gland-related disorders and some metabolic diseases.In this study, a nonlabeled immunosensor based on covalent immobilization of anti-TSH antibody by using the formation of self-assembled monolayers (SAM) of 4-mercaptophenylacetic acid (4-MPA) and functionalization of carboxyl ends with 1-ethyl-3-(3-dimetilaminopropil) carbodiimide (EDC)/N-Hydroxysuccinimide (NHS) was fabricated for detection of TSH. Immobilization steps including the concentration of 4-MPA, the concentration of anti-TSH antibody, and duration of anti-TSH antibody incubation were optimized by utilizing electrochemical impedance spectroscopy. Under optimal conditions, a sensitive, rapid, and accurate determination of TSH at a concentration range between 0.7 and 3.5 mIU/L was accomplished with a notable linearity and LOD value of 0.034 mIU/L, as well as reproducibility and repeatability. Moreover, for comparison, linear range experiments were also carried out by using other electrochemical methods, including linear sweep voltammetry, cyclic voltammetry, and capacitance spectroscopy. Finally, the constructed immunosensor was used for analyzing TSH levels spiked in the artificial serum samples.
Collapse
Affiliation(s)
- Engin Asav
- Department of Nutrition and Dietetics, School of Health, Kırklareli University Turkey
| |
Collapse
|
7
|
Park S, Seo S, Lee NS, Yoon YH, Yang H. Sensitive electrochemical immunosensor using a bienzymatic system consisting of β-galactosidase and glucose dehydrogenase. Analyst 2021; 146:3880-3887. [PMID: 33983348 DOI: 10.1039/d1an00562f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bienzymatic systems are often used with electrochemical affinity biosensors to achieve high signal levels and/or low background levels. It is important to select two enzymes whose reactions do not exhibit mutual interference but have similar optimal conditions. Here, we report a sensitive electrochemical immunosensor based on a bienzymatic system consisting of β-galactosidase (Gal, a hydrolase enzyme) and flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH, a redox enzyme). Both enzymes showed high activities at neutral pH, the reactions catalyzed by them did not exhibit mutual interference, and the electrochemical-enzymatic redox cycling based on FAD-GDH coupled with enzymatic amplification by Gal enabled high signal amplification. Among the three amino-hydroxy-naphthalenes and 4-aminophenol (potential Gal products), 4-amino-1-naphthol showed the highest signal amplification. Glucose, as an electro-inactive, stable reducing agent for redox cycling, helped in achieving low background levels. Our bienzymatic system could detect parathyroid hormone at a detection limit of ∼0.2 pg mL-1, implying that it can be used for highly sensitive electrochemical detection of parathyroid hormone and other biomarkers in human serum.
Collapse
Affiliation(s)
- Seonhwa Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea.
| | - Seungah Seo
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea.
| | | | | | - Haesik Yang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
8
|
YaĞar H, Özcan HM, Mehmet O. A new electrochemical impedance biosensor based on aromatic thiol for alpha-1 antitrypsin determination. Turk J Chem 2021; 45:104-118. [PMID: 33679157 PMCID: PMC7925324 DOI: 10.3906/kim-2007-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/19/2020] [Indexed: 11/03/2022] Open
Abstract
Alpha-1 antitrypsin (A1AT) is one of the acute phase proteins which are synthesized in the liver. A1AT inhibits the activity of many proteases, but its main task is to protect the lungs from the attack of neutrophil elastase. In an autosomal hereditary disease known as alpha-1 antitrypsin deficiency, the A1AT level in blood serum decreases, increasing the risk of developing emphysema, liver apoptosis, and liver cancer. Thus, the detection of A1AT concentration in blood serum is very important. In this study, an impedimetric biosensor was developed, forming an SAM (self-assembled monolayer) with 4-mercaptophenylacetic acid (4MPA) on the surface of the gold electrode. An A1AT biosensor was constructed using immobilization of an A1AT-specific antibody (anti-A1AT) after activating the carboxyl groups of 4MPA with EDC/NHS. Each immobilization stage was characterized by using electrochemical impedance spectroscopy, cyclic voltammetry, and scanning electron microscopy with energy dispersive X-ray spectroscopy. With the designed biosensor, precise and highly reproducible results were obtained for A1AT concentrations in the range of 100-600 µg/mL. A1AT detection was also successfully carried out in artificial serum solutions spiked with A1AT.
Collapse
Affiliation(s)
- Hülya YaĞar
- Department of Chemistry, Faculty of Science, Trakya University, Edirne Turkey
| | - Hakkı Mevlüt Özcan
- Department of Chemistry, Faculty of Science, Trakya University, Edirne Turkey
| | - Osman Mehmet
- Department of Chemistry, Faculty of Science, Trakya University, Edirne Turkey
| |
Collapse
|
9
|
Malla P, Chen GC, Liao HP, Liu CH, Wu WC. Label-free parathyroid hormone immunosensor using nanocomposite modified carbon electrode. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Chen GC, Liu CH, Wu WC. Electrochemical immunosensor for serum parathyroid hormone using voltammetric techniques and a portable simulator. Anal Chim Acta 2021; 1143:84-92. [DOI: 10.1016/j.aca.2020.11.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 01/10/2023]
|
11
|
Karakaya S, Kartal B, Dilgin Y. Ultrasensitive voltammetric detection of an antimalarial drug (amodiaquine) at a disposable and low cost electrode. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02637-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Development of an interference-minimized amperometric-FIA glucose biosensor at a pyrocatechol violet/glucose dehydrogenase-modified graphite pencil electrode. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-019-01036-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Zhao W, Tian S, Huang L, Liu K, Dong L. The review of Lab-on-PCB for biomedical application. Electrophoresis 2020; 41:1433-1445. [PMID: 31945803 DOI: 10.1002/elps.201900444] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/29/2022]
Abstract
Prevention of infectious diseases, diagnosis of diseases, and determination of treatment options all rely on biosensors to detect and analyze biomarkers, which are usually divided into four parts: cell analysis, biochemical analysis, immunoassay, and molecular diagnosis. However, traditional biosensing devices are expensive, bulky, and require a lot of time to detect, which also limited its application in resource-limited areas. In recent years, Lab-on-PCB, which combines biosensing technology and PCB technology, has been widely used in biomedical applications due to its high integration, personalized design, and easy mass production. Among these Lab-on-PCB sensing devices, the PCB circuit plays an important role. It can be directly used as a resistance sensor to count cells, and also used as a control device to automatically control the detection device. Flexible PCBs can be used to make wearable medical biosensors. In addition, due to the high degree of integration of the PCB circuit, Lab-on-PCB can perform multiple inspections on the same platform, which reduces the inspection time equivalently. Therefore, in this review paper, we discuss the application of Lab-on-PCB in four analysis methods of cell analysis, biochemical analysis, immunoassay, and molecular diagnosis, and give some suggestions for improvement and future development trends at the end.
Collapse
Affiliation(s)
- Wenhao Zhao
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Shulin Tian
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Lei Huang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Ke Liu
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Lijuan Dong
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, P.R. China
| |
Collapse
|
14
|
Yao J, Wang L, Liu K, Wu H, Wang H, Huang J, Li J. Evaluation of electrical characteristics of biological tissue with electrical impedance spectroscopy. Electrophoresis 2020; 41:1425-1432. [DOI: 10.1002/elps.201900420] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Jiafeng Yao
- College of Mechanical & Electrical EngineeringNanjing University of Aeronautics & Astronautics Nanjing P. R. China
| | - Li Wang
- College of Mechanical & Electrical EngineeringNanjing University of Aeronautics & Astronautics Nanjing P. R. China
| | - Kai Liu
- College of Mechanical & Electrical EngineeringNanjing University of Aeronautics & Astronautics Nanjing P. R. China
| | - Hongtao Wu
- College of Mechanical & Electrical EngineeringNanjing University of Aeronautics & Astronautics Nanjing P. R. China
| | - Hao Wang
- Institute of OtolaryngologyGuangzhou No.12 Hospital Guangzhou P. R. China
| | - Jingshi Huang
- Humanomics LAB, Sino‐Korean School of Multimedia DesignShanghai University of Engineering Science Shanghai P. R. China
| | - Jianping Li
- College of EngineeringZhejiang Normal University Jinhua P. R. China
| |
Collapse
|
15
|
Özdokur KV. Voltammetric Determination of Isoniazid Drug in Various Matrix by Using CuO
x
Decorated MW‐CNT Modified Glassy Carbon Electrode. ELECTROANAL 2019. [DOI: 10.1002/elan.201900307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- K. Volkan Özdokur
- Erzincan Binali Yıldırım UniversityFaculty of Science and Letter, Department of Chemistry Erzincan Turkey
| |
Collapse
|
16
|
Yagati AK, Go A, Chavan SG, Baek C, Lee MH, Min J. Nanostructured Au-Pt hybrid disk electrodes for enhanced parathyroid hormone detection in human serum. Bioelectrochemistry 2019; 128:165-174. [DOI: 10.1016/j.bioelechem.2019.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/22/2022]
|
17
|
Karakaya S, Dilgin Y. Minimization of Interferences in Flow Injection Amperometric Glucose Biosensor Based on Oxidation of Enzymatically‐produced H
2
O
2. ELECTROANAL 2019. [DOI: 10.1002/elan.201800887] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Serkan Karakaya
- Çanakkale Onsekiz Mart UniversityScience and Arts Faculty, Department of Chemistry 17100 Çanakkale Turkey
| | - Yusuf Dilgin
- Çanakkale Onsekiz Mart UniversityScience and Arts Faculty, Department of Chemistry 17100 Çanakkale Turkey
| |
Collapse
|
18
|
Gao W, Wang W, Dimitrov D, Wang Y. Nano properties analysis via fourth multiplicative ABC indicator calculating. ARAB J CHEM 2018. [DOI: 10.1016/j.arabjc.2017.12.024] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
19
|
Dilgin DG, Ertek B, Dilgin Y. A low-cost, fast, disposable and sensitive biosensor study: flow injection analysis of glucose at poly-methylene blue-modified pencil graphite electrode. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1335-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Gao W, Wang Y, Wang W, Shi L. The first multiplication atom-bond connectivity index of molecular structures in drugs. Saudi Pharm J 2017; 25:548-555. [PMID: 28579890 PMCID: PMC5447459 DOI: 10.1016/j.jsps.2017.04.021] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
In the field of medicine, there are a large number of new drugs synthesis every year. Before entering the clinical stage, it needs a lot of work on drug testing of the various properties. Due to the lack of a large number of laboratory technician, laboratory equipment and reagents, the drug testing of many biochemical properties are not completed. Theoretical medicine provides a theoretical way for medical researchers to obtain the pharmaceutical properties of compounds by calculation tricks. In this paper, the first multiplication atom-bond connectivity index of several common drugs structure are studied, and the accurate expressions are determined. These theoretical conclusions provide practical guiding significance for pharmaceutical engineering.
Collapse
Affiliation(s)
- Wei Gao
- School of Information Science and Technology, Yunnan Normal University, Kunming 650500, China
| | - Yiqiao Wang
- School of Management, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Weifan Wang
- Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650092, China
| |
Collapse
|
21
|
Kim HU, Kim HY, Kulkarni A, Ahn C, Jin Y, Kim Y, Lee KN, Lee MH, Kim T. A sensitive electrochemical sensor for in vitro detection of parathyroid hormone based on a MoS 2-graphene composite. Sci Rep 2016; 6:34587. [PMID: 27694822 PMCID: PMC5046135 DOI: 10.1038/srep34587] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/15/2016] [Indexed: 12/01/2022] Open
Abstract
This paper reports a biosensor based on a MoS2-graphene (MG) composite that can measure the parathyroid hormone (PTH) concentration in serum samples from patients. The interaction between PTH and MG was analysed via an electrochemical sensing technique. The MG was functionalized using l-cysteine. Following this, PTH could be covalently immobilized on the MG sensing electrode. The properties of MG were evaluated using scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectrometry. Following optimization of immobilized materials-such as MG, PTH, and alkaline phosphatase (ALP)-the performance of the MG sensor was investigated via cyclic voltammetry, to assess its linearity, repeatability, and reproducibility. Electrochemical impedance spectroscopy was performed on graphene oxide (GO) and MG-modified electrodes to confirm the capture of a monoclonal antibody (MAb) targeting PTH. Furthermore, the ALP-PTH-MG sensor exhibits a linear response towards PTH from artificial serum over a range of 1-50 pg mL-1. Moreover, patient sera (n = 30) were evaluated using the ALP-PTH-MG sensor and compared using standard equipment (Roche E 170). The P-value is less than 0.01 when evaluated with a t-test using Welch's correction. This implies that the fabricated sensor can be deployed for medical diagnosis.
Collapse
Affiliation(s)
- Hyeong-U Kim
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Hye Youn Kim
- Korea Electronics Technology Institute, Seongnam, Gyeonggi-do, Republic of Korea
| | - Atul Kulkarni
- Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Chisung Ahn
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Yinhua Jin
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Yeongseok Kim
- Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Kook-Nyung Lee
- Korea Electronics Technology Institute, Seongnam, Gyeonggi-do, Republic of Korea
| | - Min-Ho Lee
- Korea Electronics Technology Institute, Seongnam, Gyeonggi-do, Republic of Korea
| | - Taesung Kim
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
- Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| |
Collapse
|
22
|
Cummins BM, Ligler FS, Walker GM. Point-of-care diagnostics for niche applications. Biotechnol Adv 2016; 34:161-76. [PMID: 26837054 PMCID: PMC4833668 DOI: 10.1016/j.biotechadv.2016.01.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 01/26/2023]
Abstract
Point-of-care or point-of-use diagnostics are analytical devices that provide clinically relevant information without the need for a core clinical laboratory. In this review we define point-of-care diagnostics as portable versions of assays performed in a traditional clinical chemistry laboratory. This review discusses five areas relevant to human and animal health where increased attention could produce significant impact: veterinary medicine, space travel, sports medicine, emergency medicine, and operating room efficiency. For each of these areas, clinical need, available commercial products, and ongoing research into new devices are highlighted.
Collapse
Affiliation(s)
- Brian M Cummins
- Joint Department of Biomedical Engineering, University of North Carolina - Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Frances S Ligler
- Joint Department of Biomedical Engineering, University of North Carolina - Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Glenn M Walker
- Joint Department of Biomedical Engineering, University of North Carolina - Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
23
|
A new immobilization procedure for development of an electrochemical immunosensor for parathyroid hormone detection based on gold electrodes modified with 6-mercaptohexanol and silane. Talanta 2015; 144:210-8. [DOI: 10.1016/j.talanta.2015.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/30/2015] [Accepted: 06/03/2015] [Indexed: 11/17/2022]
|