1
|
Skeeters S, Bagale K, Stepanyuk G, Thieker D, Aguhob A, Chan KK, Dutzar B, Shalygin S, Shajahan A, Yang X, DaRosa PA, Frazier E, Sauer MM, Bogatzki L, Byrnes-Blake KA, Song Y, Azadi P, Tarcha E, Zhang L, Procko E. Modulation of the pharmacokinetics of soluble ACE2 decoy receptors through glycosylation. Mol Ther Methods Clin Dev 2024; 32:101301. [PMID: 39185275 PMCID: PMC11342882 DOI: 10.1016/j.omtm.2024.101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/13/2023] [Accepted: 07/16/2024] [Indexed: 08/27/2024]
Abstract
The Spike of SARS-CoV-2 recognizes a transmembrane protease, angiotensin-converting enzyme 2 (ACE2), on host cells to initiate infection. Soluble derivatives of ACE2, in which Spike affinity is enhanced and the protein is fused to Fc of an immunoglobulin, are potent decoy receptors that reduce disease in animal models of COVID-19. Mutations were introduced into an ACE2 decoy receptor, including adding custom N-glycosylation sites and a cavity-filling substitution together with Fc modifications, which increased the decoy's catalytic activity and provided small to moderate enhancements of pharmacokinetics following intravenous and subcutaneous administration in humanized FcRn mice. Most prominently, sialylation of native glycans increases exposures by orders of magnitude, and the optimized decoy is therapeutically efficacious in a mouse COVID-19 model. Ultimately, an engineered and highly sialylated decoy receptor produced using methods suitable for manufacture of representative drug substance has high exposure with a 5- to 9-day half-life. Finally, peptide epitopes at mutated sites in the decoys generally have low binding to common HLA class II alleles and the predicted immunogenicity risk is low. Overall, glycosylation is a critical molecular attribute of ACE2 decoy receptors and modifications that combine tighter blocking of Spike with enhanced pharmacokinetics elevate this class of molecules as viable drug candidates.
Collapse
Affiliation(s)
| | - Kamal Bagale
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | - Sergei Shalygin
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Asif Shajahan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Xu Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | - Yifan Song
- Cyrus Biotechnology, Seattle, WA 98121, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | - Lianghui Zhang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Erik Procko
- Cyrus Biotechnology, Seattle, WA 98121, USA
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Nelson L, Veling M, Farhangdoust F, Cai X, Huhn S, Soloveva V, Chang M. Transcriptomics and cell painting analysis reveals molecular and morphological features associated with fed-batch production performance in CHO recombinant clones. Biotechnol Bioeng 2023; 120:3177-3190. [PMID: 37555462 DOI: 10.1002/bit.28518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/29/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 08/10/2023]
Abstract
Stable, highly productive mammalian cells are critical for manufacturing affordable and effective biological medicines. Establishing a rational design of optimal biotherapeutic expression systems requires understanding how cells support the high demand for efficient biologics production. To that end, we performed transcriptomics and high-throughput imaging studies to identify putative genes and morphological features that underpin differences in antibody productivity among clones from a Chinese hamster ovary cell line. During log phase growth, we found that the expression of genes involved in biological processes related to cellular morphology varied significantly between clones with high specific productivity (qP > 35 pg/cell/day) and low specific productivity (qP < 20 pg/cell/day). At Day 10 of a fed-batch production run, near peak viable cell density, differences in gene expression related to metabolism, epigenetic regulation, and proliferation became prominent. Furthermore, we identified a subset of genes whose expression predicted overall productivity, including glutathione synthetase (Gss) and lactate dehydrogenase A (LDHA). Finally, we demonstrated the feasibility of cell painting coupled with high-throughput imaging to assess the morphological properties of intracellular organelles in relation to growth and productivity in fed-batch production. Our efforts lay the groundwork for systematic elucidation of clone performance using a multiomics approach that can guide future process design strategies.
Collapse
Affiliation(s)
| | | | | | - Xuezhu Cai
- Merck & Co., Inc., Rahway, New Jersey, USA
| | - Steve Huhn
- Merck & Co., Inc., Rahway, New Jersey, USA
| | | | | |
Collapse
|
3
|
Sacco SA, McAtee Pereira AG, Trenary I, Smith KD, Betenbaugh MJ, Young JD. Overexpression of peroxisome proliferator-activated receptor γ co-activator-1⍺ (PGC-1⍺) in Chinese hamster ovary cells increases oxidative metabolism and IgG productivity. Metab Eng 2023; 79:108-117. [PMID: 37473833 DOI: 10.1016/j.ymben.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/17/2023] [Revised: 04/17/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Chinese hamster ovary (CHO) cells are used extensively to produce protein therapeutics, such as monoclonal antibodies (mAbs), in the biopharmaceutical industry. MAbs are large proteins that are energetically demanding to synthesize and secrete; therefore, high-producing CHO cell lines that are engineered for maximum metabolic efficiency are needed to meet increasing demands for mAb production. Previous studies have identified that high-producing cell lines possess a distinct metabolic phenotype when compared to low-producing cell lines. In particular, it was found that high mAb production is correlated to lactate consumption and elevated TCA cycle flux. We hypothesized that enhancing flux through the mitochondrial TCA cycle and oxidative phosphorylation would lead to increased mAb productivities and final titers. To test this hypothesis, we overexpressed peroxisome proliferator-activated receptor γ co-activator-1⍺ (PGC-1⍺), a gene that promotes mitochondrial metabolism, in an IgG-producing parental CHO cell line. Stable cell pools overexpressing PGC-1⍺ exhibited increased oxygen consumption, indicating increased mitochondrial metabolism, as well as increased mAb specific productivity compared to the parental line. We also performed 13C metabolic flux analysis (MFA) to quantify how PGC-1⍺ overexpression alters intracellular metabolic fluxes, revealing not only increased TCA cycle flux, but global upregulation of cellular metabolic activity. This study demonstrates the potential of rationally engineering the metabolism of industrial cell lines to improve overall mAb productivity and to increase the abundance of high-producing clones in stable cell pools.
Collapse
Affiliation(s)
- Sarah A Sacco
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | | | - Irina Trenary
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Kevin D Smith
- Pharmaceutical Development and Manufacturing Sciences, Janssen Research and Development, Spring House, PA, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
4
|
Skrika-Alexopoulos E, Mark Smales C. Isolation and characterisation of exosomes from Chinese hamster ovary (CHO) cells. Biotechnol Lett 2023; 45:425-437. [PMID: 36708458 PMCID: PMC10038950 DOI: 10.1007/s10529-023-03353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/21/2022] [Revised: 11/29/2022] [Accepted: 01/12/2023] [Indexed: 01/29/2023]
Abstract
Exosomes have previously been isolated from Chinese hamster ovary (CHO) cells and their anti-apoptotic properties reported. However, to further facilitate the study of CHO cell derived exosomes and allow their comparison across studies, it is necessary to characterise and define such exosomes using at least three criteria that can act as a reference for the generation of CHO cell produced exosomes. Here we report on the isolation of exosomes from CHO cells, an industrially relevant and widely used cell host for biopharmaceutical protein production, during the exponential and stationary phase of growth during batch culture using a Total Exosome Isolation (TEI) method. The resulting vesicles were characterized and visualized using a diverse range of techniques including Dynamic Light Scattering (DLS), Zeta potential, Electron Microscopy and immunoblotting, and their protein and RNA content determined. We also generated the lipid fingerprint of isolated exosomes using MALDI-ToF mass spectroscopy. We confirmed the presence of nano sized extracellular vesicles from CHO cells and their subsequent characterization revealed details of their size, homogeneity, surface charge, protein and RNA content. The lipid content of exosomes was also found to differ between exosomes isolated on different days of batch culture. This analysis provides a profile and characterisation of CHO cell exosomes to aid future studies on exosomes from CHO cells and improving the manufacturing of exosomes for biotherapeutic application.
Collapse
Affiliation(s)
| | - C Mark Smales
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.
| |
Collapse
|
5
|
Sacco SA, Tuckowski AM, Trenary I, Kraft L, Betenbaugh MJ, Young JD, Smith KD. Attenuation of glutamine synthetase selection marker improves product titer and reduces glutamine overflow in Chinese hamster ovary cells. Biotechnol Bioeng 2022; 119:1712-1727. [PMID: 35312045 DOI: 10.1002/bit.28084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/18/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 11/10/2022]
Abstract
The glutamine synthetase (GS) expression system is commonly used to ensure stable transgene integration and amplification in CHO host lines. Transfected cell populations are typically grown in the presence of the GS inhibitor, methionine sulfoximine (MSX), to further select for increased transgene copy number. However, high levels of GS activity produce excess glutamine. We hypothesized that attenuating the GS promoter while keeping the strong IgG promoter on the GS-IgG expression vector would result in a more efficient cellular metabolic phenotype. Herein, we characterized CHO cell lines expressing GS from either an attenuated promoter or an SV40 promoter and selected with/without MSX. CHO cells with the attenuated GS promoter had higher IgG specific productivity and lower glutamine production compared to cells with SV40-driven GS expression. Selection with MSX increased both specific productivity and glutamine production, regardless of GS promoter strength. 13 C metabolic flux analysis (MFA) was performed to further assess metabolic differences between these cell lines. Interestingly, central carbon metabolism was unaltered by the attenuated GS promoter while the fate of glutamate and glutamine varied depending on promoter strength and selection conditions. This study highlights the ability to optimize the GS expression system to improve IgG production and reduce wasteful glutamine overflow, without significantly altering central metabolism. Additionally, a detailed supplementary analysis of two "lactate runaway" reactors provides insight into the poorly understood phenomenon of excess lactate production by some CHO cell cultures. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sarah A Sacco
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Angela M Tuckowski
- Biotherapeutics Development, Janssen Research and Development, Spring House, PA, USA.,Department of Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| | - Irina Trenary
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Lauren Kraft
- Biotherapeutics Development, Janssen Research and Development, Spring House, PA, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Kevin D Smith
- Biotherapeutics Development, Janssen Research and Development, Spring House, PA, USA.,Asimov, 1325 Boylston St, Boston, MA, 02215
| |
Collapse
|
6
|
A proline metabolism selection system and its application to the engineering of lipid biosynthesis in Chinese hamster ovary cells. Metab Eng Commun 2021; 13:e00179. [PMID: 34386349 PMCID: PMC8346673 DOI: 10.1016/j.mec.2021.e00179] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/24/2021] [Revised: 07/07/2021] [Accepted: 07/23/2021] [Indexed: 01/25/2023] Open
Abstract
Chinese hamster ovary (CHO) cells are the leading mammalian cell host employed to produce complex secreted recombinant biotherapeutics such as monoclonal antibodies (mAbs). Metabolic selection marker technologies (e.g. glutamine synthetase (GS) or dihydrofolate reductase (DHFR)) are routinely employed to generate such recombinant mammalian cell lines. Here we describe the development of a selection marker system based on the metabolic requirement of CHO cells to produce proline, and that uses pyrroline-5-carboxylase synthetase (P5CS) to complement this auxotrophy. Firstly, we showed the system can be used to generate cells that have growth kinetics in proline-free medium similar to those of the parent CHO cell line, CHOK1SV GS-KO™ grown in proline-containing medium. As we have previously described how engineering lipid metabolism can be harnessed to enhance recombinant protein productivity in CHO cells, we then used the P5CS selection system to re-engineer lipid metabolism by over-expression of either sterol regulatory element binding protein 1 (SREBF1) or stearoyl CoA desaturase 1 (SCD1). The cells with re-engineered proline and lipid metabolism showed consistent growth and P5CS, SCD1 and SREBF1 expression across 100 cell generations. Finally, we show that the P5CS and GS selection systems can be used together. A GS vector containing the light and heavy chains for a mAb was super-transfected into a CHOK1SV GS-KO™ host over-expressing SCD1 from a P5CS vector. The resulting stable transfectant pools achieved a higher concentration at harvest for a model difficult to express mAb than the CHOK1SV GS-KO™ host. This demonstrates that the P5CS and GS selection systems can be used concomitantly to enable CHO cell line genetic engineering and recombinant protein expression. We have engineered a proline P5CS metabolism selection system in CHO cells P5CS proline selection was used to engineer lipid metabolism in CHO cells P5CS selection was stable for at least 100 generations P5CS and GS selection systems were used together to engineer lipid and mAb expression Lipid metabolism P5CS engineered CHO cells give enhanced recombinant protein expression
Collapse
|
7
|
Selection of CHO host and recombinant cell pools by inhibition of the proteasome results in enhanced product yields and cell specific productivity. J Biotechnol 2021; 337:35-45. [PMID: 34171439 DOI: 10.1016/j.jbiotec.2021.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/27/2021] [Revised: 05/14/2021] [Accepted: 06/19/2021] [Indexed: 11/23/2022]
Abstract
Chinese hamster ovary (CHO) cells are the leading mammalian cell expression platform for biotherapeutic recombinant molecules yet some proteins remain difficult to express (DTE) in this, and other, systems. In recombinant cell lines expressing DTE proteins, cellular processes to restore proteostasis can be triggered when the folding and modification capabilities are exceeded, including the unfolded protein response and ER-associated degradation (ERAD) and proteasomal degradation. We therefore investigated whether the proteasome activity of CHO cells was linked to their ability to produce recombinant proteins. We found cell lines with diverse monoclonal antibody (mAb) productivity show different susceptibilities to inhibitors of proteasome activity. Subsequently, we applied selective pressure using proteasome inhibitors on mAb producing cells to determine the impact on cell growth and recombinant protein production, and to apply proteasome selective pressure above that of a metabolic selection marker during recombinant cell pool construction. The presence of proteasome inhibitors during cell pool construction expressing two different model molecules, including a DTE Fc-fusion protein, resulted in the generation of cell pools with enhanced productivity. The increased productivities, and ability to select for higher producing cells, has potential to improve clonal selection during upstream processes of DTE proteins.
Collapse
|
8
|
Feary M, Moffat MA, Casperson GF, Allen MJ, Young RJ. CHOK1SV GS-KO SSI expression system: A combination of the Fer1L4 locus and glutamine synthetase selection. Biotechnol Prog 2021; 37:e3137. [PMID: 33609084 DOI: 10.1002/btpr.3137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/18/2020] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 12/11/2022]
Abstract
There are an ever-increasing number of biopharmaceutical candidates in clinical trials fueling an urgent need to streamline the cell line development process. A critical part of the process is the methodology used to generate and screen candidate cell lines compatible with GMP manufacturing processes. The relatively large amount of clone phenotypic variation observed from conventional "random integration" (RI)-based cell line construction is thought to be the result of a combination of the position variegation effect, genome plasticity and clonal variation. Site-specific integration (SSI) has been used by several groups to temper the influence of the position variegation effect and thus reduce variability in expression of biopharmaceutical candidates. Following on from our previous reports on the application of the Fer1L4 locus for SSI in CHOK1SV (10E9), we have combined this locus and a CHOK1SV glutamine synthetase knockout (GS-KO) host to create an improved expression system. The host, CHOK1SV GS-KO SSI (HD7876), was created by homology directed integration of a targetable landing pad flanked with incompatible Frt sequences in the Fer1L4 gene. The targeting vector contains a promoterless GS expression cassette and monoclonal antibody (mAb) expression cassettes, flanked by Frt sites compatible with equivalent sites flanking the landing pad in the host cell line. SSI clones expressing four antibody candidates, selected in a streamlined cell line development process, have mAb titers which rival RI (1.0-4.5 g/L) and robust expression stability (100% of clones stable through the 50 generation "manufacturing window" which supports commercial manufacturing at 12,000 L bioreactor scale).
Collapse
Affiliation(s)
- Marc Feary
- R&D Cell Engineering, Lonza Biologics, Little Chesterford, UK
| | - Mark A Moffat
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Chesterfield, MO, 63017, USA
| | - Gerald F Casperson
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Chesterfield, MO, 63017, USA
| | - Martin J Allen
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Chesterfield, MO, 63017, USA
| | - Robert J Young
- R&D Cell Engineering, Lonza Biologics, Little Chesterford, UK
| |
Collapse
|
9
|
Luo H, Li Y, Robbins D, Wang SC, Xi G, Cox M, Nicholson SM, Wei C, Pabst TM, Wang WK. Safety risk management for low molecular weight process-related impurities in monoclonal antibody therapeutics: Categorization, risk assessment, testing strategy, and process development with leveraging clearance potential. Biotechnol Prog 2020; 37:e3119. [PMID: 33373106 PMCID: PMC8365748 DOI: 10.1002/btpr.3119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/23/2020] [Revised: 12/04/2020] [Accepted: 12/20/2020] [Indexed: 11/12/2022]
Abstract
Process-related impurities (PRIs) derived from manufacturing process should be minimized in final drug product. ICH Q3A provides a regulatory road map for PRIs but excludes biologic drugs like monoclonal antibodies (mAbs) that contain biological PRIs (e.g. host cell proteins and DNA) and low molecular weight (LMW) PRIs (e.g., fermentation media components and downstream chemical reagents). Risks from the former PRIs are typically addressed by routine tests to meet regulatory expectations, while a similar routine-testing strategy is unrealistic and unnecessary for LMW PRIs, and thus a risk-assessment-guided testing strategy is often utilized. In this report, we discuss a safety risk management strategy including categorization, risk assessment, testing strategy, and its integrations with other CMC development activities, as well as downstream clearance potentials. The clearance data from 28 mAbs successfully addressed safety concerns but did not fully reveal the process clearance potentials. Therefore, we carried out studies with 13 commonly seen LMW PRIs in a typical downstream process for mAbs. Generally, Protein A chromatography and cation exchange chromatography operating in bind-and-elute mode showed excellent clearances with greater than 1,000- and 100-fold clearance, respectively. The diafiltration step had better clearance (greater than 100-fold) for the positively and neutrally charged LMW PRIs than for the negatively charged or hydrophobic PRIs. We propose that a typical mAb downstream process provides an overall clearance of 5,000-fold. Additionally, the determined sieving coefficients will facilitate diafiltration process development. This report helps establish effective safety risk management and downstream process design with robust clearance for LMW PRIs.
Collapse
Affiliation(s)
- Haibin Luo
- Purification Process Sciences, Biopharmaceutical Development Department, Biopharmaceuticals R&D, AstraZeneca, One Medimmune Way, Gaithersburg, Maryland, USA
| | - Yuling Li
- Purification Process Sciences, Biopharmaceutical Development Department, Biopharmaceuticals R&D, AstraZeneca, One Medimmune Way, Gaithersburg, Maryland, USA
| | - David Robbins
- Purification Process Sciences, Biopharmaceutical Development Department, Biopharmaceuticals R&D, AstraZeneca, One Medimmune Way, Gaithersburg, Maryland, USA
| | - Sheau-Chiann Wang
- Analytical Sciences, Biopharmaceutical Development Department, Biopharmaceuticals R&D, AstraZeneca, One Medimmune Way, Gaithersburg, Maryland, USA
| | - Guoling Xi
- Purification Process Sciences, Biopharmaceutical Development Department, Biopharmaceuticals R&D, AstraZeneca, One Medimmune Way, Gaithersburg, Maryland, USA
| | - Matthew Cox
- Purification Process Sciences, Biopharmaceutical Development Department, Biopharmaceuticals R&D, AstraZeneca, One Medimmune Way, Gaithersburg, Maryland, USA
| | - Simone M Nicholson
- Safety Science, Biopharmaceutical Development Department, Biopharmaceuticals R&D, AstraZeneca, One Medimmune Way, Gaithersburg, Maryland, USA
| | - Chenghong Wei
- Regulatory Affairs, Biopharmaceutical Development Department, Biopharmaceuticals R&D, AstraZeneca, One Medimmune Way, Gaithersburg, Maryland, USA
| | - Timothy M Pabst
- Purification Process Sciences, Biopharmaceutical Development Department, Biopharmaceuticals R&D, AstraZeneca, One Medimmune Way, Gaithersburg, Maryland, USA
| | - William K Wang
- Purification Process Sciences, Biopharmaceutical Development Department, Biopharmaceuticals R&D, AstraZeneca, One Medimmune Way, Gaithersburg, Maryland, USA
| |
Collapse
|
10
|
Effect of Sialic Acid on Mammalian Cell Culture and Protein Expression: A Potential Productivity Enhancer for Biopharmaceutical Cell Culture Processes. Processes (Basel) 2020. [DOI: 10.3390/pr8111449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022] Open
Abstract
Improved productivity of the two most commonly used cell lines in the biopharmaceutical industry, such as human embryonic kidney 293 (HEK293) and Chinese hamster ovary (CHO), could reduce production costs and increase manufacturing capacity. One method for increasing protein productivity is the addition of antioxidants during the cell culture process. In this study, we examined the effect of sialic acid (SA) on one HEK293 cell line and two CHO cell lines. The addition of SA to HEK293 cell led to a higher viable cell density (VCD), viability (Via), and a lower lactate content in the later stage of cultures. Further results showed that SA reduced the reactive oxygen species (ROS), improved cell viability, reduced lactate production, and increased antibody expression by more than 20% in the later stage of the two CHO cell lines cultures. Besides, an optimized dose of SA had no significant effect on acidic variants level aggregation level, N-linked glycosylation pattern, and SA content on antibodies. These results suggest that the addition of SA can improve the productivity of biopharmaceutical cell culture processes.
Collapse
|
11
|
Chevallier V, Schoof EM, Malphettes L, Andersen MR, Workman CT. Characterization of glutathione proteome in CHO cells and its relationship with productivity and cholesterol synthesis. Biotechnol Bioeng 2020; 117:3448-3458. [PMID: 32662871 PMCID: PMC7689765 DOI: 10.1002/bit.27495] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/17/2020] [Revised: 06/05/2020] [Accepted: 07/12/2020] [Indexed: 01/05/2023]
Abstract
Glutathione (GSH) plays a central role in the redox balance maintenance in mammalian cells. Previous studies of industrial Chinese hamster ovary cell lines have demonstrated a relationship between GSH metabolism and clone productivity. However, a thorough investigation is required to understand this relationship and potentially highlight new targets for cell engineering. In this study, we have modulated the GSH intracellular content of an industrial cell line under bioprocess conditions to further elucidate the role of the GSH synthesis pathway. Two strategies were used: the variation of cystine supply and the direct inhibition of the GSH synthesis using buthionine sulfoximine (BSO). Over time of the bioprocess, a correlation between intracellular GSH and product titer has been observed. Analysis of metabolites uptake/secretion rates and proteome comparison between BSO‐treated cells and nontreated cells has highlighted a slowdown of the tricarboxylic acid cycle leading to a secretion of lactate and alanine in the extracellular environment. Moreover, an adaptation of the GSH‐related proteome has been observed with an upregulation of the regulatory subunit of glutamate–cysteine ligase and a downregulation of a specific GSH transferase subgroup, the Mu family. Surprisingly, the main impact of BSO treatment was observed on a global downregulation of the cholesterol synthesis pathways. As cholesterol is required for protein secretion, it could be the missing piece of the puzzle to finally elucidate the link between GSH synthesis and productivity.
Collapse
Affiliation(s)
- Valentine Chevallier
- Upstream Process Sciences, UCB Nordic A/S, Copenhagen, Denmark.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Erwin M Schoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | - Mikael R Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Christopher T Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
12
|
Tian J, He Q, Oliveira C, Qian Y, Egan S, Xu J, Qian N, Langsdorf E, Warrack B, Aranibar N, Reily M, Borys M, Li ZJ. Increased MSX level improves biological productivity and production stability in multiple recombinant GS CHO cell lines. Eng Life Sci 2020; 20:112-125. [PMID: 32874175 PMCID: PMC7447880 DOI: 10.1002/elsc.201900124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/15/2019] [Revised: 09/27/2019] [Accepted: 11/13/2019] [Indexed: 01/17/2023] Open
Abstract
Increasing cell culture productivity of recombinant proteins via process improvements is the primary focus for research groups within biologics manufacturing. Any recommendations to improve a manufacturing process obviously must be effective, but also be robust, scalable, and with product quality comparable to the original process. In this study, we report that three different GS-/- CHO cell lines developed in media containing a standard concentration of the selection agent methionine sulfoximine (MSX), but then exposed to increased MSX concentrations during seed train expansion, achieved titer increases of 10-19%. This result was observed in processes already considerably optimized. Expanding the cells with a higher MSX concentration improved cell line production stability with increased culture age. Production cultures in 500-L and 1000-L bioreactors replicated laboratory results using 5-L bioreactors, demonstrating process robustness and scalability. Furthermore, product quality attributes of the final drug substance using the higher MSX process were comparable with those from cells expanded in media with the standard selection MSX concentration. Subsequent mechanistic investigations confirmed that the cells were not altered at the genetic level in terms of integration profiles or gene copy number, nor transcriptional levels of glutamine synthetase, heavy chain, or light chain genes. This study provides an effective and applicable strategy to improve the productivity of therapeutic proteins for biologics manufacturing.
Collapse
Affiliation(s)
- Jun Tian
- Biologics Process DevelopmentGlobal Product Development and Supply, Bristol‐Myers Squibb CompanyDevensMAUSA
| | - Qin He
- Biologics Process DevelopmentGlobal Product Development and Supply, Bristol‐Myers Squibb CompanyDevensMAUSA
| | - Christopher Oliveira
- Biologics Process DevelopmentGlobal Product Development and Supply, Bristol‐Myers Squibb CompanyDevensMAUSA
| | - Yueming Qian
- Biologics Process DevelopmentGlobal Product Development and Supply, Bristol‐Myers Squibb CompanyDevensMAUSA
| | - Susan Egan
- Biologics Process DevelopmentGlobal Product Development and Supply, Bristol‐Myers Squibb CompanyDevensMAUSA
| | - Jianlin Xu
- Biologics Process DevelopmentGlobal Product Development and Supply, Bristol‐Myers Squibb CompanyDevensMAUSA
| | - Nan‐Xin Qian
- Biologics Process DevelopmentGlobal Product Development and Supply, Bristol‐Myers Squibb CompanyDevensMAUSA
| | - Erik Langsdorf
- Molecular & Cellular ScienceBristol‐Myers Squibb CompanyPrincetonNJUSA
| | - Bethanne Warrack
- Drug Development and Preclinical StudiesBristol‐Myers Squibb CompanyPrincetonNJUSA
| | - Nelly Aranibar
- Drug Development and Preclinical StudiesBristol‐Myers Squibb CompanyPrincetonNJUSA
| | - Michael Reily
- Drug Development and Preclinical StudiesBristol‐Myers Squibb CompanyPrincetonNJUSA
| | - Michael Borys
- Biologics Process DevelopmentGlobal Product Development and Supply, Bristol‐Myers Squibb CompanyDevensMAUSA
| | - Zheng Jian Li
- Biologics Process DevelopmentGlobal Product Development and Supply, Bristol‐Myers Squibb CompanyDevensMAUSA
| |
Collapse
|
13
|
Budge JD, Knight TJ, Povey J, Roobol J, Brown IR, Singh G, Dean A, Turner S, Jaques CM, Young RJ, Racher AJ, Smales CM. Engineering of Chinese hamster ovary cell lipid metabolism results in an expanded ER and enhanced recombinant biotherapeutic protein production. Metab Eng 2020; 57:203-216. [PMID: 31805379 PMCID: PMC6975165 DOI: 10.1016/j.ymben.2019.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/08/2019] [Revised: 10/18/2019] [Accepted: 11/23/2019] [Indexed: 01/02/2023]
Abstract
Chinese hamster ovary (CHO) cell expression systems have been exquisitely developed for the production of recombinant biotherapeutics (e.g. standard monoclonal antibodies, mAbs) and are able to generate efficacious, multi-domain proteins with human-like post translational modifications at high concentration with appropriate product quality attributes. However, there remains a need for development of new CHO cell expression systems able to produce more challenging secretory recombinant biotherapeutics at higher yield with improved product quality attributes. Amazingly, the engineering of lipid metabolism to enhance such properties has not been investigated even though the biosynthesis of recombinant proteins is at least partially controlled by cellular processes that are highly dependent on lipid metabolism. Here we show that the global transcriptional activator of genes involved in lipid biosynthesis, sterol regulatory element binding factor 1 (SREBF1), and stearoyl CoA desaturase 1 (SCD1), an enzyme which catalyzes the conversion of saturated fatty acids into monounsaturated fatty acids, can be overexpressed in CHO cells to different degrees. The amount of overexpression obtained of each of these lipid metabolism modifying (LMM) genes was related to the subsequent phenotypes observed. Expression of a number of model secretory biopharmaceuticals was enhanced between 1.5-9 fold in either SREBF1 or SCD1 engineered CHO host cells as assessed under batch and fed-batch culture. The SCD1 overexpressing polyclonal pool consistently showed increased concentration of a range of products. For the SREBF1 engineered cells, the level of SREBF1 expression that gave the greatest enhancement in yield was dependent upon the model protein tested. Overexpression of both SCD1 and SREBF1 modified the lipid profile of CHO cells and the cellular structure. Mechanistically, overexpression of SCD1 and SREBF1 resulted in an expanded endoplasmic reticulum (ER) that was dependent upon the level of LMM overexpression. We conclude that manipulation of lipid metabolism in CHO cells via genetic engineering is an exciting new approach to enhance the ability of CHO cells to produce a range of different types of secretory recombinant protein products via modulation of the cellular lipid profile and expansion of the ER.
Collapse
Affiliation(s)
- James D Budge
- Industrial Biotechnology Centre, School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Tanya J Knight
- Industrial Biotechnology Centre, School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Jane Povey
- Industrial Biotechnology Centre, School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Joanne Roobol
- Industrial Biotechnology Centre, School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Ian R Brown
- Industrial Biotechnology Centre, School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Gurdeep Singh
- Industrial Biotechnology Centre, School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Andrew Dean
- Lonza Biologics, 228 Bath Road, Slough, SL1 4DX, UK
| | - Sarah Turner
- Lonza Biologics, 228 Bath Road, Slough, SL1 4DX, UK
| | | | - Robert J Young
- Cell Engineering Group, Lonza Biologics, Granta Park, Cambridge, CB21 6GS, UK
| | | | - C Mark Smales
- Industrial Biotechnology Centre, School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK.
| |
Collapse
|
14
|
Chevallier V, Andersen MR, Malphettes L. Oxidative stress-alleviating strategies to improve recombinant protein production in CHO cells. Biotechnol Bioeng 2019; 117:1172-1186. [PMID: 31814104 PMCID: PMC7078918 DOI: 10.1002/bit.27247] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/28/2018] [Revised: 11/11/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022]
Abstract
Large scale biopharmaceutical production of biologics relies on the overexpression of foreign proteins by cells cultivated in stirred tank bioreactors. It is well recognized and documented fact that protein overexpression may impact host cell metabolism and that factors associated with large scale culture, such as the hydrodynamic forces and inhomogeneities within the bioreactors, may promote cellular stress. The metabolic adaptations required to support the high‐level expression of recombinant proteins include increased energy production and improved secretory capacity, which, in turn, can lead to a rise of reactive oxygen species (ROS) generated through the respiration metabolism and the interaction with media components. Oxidative stress is defined as the imbalance between the production of free radicals and the antioxidant response within the cells. Accumulation of intracellular ROS can interfere with the cellular activities and exert cytotoxic effects via the alternation of cellular components. In this context, strategies aiming to alleviate oxidative stress generated during the culture have been developed to improve cell growth, productivity, and reduce product microheterogeneity. In this review, we present a summary of the different approaches used to decrease the oxidative stress in Chinese hamster ovary cells and highlight media development and cell engineering as the main pathways through which ROS levels may be kept under control.
Collapse
Affiliation(s)
- Valentine Chevallier
- Upstream Process Sciences, Biotech Sciences, UCB Nordic A/S, Copenhagen, Denmark.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mikael Rørdam Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | |
Collapse
|
15
|
A human expression system based on HEK293 for the stable production of recombinant erythropoietin. Sci Rep 2019; 9:16768. [PMID: 31727983 PMCID: PMC6856173 DOI: 10.1038/s41598-019-53391-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/17/2019] [Accepted: 10/31/2019] [Indexed: 12/23/2022] Open
Abstract
Mammalian host cell lines are the preferred expression systems for the manufacture of complex therapeutics and recombinant proteins. However, the most utilized mammalian host systems, namely Chinese hamster ovary (CHO), Sp2/0 and NS0 mouse myeloma cells, can produce glycoproteins with non-human glycans that may potentially illicit immunogenic responses. Hence, we developed a fully human expression system based on HEK293 cells for the stable and high titer production of recombinant proteins by first knocking out GLUL (encoding glutamine synthetase) using CRISPR-Cas9 system. Expression vectors using human GLUL as selection marker were then generated, with recombinant human erythropoietin (EPO) as our model protein. Selection was performed using methionine sulfoximine (MSX) to select for high EPO expression cells. EPO production of up to 92700 U/mL of EPO as analyzed by ELISA or 696 mg/L by densitometry was demonstrated in a 2 L stirred-tank fed batch bioreactor. Mass spectrometry analysis revealed that N-glycosylation of the produced EPO was similar to endogenous human proteins and non-human glycan epitopes were not detected. Collectively, our results highlight the use of a human cellular expression system for the high titer and xenogeneic-free production of EPO and possibly other complex recombinant proteins.
Collapse
|
16
|
Maralingannavar V, Parmar D, Panchagnula V, Gadgil M. Superfluous glutamine synthetase activity in Chinese Hamster Ovary cells selected under glutamine limitation is growth limiting in glutamine-replete conditions and can be inhibited by serine. Biotechnol Prog 2019; 35:e2856. [PMID: 31148368 DOI: 10.1002/btpr.2856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/14/2019] [Revised: 05/08/2019] [Accepted: 05/25/2019] [Indexed: 11/08/2022]
Abstract
Passaging and expansion of animal cells in lean maintenance medium could result in periods of limitation of some nutrients. Over time, such stresses could possibly result in selection of cells with metabolic changes and contribute to heterogeneity. Here, we investigate whether selection of Chinese Hamster Ovary (CHO) cells under glutamine limitation results in changes in growth under glutamine-replete conditions. In glutamine-limiting medium, compared to control cells passaged in glutamine-rich medium, the selected cells showed higher glutamine synthetase (GS) activity and attained a higher peak viable cell density (PVCD). Surprisingly, in glutamine-replete conditions, selected cells still showed a higher GS activity but a lower PVCD. We show that in glutamine-replete medium, PVCD of selected cells was restored on (a) inhibition of GS activity with methionine sulfoximine, (b) supplementation of aspartate-without affecting GS activity, and (c) supplementation of serine, which is reported to inhibit GS in vitro. Consistent with the reported effect of serine, inhibition of GS activity was observed upon serine supplementation along with reduced growth of cells under glutamine-limiting conditions. The latter observation is important for the design of glutamine-free culture medium and feed used for GS-CHO and GS-NS0. In summary, we show that CHO cells selected under glutamine limitation have superfluous GS activity in glutamine-replete medium, which negatively affects their PVCD. This may be due to its effect on availability of aspartate which was the limiting nutrient for the growth of selected cells in glutamine-replete conditions.
Collapse
Affiliation(s)
- Vishwanathgouda Maralingannavar
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory Campus, Ghaziabad, Uttar Pradesh, India
| | - Dharmeshkumar Parmar
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory Campus, Ghaziabad, Uttar Pradesh, India
| | - Venkateswarlu Panchagnula
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory Campus, Ghaziabad, Uttar Pradesh, India
| | - Mugdha Gadgil
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory Campus, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
17
|
Jossé L, Zhang L, Smales CM. Application of microRNA Targeted 3′UTRs to Repress DHFR Selection Marker Expression for Development of Recombinant Antibody Expressing CHO Cell Pools. Biotechnol J 2018; 13:e1800129. [DOI: 10.1002/biot.201800129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/04/2018] [Revised: 06/14/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Lyne Jossé
- Industrial Biotechnology Centre and School of Biosciences; University of Kent; Canterbury Kent CT2 7NJ UK
| | - Lin Zhang
- Pfizer Inc; 1 Burtt Road Andover MA 01810 USA
| | - Christopher Mark Smales
- Industrial Biotechnology Centre and School of Biosciences; University of Kent; Canterbury Kent CT2 7NJ UK
| |
Collapse
|