1
|
Kaur V, Garg S, Rakshit S. Polyprotein synthesis: a journey from the traditional pre-translational method to modern post-translational approaches for single-molecule force spectroscopy. Chem Commun (Camb) 2023. [PMID: 37183922 DOI: 10.1039/d3cc01756g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Polyproteins, an array of protein units of similar or differential functions in tandem, have been extensively utilized by organisms, unicellular or multicellular, as concentrators of the myriad of molecular activities. Most eukaryotic proteins, two-thirds in unicellular organisms, and more than 80% in metazoans, are polyproteins. Although the use of polyproteins continues to evolve in nature, our understanding of the structure-function-property of polyproteins is still limited. Cumbersome recombinant strategies and the lack of convenient in vitro synthetic routes of polyproteins have been rate-determining factors in the progress. However, in this review we have discussed the revolutionary journey of polyprotein synthesis with a major focus on surface-based structure-function-property studies, especially using force spectroscopy at the single-molecule level.
Collapse
Affiliation(s)
- Veerpal Kaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, 140306, Punjab, India.
| | - Surbhi Garg
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, 140306, Punjab, India.
| | - Sabyasachi Rakshit
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, 140306, Punjab, India.
- Centre for Protein Science Design and Engineering, Indian Institute of Science Education and Research Mohali, 140306, Punjab, India
| |
Collapse
|
2
|
Susmitha A, Arya JS, Sundar L, Maiti KK, Nampoothiri KM. Sortase E-mediated site-specific immobilization of green fluorescent protein and xylose dehydrogenase on gold nanoparticles. J Biotechnol 2023; 367:11-19. [PMID: 36972749 DOI: 10.1016/j.jbiotec.2023.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 02/13/2023] [Accepted: 03/20/2023] [Indexed: 03/28/2023]
Abstract
Sortase, a bacterial transpeptidase enzyme, is an attractive tool for protein engineering due to its ability to break a peptide bond at a specific site and then reform a new bond with an incoming nucleophile. Here, we present the immobilization of two recombinant proteins, enhanced green fluorescent protein (eGFP) and xylose dehydrogenase (XylB) over triglycine functionalized PEGylated gold nanoparticles (AuNPs) using C. glutamicum sortase E. For the first time, we used a new class of sortase from a non-pathogenic organism for sortagging. The site-specific conjugation of proteins with LAHTG-tagged sequences on AuNPs via covalent cross-linking was successfully detected by surface-enhanced Raman scattering (SERS) and UV-vis spectral analysis. The sortagging was initially validated by an eGFP model protein and later with the xylose dehydrogenase enzyme. The catalytic activity, stability, and reusability of the immobilized XylB were studied with the bioconversion of xylose to xylonic acid. When compared to the free enzyme, the immobilized XylB was able to retain 80% of its initial activity after four sequential cycles and exhibited no significant variations in instability after each cycle for about 72h. These findings suggest that C. glutamicum sortase could be useful for immobilizing site-specific proteins/enzymes in biotransformation applications for value-added chemical production.
Collapse
Affiliation(s)
- Aliyath Susmitha
- Microbial Processes and Technology Division, CSIR, National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jayadev S Arya
- Chemical Science and Technology Division, Organic Chemistry Section, CSIR, National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Lekshmi Sundar
- Microbial Processes and Technology Division, CSIR, National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kaustabh Kumar Maiti
- Chemical Science and Technology Division, Organic Chemistry Section, CSIR, National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
| | - Kesavan Madhavan Nampoothiri
- Microbial Processes and Technology Division, CSIR, National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India.
| |
Collapse
|
3
|
Sun Q, Raeeszadeh-Sarmazdeh M, Tsai SL, Chen W. Strategies for Multienzyme Assemblies. Methods Mol Biol 2022; 2487:113-131. [PMID: 35687232 DOI: 10.1007/978-1-0716-2269-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Proteins are not designed to be standalone entities and must coordinate their collective action for optimum performance. Nature has developed through evolution the ability to co-localize the functional partners of a cascade enzymatic reaction in order to ensure efficient exchange of intermediates. Inspired by these natural designs, synthetic scaffolds have been created to enhance the overall biological pathway performance. In this chapter, we describe several DNA- and protein-based scaffold approaches to assemble artificial enzyme cascades for a wide range of applications. We highlight the key benefits and drawbacks of these approaches to provide insights on how to choose the appropriate scaffold for different cascade systems.
Collapse
Affiliation(s)
- Qing Sun
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | | | - Shen-Long Tsai
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, Taiwan
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
4
|
Kuan SL, Raabe M. Solid-Phase Protein Modifications: Towards Precision Protein Hybrids for Biological Applications. ChemMedChem 2021; 16:94-104. [PMID: 32667697 PMCID: PMC7818443 DOI: 10.1002/cmdc.202000412] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 12/13/2022]
Abstract
Proteins have attracted increasing attention as biopharmaceutics and diagnostics due to their high specificity, biocompatibility, and biodegradability. The biopharmaceutical sector in particular is experiencing rapid growth, which has led to an increase in the production and sale of protein drugs and diagnostics over the last two decades. Since the first-generation biopharmaceutics dominated by native proteins, both recombinant and chemical technologies have evolved and transformed the outlook of this rapidly developing field. This review article presents updates on the fabrication of covalent and supramolecular fusion hybrids, as well as protein-polymer hybrids using solid-phase approaches that hold great promise for preparing protein hybrids with precise control at the macromolecular level to incorporate additional features. In addition, the applications of the resultant protein hybrids in medicine and diagnostics are highlighted where possible.
Collapse
Affiliation(s)
- Seah Ling Kuan
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Marco Raabe
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|
5
|
Ibrar M, Zhang H. Site-Specific Biofunctionalization of Cellulose and Poly(dimethylsiloxane): A Chemoenzymatic Approach for Surface Engineering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15039-15047. [PMID: 33274948 DOI: 10.1021/acs.langmuir.0c02575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Site-specific, covalent immobilization of protein is of great importance in the design of bioanalytical devices. User-defined covalent coupling of protein onto the surface has been primarily limited to a noncanonical amino acid or cysteine residues. It is desirable to develop a new approach for site-specific biofunctionalization. Herein, we demonstrate a robust and modular chemoenzymatic approach for site-specific, covalent grafting of proteins onto a surface. The synthetic strategy relies on the combination of surface amine functionalization, followed by sortase-mediated coupling. The developed method was validated by site-specific immobilization of two model proteins (glutathione S-transferase and green fluorescent protein) on cellulose and polydimethylsiloxane surfaces via a short recognition motif (LPETG). The covalent coupling of immobilized proteins at the interface was characterized by Fourier Transform Infrared Spectroscopy in attenuated total reflectance mode, X-ray photoelectron spectroscopy, atomic force microscope, and fluorescent microscopy. This enzymatic surface functionalization approach could permit an oriented, homogeneous, and site-specific covalent tethering of LPETG-tag proteins to other materials under mild conditions.
Collapse
Affiliation(s)
- Muhammad Ibrar
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, P.R. China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P.R. China
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, P.R. China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P.R. China
| |
Collapse
|
6
|
PolyTag: A peptide tag that affords scaffold-less covalent protein assembly catalyzed by microbial transglutaminase. Anal Biochem 2020; 600:113700. [DOI: 10.1016/j.ab.2020.113700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022]
|
7
|
Dai X, Böker A, Glebe U. Broadening the scope of sortagging. RSC Adv 2019; 9:4700-4721. [PMID: 35514663 PMCID: PMC9060782 DOI: 10.1039/c8ra06705h] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/31/2019] [Indexed: 01/20/2023] Open
Abstract
Sortases are enzymes occurring in the cell wall of Gram-positive bacteria. Sortase A (SrtA), the best studied sortase class, plays a key role in anchoring surface proteins with the recognition sequence LPXTG covalently to oligoglycine units of the bacterial cell wall. This unique transpeptidase activity renders SrtA attractive for various purposes and motivated researchers to study multiple in vivo and in vitro ligations in the last decades. This ligation technique is known as sortase-mediated ligation (SML) or sortagging and developed to a frequently used method in basic research. The advantages are manifold: extremely high substrate specificity, simple access to substrates and enzyme, robust nature and easy handling of sortase A. In addition to the ligation of two proteins or peptides, early studies already included at least one artificial (peptide equipped) substrate into sortagging reactions - which demonstrates the versatility and broad applicability of SML. Thus, SML is not only a biology-related technique, but has found prominence as a major interdisciplinary research tool. In this review, we provide an overview about the use of sortase A in interdisciplinary research, mainly for protein modification, synthesis of protein-polymer conjugates and immobilization of proteins on surfaces.
Collapse
Affiliation(s)
- Xiaolin Dai
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
- Lehrstuhl für Polymermaterialien und Polymertechnologie, Universität Potsdam 14476 Potsdam-Golm Germany
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
- Lehrstuhl für Polymermaterialien und Polymertechnologie, Universität Potsdam 14476 Potsdam-Golm Germany
| | - Ulrich Glebe
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
| |
Collapse
|
8
|
Raeeszadeh-Sarmazdeh M, Patel N, Cruise S, Owen L, O'Neill H, Boder ET. Identifying Stable Fragments of Arabidopsis thaliana Cellulose Synthase Subunit 3 by Yeast Display. Biotechnol J 2018; 14:e1800353. [PMID: 30171735 DOI: 10.1002/biot.201800353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/08/2018] [Indexed: 12/22/2022]
Abstract
Determining structures of large, complex proteins remains challenging, especially for transmembrane proteins, as the protein size increases. Arabidopsis thaliana cellulose synthesis complex is a large, multimeric complex located in the plant cell membrane that synthesizes cellulose microfibrils in the plant cell wall. Despite the biological and economic importance of cellulose and therefore cellulose synthesis, many aspects of the cellulase synthase complex (CSC) structure and function are still unknown. Here, yeast surface display (YSD) is used to determine the full-length expression of A. thaliana cellulose synthase 3 (AtCesA3) fragments. The level of stably-folded AtCesA3 fragments displayed on the yeast surface are determined using flow cytometric analysis of differential surface expression of epitopes flanking the AtCesA3 fragment. This technique provides a fast and simple method for examining folding and expression of protein domains and fragments of complex proteins.
Collapse
Affiliation(s)
- Maryam Raeeszadeh-Sarmazdeh
- Department of Chemical and Biomolecular Engineering, University of Tennessee at Knoxville, Knoxville, TN 37996
| | - Nikhil Patel
- Department of Chemical and Biomolecular Engineering, University of Tennessee at Knoxville, Knoxville, TN 37996
| | - Sarah Cruise
- Department of Chemical and Biomolecular Engineering, University of Tennessee at Knoxville, Knoxville, TN 37996
| | - Leila Owen
- Department of Chemical and Biomolecular Engineering, University of Tennessee at Knoxville, Knoxville, TN 37996
| | - Hugh O'Neill
- Center for Structural Molecular Biology and Neutron Scsattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - Eric T Boder
- Department of Chemical and Biomolecular Engineering, University of Tennessee at Knoxville, Knoxville, TN 37996
| |
Collapse
|
9
|
Liu Y, Wu HC, Bhokisham N, Li J, Hong KL, Quan DN, Tsao CY, Bentley WE, Payne GF. Biofabricating Functional Soft Matter Using Protein Engineering to Enable Enzymatic Assembly. Bioconjug Chem 2018; 29:1809-1822. [PMID: 29745651 PMCID: PMC7045599 DOI: 10.1021/acs.bioconjchem.8b00197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Biology often provides the inspiration for functional soft matter, but biology can do more: it can provide the raw materials and mechanisms for hierarchical assembly. Biology uses polymers to perform various functions, and biologically derived polymers can serve as sustainable, self-assembling, and high-performance materials platforms for life-science applications. Biology employs enzymes for site-specific reactions that are used to both disassemble and assemble biopolymers both to and from component parts. By exploiting protein engineering methodologies, proteins can be modified to make them more susceptible to biology's native enzymatic activities. They can be engineered with fusion tags that provide (short sequences of amino acids at the C- and/or N- termini) that provide the accessible residues for the assembling enzymes to recognize and react with. This "biobased" fabrication not only allows biology's nanoscale components (i.e., proteins) to be engineered, but also provides the means to organize these components into the hierarchical structures that are prevalent in life.
Collapse
Affiliation(s)
| | - Hsuan-Chen Wu
- Department of Biochemical Science and Technology , National Taiwan University , Taipei City , Taiwan
| | | | | | - Kai-Lin Hong
- Department of Biochemical Science and Technology , National Taiwan University , Taipei City , Taiwan
| | | | | | | | | |
Collapse
|
10
|
Banerjee A, Howarth M. Nanoteamwork: covalent protein assembly beyond duets towards protein ensembles and orchestras. Curr Opin Biotechnol 2018; 51:16-23. [DOI: 10.1016/j.copbio.2017.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/23/2017] [Indexed: 11/16/2022]
|
11
|
Abstract
Polyproteins, individual protein units joined covalently in tandem, have evolved as a promising tool for measuring the dynamic folding of biomacromolecules in single-molecule force spectroscopy. However, the synthetic routes to prepare polyproteins have been a bottleneck, and urge development of in vitro methods to knit individual protein units covalently into polyprotein. Employing two enzymes of orthogonal functionalities periodically in sequence, we synthesized monodispersed polyproteins on a solid surface. We used Sortase A (SrtA), the enzyme known for sequence specific transpeptidation, to staple protein units covalently through peptide bonds. Exploiting the sequence-specific peptide cleaving ability of TEV protease, we controlled the progress of the reaction to one attachment at a time. Finally, with unique design of the unit proteins we control the orientation of proteins in polyprotein. This simple conjugation has the potential to staple proteins with different functionalities and from different expression systems, in any number in the polyprotein and, above all, via irreversible peptide bonds. Multiple chimeric constructs can also be synthesized with interchangeable protein units.
Collapse
Affiliation(s)
- S. Garg
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - G. S. Singaraju
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - S. Yenghkom
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - S. Rakshit
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
- Centre for Protein Science Design and Engineering, Indian Institute of Science Education and Research Mohali, Punjab, India
| |
Collapse
|
12
|
Qafari SM, Ahmadian G, Mohammadi M. One-step purification and oriented attachment of protein A on silica and graphene oxide nanoparticles using sortase-mediated immobilization. RSC Adv 2017. [DOI: 10.1039/c7ra12128h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
One-step purification and oriented immobilization of protein A on functionalized carriers.
Collapse
Affiliation(s)
- Seyed Mehdi Qafari
- Systems Biotechnology Department
- Institute of Industrial and Environmental Biotechnology
- National Institute of Genetic Engineering and Biotechnology (NIGEB)
- Tehran
- Iran
| | - Gholamreza Ahmadian
- Systems Biotechnology Department
- Institute of Industrial and Environmental Biotechnology
- National Institute of Genetic Engineering and Biotechnology (NIGEB)
- Tehran
- Iran
| | - Mehdi Mohammadi
- Bioprocess Engineering Department
- Institute of Industrial and Environmental Biotechnology
- National Institute of Genetic Engineering and Biotechnology (NIGEB)
- Tehran
- Iran
| |
Collapse
|