1
|
Yu M, Yu M, Qian F. Purification of plasmid DNA using a novel two stage chromatography process. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1250:124381. [PMID: 39612883 DOI: 10.1016/j.jchromb.2024.124381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/21/2024] [Accepted: 11/11/2024] [Indexed: 12/01/2024]
Abstract
The chromatography process of large-scale plasmid purification with high efficiency and low cost has always been a major challenge. We established a two-step plasmid chromatography purification process combining multimodal and thiophilic chromatography with an overall chromatography yield of nearly 70%. Capto Core 700, a multimodal core-shell particle, was firstly used to remove the impurities from the crude lysate. The effects of different experimental conditions on chromatography recovery and impurity removal were screened. Compared to conventional size exclusion chromatography, the sample load and flow rate of this step were enhanced by 40-fold and 5-fold, respectively, while maintaining a 90% yield. For the thiophilic chromatography (Capto PlasmidSelect), the method of Design of Experiments (DoEs) was used to study the influence of parameters on the results. The effects of ammonium sulfate concentration, sodium chloride concentration and flowrate in the elution phase were studied and optimized with a central composite design model consisting of 17 experiments. The versatility of this process was demonstrated by successfully purifying three different lentiviral packaging plasmids (pLP1, pLP2 and pLP/VSVG) and the target plasmid containing green fluorescent protein (GFP). Purified plasmids consistently achieved a supercoiled purity of at least 90% with endotoxin levels below 5 EU/mg. Lentiviral vectors packaged using these plasmids exhibited high infectious titers of 1 × 107 TU/mL, thereby verifying the process applicability for diverse plasmid purification requirements.
Collapse
Affiliation(s)
- Minglei Yu
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai 200438, China; Fast Trak China, Cytiva, Shanghai 201203, China.
| | - Mengran Yu
- Fast Trak China, Cytiva, Shanghai 201203, China
| | - Feng Qian
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
2
|
Rajoub N, Gerard CJJ, Pantuso E, Fontananova E, Caliandro R, Belviso BD, Curcio E, Nicoletta FP, Pullen J, Chen W, Heng JYY, Ruane S, Liddell J, Alvey N, Ter Horst JH, Di Profio G. A workflow for the development of template-assisted membrane crystallization downstream processing for monoclonal antibody purification. Nat Protoc 2023; 18:2998-3049. [PMID: 37697106 DOI: 10.1038/s41596-023-00869-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/06/2023] [Indexed: 09/13/2023]
Abstract
Monoclonal antibodies (mAbs) are commonly used biologic drugs for the treatment of diseases such as rheumatoid arthritis, multiple sclerosis, COVID-19 and various cancers. They are produced in Chinese hamster ovary cell lines and are purified via a number of complex and expensive chromatography-based steps, operated in batch mode, that rely heavily on protein A resin. The major drawback of conventional procedures is the high cost of the adsorption media and the extensive use of chemicals for the regeneration of the chromatographic columns, with an environmental cost. We have shown that conventional protein A chromatography can be replaced with a single crystallization step and gram-scale production can be achieved in continuous flow using the template-assisted membrane crystallization process. The templates are embedded in a membrane (e.g., porous polyvinylidene fluoride with a layer of polymerized polyvinyl alcohol) and serve as nucleants for crystallization. mAbs are flexible proteins that are difficult to crystallize, so it can be challenging to determine the optimal conditions for crystallization. The objective of this protocol is to establish a systematic and flexible approach for the design of a robust, economic and sustainable mAb purification platform to replace at least the protein A affinity stage in traditional chromatography-based purification platforms. The procedure provides details on how to establish the optimal parameters for separation (crystallization conditions, choice of templates, choice of membrane) and advice on analytical and characterization methods.
Collapse
Affiliation(s)
- Nazer Rajoub
- CMAC Future Manufacturing Research Hub, c/o Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Technology and Innovation Centre, Glasgow, UK
| | - Charline J J Gerard
- CMAC Future Manufacturing Research Hub, c/o Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Technology and Innovation Centre, Glasgow, UK
| | - Elvira Pantuso
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Tecnologia delle Membrane (ITM), Rende, Italy
| | - Enrica Fontananova
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Tecnologia delle Membrane (ITM), Rende, Italy
| | - Rocco Caliandro
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Cristallografia (IC), Bari, Italy
| | - Benny D Belviso
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Cristallografia (IC), Bari, Italy
| | - Efrem Curcio
- Department of Environmental Engineering, University of Calabria, Rende, Italy
| | - Fiore P Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Edificio Polifunzionale, Rende, Italy
| | - James Pullen
- FUJIFILM Diosynth Biotechnologies, Billingham, UK
| | - Wenqian Chen
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Jerry Y Y Heng
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Sean Ruane
- Center for Process Innovation (CPI), Darlington, UK
| | - John Liddell
- Center for Process Innovation (CPI), Darlington, UK
| | | | - Joop H Ter Horst
- CMAC Future Manufacturing Research Hub, c/o Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Technology and Innovation Centre, Glasgow, UK
| | - Gianluca Di Profio
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Tecnologia delle Membrane (ITM), Rende, Italy.
| |
Collapse
|
3
|
Ling M, Cardle II, Song K, Yan AJ, Kacherovsky N, Jensen MC, Pun SH. Aptamer-Based Chromatographic Methods for Efficient and Economical Separation of Leukocyte Populations. ACS Biomater Sci Eng 2023; 9:5062-5071. [PMID: 37467493 PMCID: PMC11016351 DOI: 10.1021/acsbiomaterials.3c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The manufacturing process of chimeric antigen receptor T cell therapies includes isolation systems that provide pure T cells. Current magnetic-activated cell sorting and immunoaffinity chromatography methods produce desired cells with high purity and yield but require expensive equipment and reagents and involve time-consuming incubation steps. Here, we demonstrate that aptamers can be employed in a continuous-flow resin platform for both depletion of monocytes and selection of CD8+ T cells from peripheral blood mononuclear cells at low cost with high purity and throughput. Aptamer-mediated cell selection could potentially enable fully synthetic, traceless isolations of leukocyte subsets from a single isolation system.
Collapse
Affiliation(s)
- Melissa Ling
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195
| | - Ian I. Cardle
- Department of Bioengineering, University of Washington, Seattle, WA 98195
- Seattle Children’s Therapeutics, Seattle, WA 98101
| | - Kefan Song
- Department of Bioengineering, University of Washington, Seattle, WA 98195
| | - Alexander J. Yan
- Department of Bioengineering, University of Washington, Seattle, WA 98195
| | - Nataly Kacherovsky
- Department of Bioengineering, University of Washington, Seattle, WA 98195
| | | | - Suzie H. Pun
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195
- Department of Bioengineering, University of Washington, Seattle, WA 98195
| |
Collapse
|
4
|
Crowell LE, Rodriguez SA, Love KR, Cramer SM, Love JC. Rapid optimization of processes for the integrated purification of biopharmaceuticals. Biotechnol Bioeng 2021; 118:3435-3446. [PMID: 33782945 PMCID: PMC8453909 DOI: 10.1002/bit.27767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 11/07/2022]
Abstract
Straight‐through chromatography, wherein the eluate from one column passes directly onto another column without adjustment, is one strategy to integrate and intensify manufacturing processes for biologics. Development and optimization of such straight‐through chromatographic processes is a challenge, however. Conventional high‐throughput screening methods optimize each chromatographic step independently, with limited consideration for the connectivity of steps. Here, we demonstrate a method for the development and optimization of fully integrated, multi‐column processes for straight‐through purification. Selection of resins was performed using an in silico tool for the prediction of processes for straight‐through purification based on a one‐time characterization of host‐cell proteins combined with the chromatographic behavior of the product. A two‐step optimization was then conducted to determine the buffer conditions that maximized yield while minimizing process‐ and product‐related impurities. This optimization of buffer conditions included a series of range‐finding experiments on each individual column, similar to conventional screening, followed by the development of a statistical model for the fully integrated, multi‐column process using design of experiments. We used this methodology to develop and optimize integrated purification processes for a single‐domain antibody and a cytokine, obtaining yields of 88% and 86%, respectively, with process‐ and product‐related variants reduced to phase‐appropriate levels for nonclinical material.
Collapse
Affiliation(s)
- Laura E. Crowell
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Sergio A. Rodriguez
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Kerry R. Love
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Steven M. Cramer
- Department of Chemical and Biological EngineeringRensselaer Polytechnic InstituteTroyNew YorkUSA
- Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyNew YorkUSA
| | - J. Christopher Love
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
5
|
Nadar S, Shooter G, Somasundaram B, Shave E, Baker K, Lua LHL. Intensified Downstream Processing of Monoclonal Antibodies Using Membrane Technology. Biotechnol J 2020; 16:e2000309. [PMID: 33006254 DOI: 10.1002/biot.202000309] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The need to intensify downstream processing of monoclonal antibodies to complement the advances in upstream productivity has led to increased attention toward implementing membrane technologies. With the industry moving toward continuous operations and single use processes, membrane technologies show promise in fulfilling the industry needs due to their operational flexibility and ease of implementation. Recently, the applicability of membrane-based unit operations in integrating the downstream process has been explored. In this article, the major developments in the application of membrane-based technologies in the bioprocessing of monoclonal antibodies are reviewed. The recent progress toward developing intensified end-to-end bioprocesses and the critical role membrane technology will play in achieving this goal are focused upon.
Collapse
Affiliation(s)
- Sathish Nadar
- Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Corner College and Cooper Roads, Brisbane, Queensland, 4072, Australia
| | - Gary Shooter
- Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Corner College and Cooper Roads, Brisbane, Queensland, 4072, Australia
| | - Balaji Somasundaram
- Protein Expression Facility, The University of Queensland, Corner College and Cooper Roads, Brisbane, Queensland, 4072, Australia
| | - Evan Shave
- Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Corner College and Cooper Roads, Brisbane, Queensland, 4072, Australia.,Pharma services group, Thermo Fisher Scientific, 37 Kent St, Woolloongabba, Brisbane, Queensland, 4102, Australia
| | - Kym Baker
- Pharma services group, Thermo Fisher Scientific, 37 Kent St, Woolloongabba, Brisbane, Queensland, 4102, Australia
| | - Linda H L Lua
- Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Corner College and Cooper Roads, Brisbane, Queensland, 4072, Australia.,Protein Expression Facility, The University of Queensland, Corner College and Cooper Roads, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
6
|
Trnovec H, Doles T, Hribar G, Furlan N, Podgornik A. Characterization of membrane adsorbers used for impurity removal during the continuous purification of monoclonal antibodies. J Chromatogr A 2020; 1609:460518. [DOI: 10.1016/j.chroma.2019.460518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/23/2022]
|
7
|
Coronel J, Heinrich C, Klausing S, Noll T, Figueredo‐Cardero A, Castilho LR. Perfusion process combining low temperature and valeric acid for enhanced recombinant factor VIII production. Biotechnol Prog 2019; 36:e2915. [DOI: 10.1002/btpr.2915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/09/2019] [Accepted: 09/17/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Juliana Coronel
- Federal University of Rio de Janeiro (UFRJ), COPPECell Culture Engineering Laboratory Rio de Janeiro RJ Brazil
| | | | | | - Thomas Noll
- Bielefeld UniversityInstitute of Cell Culture Technology, Universitätsstraße 25 Bielefeld Germany
| | | | - Leda R. Castilho
- Federal University of Rio de Janeiro (UFRJ), COPPECell Culture Engineering Laboratory Rio de Janeiro RJ Brazil
| |
Collapse
|
8
|
Vecchiarello N, Timmick SM, Goodwine C, Crowell LE, Love KR, Love JC, Cramer SM. A combined screening and in silico strategy for the rapid design of integrated downstream processes for process and product‐related impurity removal. Biotechnol Bioeng 2019; 116:2178-2190. [DOI: 10.1002/bit.27018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/30/2019] [Accepted: 05/09/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Nicholas Vecchiarello
- Department of Chemical and Biological Engineering Rensselaer Polytechnic Institute Center for Biotechnology and Interdisciplinary Studies Troy New York
| | - Steven M. Timmick
- Department of Chemical and Biological Engineering Rensselaer Polytechnic Institute Center for Biotechnology and Interdisciplinary Studies Troy New York
| | - Chaz Goodwine
- Department of Chemical and Biological Engineering Rensselaer Polytechnic Institute Center for Biotechnology and Interdisciplinary Studies Troy New York
| | - Laura E. Crowell
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge Massachusetts
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge Massachusetts
| | - Kerry R. Love
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge Massachusetts
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge Massachusetts
| | - J. Christopher Love
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge Massachusetts
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge Massachusetts
| | - Steven M. Cramer
- Department of Chemical and Biological Engineering Rensselaer Polytechnic Institute Center for Biotechnology and Interdisciplinary Studies Troy New York
| |
Collapse
|
9
|
Lima TM, Souza MO, Castilho LR. Purification of flavivirus VLPs by a two-step chomatographic process. Vaccine 2019; 37:7061-7069. [PMID: 31201056 DOI: 10.1016/j.vaccine.2019.05.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/01/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022]
Abstract
Flaviviruses are enveloped viruses with positive-sense, single-stranded RNA, which are most commonly transmitted by infected mosquitoes. Zika virus (ZIKV) and yellow fever virus (YFV) are flaviviruses that have caused significant outbreaks in the last few years. Since there is no approved vaccine against ZIKV, and since the existing YF attenuated vaccine presents disadvantages related to limited supply and to rare, but fatal adverse effects, there is an urgent need for new vaccines to control these diseases. Virus-like particles (VLPs) represent a recombinant platform to produce safe and immunogenic vaccines. Thus, based on our experience of expressing in recombinant mammalian cells VLPs of most flaviviruses circulating in the Americas, this work focused on the evaluation of chromatographic purification processes for zika and yellow-fever VLPs. The clarified cell culture supernatant was processed by a membrane-based anion-exchange chromatography and then a multimodal chromatographic step. With this process, it was possible to obtain the purified VLPs with a yield (including the clarification step) of 66.4% for zika and 68.1% for yellow fever. DNA clearance was in the range of 99.8-99.9%, providing VLP preparations that meet the WHO limit for this critical contaminant. Correct size and morphology of the purified VLPs were confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The promising results obtained for both zika and yellow fever VLPs indicate that this process could be potentially applied also to VLPs of other flaviviruses.
Collapse
Affiliation(s)
- Túlio M Lima
- Federal University of Rio de Janeiro (UFRJ), COPPE, Cell Culture Engineering Laboratory, Av. Horácio Macedo, 2030 sl. G115, 21941-598, Cidade Universitária, Brazil; Federal University of Rio de Janeiro (UFRJ), EQ, EPQB Graduate Program, Av. Horácio Macedo, 2030 sl. E206, 21941-598, Cidade Universitária, Brazil
| | - Matheus O Souza
- Federal University of Rio de Janeiro (UFRJ), COPPE, Cell Culture Engineering Laboratory, Av. Horácio Macedo, 2030 sl. G115, 21941-598, Cidade Universitária, Brazil
| | - Leda R Castilho
- Federal University of Rio de Janeiro (UFRJ), COPPE, Cell Culture Engineering Laboratory, Av. Horácio Macedo, 2030 sl. G115, 21941-598, Cidade Universitária, Brazil.
| |
Collapse
|
10
|
Somasundaram B, Pleitt K, Shave E, Baker K, Lua LHL. Progression of continuous downstream processing of monoclonal antibodies: Current trends and challenges. Biotechnol Bioeng 2018; 115:2893-2907. [PMID: 30080940 DOI: 10.1002/bit.26812] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/24/2018] [Accepted: 07/30/2018] [Indexed: 01/13/2023]
Abstract
Rapid advances in intensifying upstream processes for biologics production have left downstream processing as a bottleneck in the manufacturing scheme. Biomanufacturers are pursuing continuous downstream process development to increase efficiency and flexibility, reduce footprint and cost of goods, and improve product consistency and quality. Even after successful laboratory trials, the implementation of a continuous process at manufacturing scale is not easy to achieve. This paper reviews specific challenges in converting each downstream unit operation to a continuous mode. Key elements of developing practical strategies for overcoming these challenges are detailed. These include equipment valve complexity, favorable column aspect ratio, protein-A resin selection, quantitative assessment of chromatogram peak size and shape, holistic process characterization approach, and a customized process economic evaluation. Overall, this study provides a comprehensive review of current trends and the path forward for implementing continuous downstream processing at the manufacturing scale.
Collapse
Affiliation(s)
- Balaji Somasundaram
- Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Kristina Pleitt
- Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Evan Shave
- Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia.,Patheon Biologics-a part of Thermo Fisher Scientific, Brisbane, Queensland, Australia
| | - Kym Baker
- Patheon Biologics-a part of Thermo Fisher Scientific, Brisbane, Queensland, Australia
| | - Linda H L Lua
- Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia.,Protein Expression Facility, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
11
|
The yeast stands alone: the future of protein biologic production. Curr Opin Biotechnol 2018; 53:50-58. [DOI: 10.1016/j.copbio.2017.12.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/13/2022]
|
12
|
Thompson C, Wilson K, Larkin C, Lee J, Wang WK, Wendeler M. Evaluation of continuous nonaffinity capture chromatography for a recombinant enzyme—optimization for a changing perfusion feedstream and comparison to batch processing. Biotechnol Prog 2018; 34:1195-1204. [DOI: 10.1002/btpr.2674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/22/2018] [Indexed: 11/10/2022]
Affiliation(s)
| | - Kelly Wilson
- Purification Process Sciences, MedImmune LLCGaithersburg MD 20878
| | | | - Jeong Lee
- Cell Culture and Fermentation SciencesMedImmune LLCGaithersburg MD20878
| | - William K. Wang
- Purification Process Sciences, MedImmune LLCGaithersburg MD 20878
| | | |
Collapse
|
13
|
Timmick SM, Vecchiarello N, Goodwine C, Crowell LE, Love KR, Love JC, Cramer SM. An impurity characterization based approach for the rapid development of integrated downstream purification processes. Biotechnol Bioeng 2018; 115:2048-2060. [DOI: 10.1002/bit.26718] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/09/2018] [Accepted: 04/17/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Steven M. Timmick
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute Troy New York
| | - Nicholas Vecchiarello
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute Troy New York
| | - Chaz Goodwine
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute Troy New York
| | - Laura E. Crowell
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge Massachusetts
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge Massachusetts
| | - Kerry R. Love
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge Massachusetts
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge Massachusetts
| | - J. Christopher Love
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge Massachusetts
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge Massachusetts
| | - Steven M. Cramer
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute Troy New York
| |
Collapse
|
14
|
Steinebach F, Ulmer N, Wolf M, Decker L, Schneider V, Wälchli R, Karst D, Souquet J, Morbidelli M. Design and operation of a continuous integrated monoclonal antibody production process. Biotechnol Prog 2017; 33:1303-1313. [DOI: 10.1002/btpr.2522] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/03/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Fabian Steinebach
- Dept. of Chemistry and Applied Biosciences; Inst. for Chemical and Bioengineering; ETH Zurich Zurich 8093 Switzerland
| | - Nicole Ulmer
- Dept. of Chemistry and Applied Biosciences; Inst. for Chemical and Bioengineering; ETH Zurich Zurich 8093 Switzerland
| | - Moritz Wolf
- Dept. of Chemistry and Applied Biosciences; Inst. for Chemical and Bioengineering; ETH Zurich Zurich 8093 Switzerland
| | - Lara Decker
- Dept. of Chemistry and Applied Biosciences; Inst. for Chemical and Bioengineering; ETH Zurich Zurich 8093 Switzerland
| | - Veronika Schneider
- Dept. of Chemistry and Applied Biosciences; Inst. for Chemical and Bioengineering; ETH Zurich Zurich 8093 Switzerland
| | - Ruben Wälchli
- Dept. of Chemistry and Applied Biosciences; Inst. for Chemical and Bioengineering; ETH Zurich Zurich 8093 Switzerland
| | - Daniel Karst
- Dept. of Chemistry and Applied Biosciences; Inst. for Chemical and Bioengineering; ETH Zurich Zurich 8093 Switzerland
| | - Jonathan Souquet
- Biotech Process Science Technology & Innovation; Merck-Serono S.A., 1804 Corsier-sur-Vevey; Switzerland
| | - Massimo Morbidelli
- Dept. of Chemistry and Applied Biosciences; Inst. for Chemical and Bioengineering; ETH Zurich Zurich 8093 Switzerland
| |
Collapse
|