1
|
Losantos D, Sarra M, Caminal G. OPFR removal by white rot fungi: screening of removers and approach to the removal mechanism. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1387541. [PMID: 38827887 PMCID: PMC11140845 DOI: 10.3389/ffunb.2024.1387541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/29/2024] [Indexed: 06/05/2024]
Abstract
The persistent presence of organophosphate flame retardants (OPFRs) in wastewater (WW) effluents raises significant environmental and health concerns, highlighting the limitations of conventional treatments for their remotion. Fungi, especially white rot fungi (WRF), offer a promising alternative for OPFR removal. This study sought to identify fungal candidates (from a selection of four WRF and two Ascomycota fungi) capable of effectively removing five frequently detected OPFRs in WW: tributyl phosphate (TnBP), tributoxy ethyl phosphate (TBEP), trichloroethyl phosphate (TCEP), trichloro propyl phosphate (TCPP) and triethyl phosphate (TEP). The objective was to develop a co-culture approach for WW treatment, while also addressing the utilization of less assimilable carbon sources present in WW. Research was conducted on carbon source uptake and OPFR removal by all fungal candidates, while the top degraders were analyzed for biomass sorption contribution. Additionally, the enzymatic systems involved in OPFR degradation were identified, along with toxicity of samples after fungal contact. Acetate (1.4 g·L-1), simulating less assimilable organic matter in the carbon source uptake study, was eliminated by all tested fungi in 4 days. However, during the initial screening where the removal of four OPFRs (excluding TCPP) was tested, WRF outperformed Ascomycota fungi. Ganoderma lucidum and Trametes versicolor removed over 90% of TnBP and TBEP within 4 days, with Pleorotus ostreatus and Pycnoporus sanguineus also displaying effective removal. TCEP removal was challenging, with only G. lucidum achieving partial removal (47%). A subsequent screening with selected WRF and the addition of TCPP revealed TCPP's greater susceptibility to degradation compared to TCEP, with T. versicolor exhibiting the highest removal efficiency (77%). This observation, plus the poor degradation of TEP by all fungal candidates suggests that polarity of an OPFR inversely correlates with its susceptibility to fungal degradation. Sorption studies confirmed the ability of top-performing fungi of each selected OPFR to predominantly degrade them. Enzymatic system tests identified the CYP450 intracellular system responsible for OPFR degradation, so reactions of hydroxylation, dealkylation and dehalogenation are possibly involved in the degradation pathway. Finally, toxicity tests revealed transformation products obtained by fungal degradation to be more toxic than the parent compounds, emphasizing the need to identify them and their toxicity contributions. Overall, this study provides valuable insights into OPFR degradation by WRF, with implications for future WW treatment using mixed consortia, emphasizing the importance of reducing generated toxicity.
Collapse
Affiliation(s)
- Diana Losantos
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Escola d’Enginyeria, Cerdanyola del Vallès, Spain
| | - Montserrat Sarra
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Escola d’Enginyeria, Cerdanyola del Vallès, Spain
| | - Glòria Caminal
- Institut de Quiímica Avançada de Catalunya (IQAC), Spanish Council for Scientific Research (CSIC), Barcelona, Spain
| |
Collapse
|
2
|
Lin JY, Zhang Y, Bian Y, Zhang YX, Du RZ, Li M, Tan Y, Feng XS. Non-steroidal anti-inflammatory drugs (NSAIDs) in the environment: Recent updates on the occurrence, fate, hazards and removal technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166897. [PMID: 37683862 DOI: 10.1016/j.scitotenv.2023.166897] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Non-steroidal Anti-inflammatory Drugs (NSAIDs) are extensively utilized pharmaceuticals worldwide. However, owing to the improper discharge and disposal practices, they have emerged as significant contaminants that are widely distributed in water, soils, and sewage sediments. This ubiquity poses a substantial threat to the ecosystem and human health. Consequently, it is imperative to develop rapid, cost-effective, efficient and reliable approaches for containing these substance in order to mitigate the deleterious impact of NSAIDs. This research provides a comprehensive review of the occurrence, fate, and hazards associated with NSAIDs in the general environment. Additionally, various removal technologies, including advanced oxidation processes, biodegradation, and adsorption, were systematically summarized. The study also presents a comparative analysis of the benefits and drawbacks of different removal technologies while interpreting challenges related to NSAIDs' removal and proposing strategies for future development.
Collapse
Affiliation(s)
- Jia-Yuan Lin
- School of Pharmacy, China Medical University, Shenyang 110122, China; Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yi-Xin Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Rong-Zhu Du
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Ming Li
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Yue Tan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
3
|
Coman C, Hădade N, Pesek S, Silaghi-Dumitrescu R, Moț AC. Removal and degradation of sodium diclofenac via radical-based mechanisms using S. sclerotiorum laccase. J Inorg Biochem 2023; 249:112400. [PMID: 37844532 DOI: 10.1016/j.jinorgbio.2023.112400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
The recently isolated Sclerotinia sclerotiorum laccase was used for the degradation of sodium diclofenac, a nonsteroidal anti-inflammatory drug widely found in the aquatic environment. The Michaelis-Menten parameters, half-life of diclofenac at different pH values in presence of this enzyme and potential inhibitors were evaluated. Diclofenac-based radicals formed in presence of laccase were spin-trapped and detected using EPR spectroscopy. Almost complete diclofenac degradation (> 96%) occurred after a 30-h treatment via radical-based generated oligomers and their rapid precipitation, thus ensuring an unprecedented green formula suitable not only for degradation but also for straightforward removal of the degradation products. High performance liquid chromatography coupled with atmospheric pressure chemical ionization-ion trap mass spectrometry (HPLC-APCI-MS) analyses of the degradation products of diclofenac in aqueous dosage revealed the presence of at least seven products while HR Orbitrap MS analysis showed that the enzymatic treatment produced high molecular weight metabolites through a radical oligomerization mechanism of diclofenac. The enzymatically formed products precipitated and its constituting components were also characterized using UV-vis spectroscopy, infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA).
Collapse
Affiliation(s)
- Cristina Coman
- Babeș-Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemistry, Mihail Kogălniceanu, no. 1, Cluj-Napoca 400084, Romania
| | - Niculina Hădade
- Babeș-Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemistry, Mihail Kogălniceanu, no. 1, Cluj-Napoca 400084, Romania
| | - Szilárd Pesek
- Babeș-Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemistry, Mihail Kogălniceanu, no. 1, Cluj-Napoca 400084, Romania
| | - Radu Silaghi-Dumitrescu
- Babeș-Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemistry, Mihail Kogălniceanu, no. 1, Cluj-Napoca 400084, Romania.
| | - Augustin C Moț
- Babeș-Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemistry, Mihail Kogălniceanu, no. 1, Cluj-Napoca 400084, Romania
| |
Collapse
|
4
|
Sharma M, Agarwal S, Agarwal Malik R, Kumar G, Pal DB, Mandal M, Sarkar A, Bantun F, Haque S, Singh P, Srivastava N, Gupta VK. Recent advances in microbial engineering approaches for wastewater treatment: a review. Bioengineered 2023; 14:2184518. [PMID: 37498651 PMCID: PMC10376923 DOI: 10.1080/21655979.2023.2184518] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 07/28/2023] Open
Abstract
In the present era of global climate change, the scarcity of potable water is increasing both due to natural and anthropogenic causes. Water is the elixir of life, and its usage has risen significantly due to escalating economic activities, widespread urbanization, and industrialization. The increasing water scarcity and rising contamination have compelled, scientists and researchers, to adopt feasible and sustainable wastewater treatment methods in meeting the growing demand for freshwater. Presently, various waste treatment technologies are adopted across the globe, such as physical, chemical, and biological treatment processes. There is a need to replace these technologies with sustainable and green technology that encourages the use of microorganisms since they have proven to be more effective in water treatment processes. The present review article is focused on demonstrating how effectively various microbes can be used in wastewater treatment to achieve environmental sustainability and economic feasibility. The microbial consortium used for water treatment offers many advantages over pure culture. There is an urgent need to develop hybrid treatment technology for the effective remediation of various organic and inorganic pollutants from wastewater.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Zoology, University of Jammu, Jammu and Kashmir, India
| | - Sangita Agarwal
- Department of Applied Science, RCC Institute of Information Technology Kolkata, West Bengal, India
| | - Richa Agarwal Malik
- Department of Environmental Studies, PGDAV College, University of Delhi, New Delhi, India
| | - Gaurav Kumar
- Department of Environmental Studies, PGDAV College, University of Delhi, New Delhi, India
| | - Dan Bahadur Pal
- Department of Chemical Engineering, Harcourt Butler Technical University, Kanpur, Uttar Pradesh, India
| | - Mamun Mandal
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda, West Bengal, India
| | - Abhijit Sarkar
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda, West Bengal, India
| | - Farkad Bantun
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Pardeep Singh
- Department of Environmental Studies, PGDAV College, University of Delhi, New Delhi, India
| | - Neha Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | | |
Collapse
|
5
|
Kózka B, Sośnicka A, Nałęcz-Jawecki G, Drobniewska A, Turło J, Giebułtowicz J. Various species of Basidiomycota fungi reveal different abilities to degrade pharmaceuticals and also different pathways of degradation. CHEMOSPHERE 2023; 338:139481. [PMID: 37454990 DOI: 10.1016/j.chemosphere.2023.139481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/19/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
The presence of pharmaceuticals (PhACs) in the aquatic environment is an emerging problem worldwide. PhACs reach surface water via the effluents of wastewater treatment plants (WWTPs). WWTPs, although able to remove organic pollutants, do not always remove PhACs. Currently, in the treatment of sewage with the activated sludge method, numerous microorganisms are used, mostly bacteria. Nevertheless, these microorganisms are not resistant to many drug contaminants, and some may also pose a risk to human health. White-rot fungi (WRF), which degrade a wide spectrum of environmental pollutants, may be used as an alternative to microorganisms. However, little data exists comparing the removal of various PhACs by different WRF. In this study, we aimed to determine the ability of three WRF Basidiomycota species, Armillaria mellea, Phanerochaete chrysosporium, and Pleurotus ostreatus, to remove PhACs from various therapeutic groups over the course of 1 h-4 days. Additionally, we identified the fungal metabolites of PhACs, proposed the degradation pathways, and assessed the toxicity of the post-culture media. All selected WRF removed PhACs, but the degree of removal depended on WRF species and PhACs type. Antidepressants and immunosuppressants were removed most efficiently by P. ostreatus, cardiovascular drugs and sulfamethoxazole by A. mellea, and erythromycin by P. chrysosporium. The vast differences observed highlight the need for more intensive testing of different WRF species to select the best species for removing pharmaceuticals of interest. The structure of metabolites generated during degradation strongly depended on WRF species, but the most frequent xenobiotic transformations were oxidation and dealkylation. The obtained results gave insight into the substrate specificity of selected WRF while also providing a broad extension of the knowledge of pharmaceutical degradation by A. mellea.
Collapse
Affiliation(s)
- B Kózka
- Medical University of Warsaw, Faculty of Pharmacy, Department of Drug Chemistry, Poland
| | - A Sośnicka
- Medical University of Warsaw, Faculty of Pharmacy, Department of Drug Technology and Pharmaceutical Biotechnology, Poland
| | - G Nałęcz-Jawecki
- Medical University of Warsaw, Faculty of Pharmacy, Department of Environmental Health Sciences, Poland
| | - A Drobniewska
- Medical University of Warsaw, Faculty of Pharmacy, Department of Environmental Health Sciences, Poland
| | - J Turło
- Medical University of Warsaw, Faculty of Pharmacy, Department of Drug Technology and Pharmaceutical Biotechnology, Poland
| | - J Giebułtowicz
- Medical University of Warsaw, Faculty of Pharmacy, Department of Drug Chemistry, Poland.
| |
Collapse
|
6
|
Tyumina E, Subbotina M, Polygalov M, Tyan S, Ivshina I. Ketoprofen as an emerging contaminant: occurrence, ecotoxicity and (bio)removal. Front Microbiol 2023; 14:1200108. [PMID: 37608946 PMCID: PMC10441242 DOI: 10.3389/fmicb.2023.1200108] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023] Open
Abstract
Ketoprofen, a bicyclic non-steroidal anti-inflammatory drug commonly used in human and veterinary medicine, has recently been cited as an environmental contaminant that raises concerns for ecological well-being. It poses a growing threat due to its racemic mixture, enantiomers, and transformation products, which have ecotoxicological effects on various organisms, including invertebrates, vertebrates, plants, and microorganisms. Furthermore, ketoprofen is bioaccumulated and biomagnified throughout the food chain, threatening the ecosystem function. Surprisingly, despite these concerns, ketoprofen is not currently considered a priority substance. While targeted eco-pharmacovigilance for ketoprofen has been proposed, data on ketoprofen as a pharmaceutical contaminant are limited and incomplete. This review aims to provide a comprehensive summary of the most recent findings (from 2017 to March 2023) regarding the global distribution of ketoprofen in the environment, its ecotoxicity towards aquatic animals and plants, and available removal methods. Special emphasis is placed on understanding how ketoprofen affects microorganisms that play a pivotal role in Earth's ecosystems. The review broadly covers various approaches to ketoprofen biodegradation, including whole-cell fungal and bacterial systems as well as enzyme biocatalysts. Additionally, it explores the potential of adsorption by algae and phytoremediation for removing ketoprofen. This review will be of interest to a wide range of readers, including ecologists, microbiologists, policymakers, and those concerned about pharmaceutical pollution.
Collapse
Affiliation(s)
- Elena Tyumina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Maria Subbotina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Maxim Polygalov
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Semyon Tyan
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Irina Ivshina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| |
Collapse
|
7
|
Kasonga TK, Kamika I, Ngole-Jeme VM. Ligninolytic enzyme activity and removal efficiency of pharmaceuticals in a water matrix by fungus Rhizopus sp. Isolated from cassava. ENVIRONMENTAL TECHNOLOGY 2023; 44:2157-2170. [PMID: 35018877 DOI: 10.1080/09593330.2021.2024885] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 12/15/2021] [Indexed: 05/30/2023]
Abstract
Residual amounts of pharmaceutical compounds (PhCs) and by-products are continually released into surface water with effluents from conventional wastewater treatment plants (WWTPs). This study evaluated the ability of fungal isolate to remove selected PhCs [carbamazepine (CBZ), diclofenac (DCF) and ibuprofen (IBP)] from wastewater. The fungus used was Rhizopus sp. which was isolated from tuberous roots of cassava (Manihot esculenta). The isolate exhibited an important removal efficiency up to 100% and this was linked to ligninolytic enzymatic activity for lignin peroxidase (15.29 ± 2.69U/L) and manganese peroxidase (85.22 ± 4.26U/L), except laccase. This activity was optimum on day 9 of treatment. PhC metabolites were identified during the experiment revealing the existence of a biotransformation process catalysed by the isolated fungus. The disappearance of PhCs was attributed to their biosorption and biotransformation. However, it was not possible to establish a relationship between the ligninolytic enzymatic activity and the removal efficiency, which leads to the conclusion that there are other fungal metabolites which also play an important role in the biotransformation and biodegradation of the selected PhCs.
Collapse
Affiliation(s)
- Teddy Kabeya Kasonga
- Department of Environmental Sciences, School of Environmental Science, College of Agriculture and Environmental Sciences, Faculty of Sciences, University of South Africa, Roodepoort, South Africa
| | - Ilunga Kamika
- Institute for Nanotechnology and Water Sustainability; School of Science; College of Science, Engineering and Technology, University of South Africa, Roodepoort, South Africa
| | - Veronica M Ngole-Jeme
- Department of Environmental Sciences, School of Environmental Science, College of Agriculture and Environmental Sciences, Faculty of Sciences, University of South Africa, Roodepoort, South Africa
| |
Collapse
|
8
|
Buratti S, Rinaldi F, Calleri E, Bernardi M, Oliva D, Malgaretti M, De Girolamo G, Barucco B, Girometta CE, Savino E. Ganoderma resinaceum and Perenniporia fraxinea: Two Promising Wood Decay Fungi for Pharmaceutical Degradation. J Fungi (Basel) 2023; 9:jof9050555. [PMID: 37233267 DOI: 10.3390/jof9050555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
Wood decay fungi (WDF) are a well-known source of enzymes and metabolites which have applications in numerous fields, including myco-remediation. Pharmaceuticals are becoming more problematic as environmental water pollutants due to their widespread use. In this study, Bjerkandera adusta, Ganoderma resinaceum, Perenniporia fraxinea, Perenniporia meridionalis and Trametes gibbosa were chosen from WDF strains maintained in MicUNIPV (the fungal research collection of the University of Pavia) to test their potential to degrade pharmaceuticals. The degradation potential was tested in spiked culture medium on diclofenac, paracetamol and ketoprofen, three of the most common pharmaceuticals, and irbesartan, a particularly difficult molecule to degrade. G. resinaceum and P. fraxinea were found to be the most effective at degradation, achieving 38% and 52% (24 h) and 72% and 49% (7 d) degradations of diclofenac, 25% and 73% (24 h) and 100% (7 d) degradations of paracetamol and 19% and 31% (24 h) and 64% and 67% (7 d) degradations of ketoprofen, respectively. Irbesartan was not affected by fungal activity. The two most active fungi, G. resinaceum and P. fraxinea, were tested in a second experiment in discharge wastewater collected from two different wastewater treatment plants in northern Italy. A high degradation was found in azithromycin, clarithromycin and sulfametoxazole (from 70% up to 100% in 7 days).
Collapse
Affiliation(s)
- Simone Buratti
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy
| | - Francesca Rinaldi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Enrica Calleri
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Marco Bernardi
- CAP Holding Spa, Centro Ricerche Salazzurra, Via Circonvallazione Est, 20054 Segrate, Italy
| | - Desdemona Oliva
- CAP Holding Spa, Centro Ricerche Salazzurra, Via Circonvallazione Est, 20054 Segrate, Italy
| | | | | | | | | | - Elena Savino
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
9
|
Blanco-Orta MF, García-de la Cruz RF, Paz-Maldonado LMT, Pedraza-González DA, Morales-Avila MM, Balderas-Hernández VE, González-Ortega O, Pérez-Martínez AS. Assessing three industrially produced fungi for the bioremediation of diclofenac. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023:1-10. [PMID: 37128145 DOI: 10.1080/10934529.2023.2206353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Diclofenac is an emerging pollutant: toxic, persistent, and bioaccumulative, present in several environmental niches in a concentration of parts per million. This pharmaceutical's biological removal was reported with various fungal species, showing promissory results. This work aimed at diclofenac removal by individually challenging the fungal species Pleurotus ostreatus, Aspergillus niger, and Penicillium roquefortii but triying to lower the biosorption nature of cell walls by NaCl addition. P. ostreatus removed 100% of the initial diclofenac concentration, whereas A. niger and P. roqueforti removed 74% and 32%, respectively. In all three cases, biosorption by polar interactions was negligible. We demonstrated that stressful environments, such as mineral media, force the fungus to take advantage of its metabolic tools to survive, hence showing higher removal capacity when limiting growth conditions. Bioremediation is an excellent alternative to give residual fungal biomass a secondary use.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Omar González-Ortega
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | |
Collapse
|
10
|
Chaurasia PK, Nagraj, Sharma N, Kumari S, Yadav M, Singh S, Mani A, Yadava S, Bharati SL. Fungal assisted bio-treatment of environmental pollutants with comprehensive emphasis on noxious heavy metals: Recent updates. Biotechnol Bioeng 2023; 120:57-81. [PMID: 36253930 DOI: 10.1002/bit.28268] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 09/09/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
In the present time of speedy developments and industrialization, heavy metals are being uncovered in aquatic environment and soil via refining, electroplating, processing, mining, metallurgical activities, dyeing and other several metallic and metal based industrial and synthetic activities. Heavy metals like lead (Pb), mercury (Hg), cadmium (Cd), arsenic (As), Zinc (Zn), Cobalt (Co), Iron (Fe), and many other are considered as seriously noxious and toxic for the aquatic environment, human, and other aquatic lives and have damaging influences. Such heavy metals, which are very tough to be degraded, can be managed by reducing their potential through various processes like removal, precipitation, oxidation-reduction, bio-sorption, recovery, bioaccumulation, bio-mineralization etc. Microbes are known as talented bio-agents for the heavy metals detoxification process and fungi are one of the cherished bio-sources that show noteworthy aptitude of heavy metal sorption and metal tolerance. Thus, the main objective of the authors was to come with a comprehensive review having methodological insights on the novel and recent results in the field of mycoremediation of heavy metals. This review significantly assesses the potential talent of fungi in heavy metal detoxification and thus, in environmental restoration. Many reported works, methodologies and mechanistic sights have been evaluated to explore the fungal-assisted heavy metal remediation. Herein, a compact and effectual discussion on the recent mycoremediation studies of organic pollutants like dyes, petroleum, pesticides, insecticides, herbicides, and pharmaceutical wastes have also been presented.
Collapse
Affiliation(s)
- Pankaj Kumar Chaurasia
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Nagraj
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Nagendra Sharma
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Sunita Kumari
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Mithu Yadav
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Sunita Singh
- Department of Chemistry, Navyug Kanya Mahavidyalaya, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Sudha Yadava
- Department of Chemistry, D. D. U. Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Shashi Lata Bharati
- Department of Chemistry, North Eastern Regional Institute of Science and Technology, Nirjuli, Arunachal Pradesh, India
| |
Collapse
|
11
|
Sharma J, Joshi M, Bhatnagar A, Chaurasia AK, Nigam S. Pharmaceutical residues: One of the significant problems in achieving 'clean water for all' and its solution. ENVIRONMENTAL RESEARCH 2022; 215:114219. [PMID: 36057333 DOI: 10.1016/j.envres.2022.114219] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
With the rapid emergence of various metabolic and multiple-drug-resistant infectious diseases, new pharmaceuticals are continuously being introduced in the market. The excess production and use of pharmaceuticals and their untreated/unmetabolized release in the environment cause the contamination of aquatic ecosystem, and thus, compromise the environment and human-health. The present review provides insights into the classification, sources, occurrence, harmful impacts, and existing technologies to curb these problems. A comprehensive detail of various biological and nanotechnological strategies for the removal of pharmaceutical residues from water is critically discussed focusing on their efficiencies, and current limitations to design improved-technologies for their lab-to-field applications. Furthermore, the review highlights and suggests the scope of integrated bionanotechnological methods for enhanced removal of pharmaceutical residues from water to fulfill the United Nations Sustainable Development Goal (UN-SDG) for providing clean potable water for all.
Collapse
Affiliation(s)
- Jyoti Sharma
- Amity Institute of Biotechnology, Amity University, Noida, 201313, Uttar Pradesh, India
| | - Monika Joshi
- Amity Institute of Nanotechnology, Amity University, Noida, 201313, Uttar Pradesh, India.
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Akhilesh K Chaurasia
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea.
| | - Subhasha Nigam
- Amity Institute of Biotechnology, Amity University, Noida, 201313, Uttar Pradesh, India.
| |
Collapse
|
12
|
Lin S, Wei J, Yang B, Zhang M, Zhuo R. Bioremediation of organic pollutants by white rot fungal cytochrome P450: The role and mechanism of CYP450 in biodegradation. CHEMOSPHERE 2022; 301:134776. [PMID: 35500631 DOI: 10.1016/j.chemosphere.2022.134776] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/08/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Cytochrome P450 (CYP450) is a well-known protein family that is widely distributed in many organisms. Members of this family have been implicated in a broad range of reactions involved in the metabolism of various organic compounds. Recently, an increasing number of studies have shown that the CYP450 enzyme also participates in the elimination and degradation of organic pollutants, by white rot fungi (WRF), a famous group of natural degraders. This paper reviews previous investigations of white rot fungal CYP450 involved in the biodegradation of organic pollutants, with a special focus on inhibitory experiments, and the direct and indirect evidence of the role of white rot fungal CYP450 in bioremediation. The catalytic mechanisms of white rot fungal CYP450, its application potential, and future prospect for its use in bioremediation are then discussed.
Collapse
Affiliation(s)
- Shuqi Lin
- Institute of Plant and Microbiology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, PR China
| | - Jinchao Wei
- Zhongye Changtian International Engineering Co., Ltd., Changsha, 410205, PR China
| | - Bentao Yang
- Zhongye Changtian International Engineering Co., Ltd., Changsha, 410205, PR China
| | - Meng Zhang
- Institute of Plant and Microbiology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, PR China
| | - Rui Zhuo
- Institute of Plant and Microbiology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
13
|
Wan Mohtar WHM, Wan-Mohtar WAAQI, Zahuri AA, Ibrahim MF, Show PL, Ilham Z, Jamaludin AA, Abdul Patah MF, Ahmad Usuldin SR, Rowan N. Role of ascomycete and basidiomycete fungi in meeting established and emerging sustainability opportunities: a review. Bioengineered 2022; 13:14903-14935. [PMID: 37105672 DOI: 10.1080/21655979.2023.2184785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
Fungal biomass is the future's feedstock. Non-septate Ascomycetes and septate Basidiomycetes, famously known as mushrooms, are sources of fungal biomass. Fungal biomass, which on averagely comprises about 34% protein and 45% carbohydrate, can be cultivated in bioreactors to produce affordable, safe, nontoxic, and consistent biomass quality. Fungal-based technologies are seen as attractive, safer alternatives, either substituting or complementing the existing standard technology. Water and wastewater treatment, food and feed, green technology, innovative designs in buildings, enzyme technology, potential health benefits, and wealth production are the key sectors that successfully reported high-efficiency performances of fungal applications. This paper reviews the latest technical know-how, methods, and performance of fungal adaptation in those sectors. Excellent performance was reported indicating high potential for fungi utilization, particularly in the sectors, yet to be utilized and improved on the existing fungal-based applications. The expansion of fungal biomass in the industrial-scale application for the sustainability of earth and human well-being is in line with the United Nations' Sustainable Development Goals.
Collapse
Affiliation(s)
- Wan Hanna Melini Wan Mohtar
- Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600 UKM Bangi, Selangor, Malaysia
- Environmental Management Centre, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
- Research Institutes and Industry Centres, Bioscience Research Institute, Technological University of the Shannon, MidlandsMidwest, Westmeath, Ireland
| | - Afnan Ahmadi Zahuri
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Mohamad Faizal Ibrahim
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Zul Ilham
- Environmental Science and Management Program, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Adi Ainurzaman Jamaludin
- Environmental Science and Management Program, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Muhamad Fazly Abdul Patah
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Siti Rokhiyah Ahmad Usuldin
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
- Agro-Biotechnology Institute, Malaysia, National Institutes of Biotechnology Malaysia, Serdang, Selangor, Malaysia
| | - Neil Rowan
- Research Institutes and Industry Centres, Bioscience Research Institute, Technological University of the Shannon, MidlandsMidwest, Westmeath, Ireland
| |
Collapse
|
14
|
Ortúzar M, Esterhuizen M, Olicón-Hernández DR, González-López J, Aranda E. Pharmaceutical Pollution in Aquatic Environments: A Concise Review of Environmental Impacts and Bioremediation Systems. Front Microbiol 2022; 13:869332. [PMID: 35558129 PMCID: PMC9087044 DOI: 10.3389/fmicb.2022.869332] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
The presence of emerging contaminants in the environment, such as pharmaceuticals, is a growing global concern. The excessive use of medication globally, together with the recalcitrance of pharmaceuticals in traditional wastewater treatment systems, has caused these compounds to present a severe environmental problem. In recent years, the increase in their availability, access and use of drugs has caused concentrations in water bodies to rise substantially. Considered as emerging contaminants, pharmaceuticals represent a challenge in the field of environmental remediation; therefore, alternative add-on systems for traditional wastewater treatment plants are continuously being developed to mitigate their impact and reduce their effects on the environment and human health. In this review, we describe the current status and impact of pharmaceutical compounds as emerging contaminants, focusing on their presence in water bodies, and analyzing the development of bioremediation systems, especially mycoremediation, for the removal of these pharmaceutical compounds with a special focus on fungal technologies.
Collapse
Affiliation(s)
- Maite Ortúzar
- Department of Microbiology and Genetics, Edificio Departamental, University of Salamanca, Salamanca, Spain
| | - Maranda Esterhuizen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, Finland and Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland.,Joint Laboratory of Applied Ecotoxicology, Korea Institute of Science and Technology Europe, Saarbrücken, Germany.,University of Manitoba, Clayton H. Riddell Faculty of Environment, Earth, and Resources, Winnipeg, MB, Canada
| | - Darío Rafael Olicón-Hernández
- Instituto Politécnico Nacional, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico
| | - Jesús González-López
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, Spain.,Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Elisabet Aranda
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, Spain.,Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| |
Collapse
|
15
|
Silva ADM, Sousa J, Hultberg M, Figueiredo SA, Freitas OM, Delerue-Matos C. Fluoxetine Removal from Aqueous Solutions Using a Lignocellulosic Substrate Colonized by the White-Rot Fungus Pleurotus ostreatus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052672. [PMID: 35270364 PMCID: PMC8910386 DOI: 10.3390/ijerph19052672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 12/26/2022]
Abstract
One of the main challenges in both the design of new wastewater treatment plants and the expansion and improvement of existing ones is the removal of emerging pollutants. Therefore, the search for economic and sustainable treatments is needed to enhance the removal of pharmaceuticals. The potential of a lignocellulosic substrate colonized by Pleurotus ostreatus, a waste from mushroom production, to remove fluoxetine from aqueous solutions was studied. Batch assays were performed to remove 600 µg∙L−1 fluoxetine from aqueous solutions using the colonized mushroom substrate (CMS) and crude enzyme extracts. The removal efficiencies achieved were, respectively, ≥83.1% and 19.6% in 10 min. Batch assays with sterilized CMS and 1-aminobenzotriazole (to inhibit cytochrome P450 enzymes) showed that the higher removal efficiencies achieved in the CMS assays may be attributed to the synergistic contribution of biosorption onto the CMS and lignin modifying enzymes activity, namely laccase activity. A column assay was performed with the CMS, fed with 750 µg∙L−1 fluoxetine aqueous solution. The removal efficiency was 100% during 30 min, decreasing to a final value of 70% after 8 h of operation. The results suggested that CMS can be a promising eco-friendly alternative to remove fluoxetine from aqueous solutions.
Collapse
Affiliation(s)
- Andreia D. M. Silva
- REQUIMTE/LAQV—Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Instituto Superior de Engenharia do Porto, 4200-072 Porto, Portugal; (A.D.M.S.); (J.S.); (S.A.F.); (C.D.-M.)
| | - Juliana Sousa
- REQUIMTE/LAQV—Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Instituto Superior de Engenharia do Porto, 4200-072 Porto, Portugal; (A.D.M.S.); (J.S.); (S.A.F.); (C.D.-M.)
| | - Malin Hultberg
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, 230 53 Skara, Sweden;
| | - Sónia A. Figueiredo
- REQUIMTE/LAQV—Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Instituto Superior de Engenharia do Porto, 4200-072 Porto, Portugal; (A.D.M.S.); (J.S.); (S.A.F.); (C.D.-M.)
| | - Olga M. Freitas
- REQUIMTE/LAQV—Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Instituto Superior de Engenharia do Porto, 4200-072 Porto, Portugal; (A.D.M.S.); (J.S.); (S.A.F.); (C.D.-M.)
- Correspondence:
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV—Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Instituto Superior de Engenharia do Porto, 4200-072 Porto, Portugal; (A.D.M.S.); (J.S.); (S.A.F.); (C.D.-M.)
| |
Collapse
|
16
|
A review on environmental occurrence, toxicity and microbial degradation of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113694. [PMID: 34537557 DOI: 10.1016/j.jenvman.2021.113694] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/19/2021] [Accepted: 09/04/2021] [Indexed: 02/05/2023]
Abstract
In recent years, Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) have surfaced as a novel class of pollutants due to their incomplete degradation in wastewater treatment plants and their inherent ability to promote physiological predicaments in humans even at low doses. The occurrence of the most common NSAIDs (diclofenac, ibuprofen, naproxen, and ketoprofen) in river water, groundwater, finished water samples, WWTPs, and hospital wastewater effluents along with their toxicity effects were reviewed. The typical concentrations of NSAIDs in natural waters were mostly below 1 μg/L, the rivers receiving untreated wastewater discharge have often showed higher concentrations, highlighting the importance of effective wastewater treatment. The critical analysis of potential, pathways and mechanisms of microbial degradation of NSAIDs were also done. Although studies on algal and fungal strains were limited, several bacterial strains were known to degrade NSAIDs. This microbial ability is attributed to hydroxylation by cytochrome P450 because of the decrease in drug concentrations in fungal cultures of Phanerochaete sordida YK-624 on incubation with 1-aminobenzotriazole. Moreover, processes like decarboxylation, dehydrogenation, dechlorination, subsequent oxidation, demethylation, etc. also constitute the degradation pathways. A wide array of enzymes like dehydrogenase, oxidoreductase, dioxygenase, monooxygenase, decarboxylase, and many more are upregulated during the degradation process, which indicates the possibility of their involvement in microbial degradation. Specific hindrances in upscaling the process along with analytical research needs were also identified, and novel investigative approaches for future monitoring studies are proposed.
Collapse
|
17
|
Zhuo R, Fan F. A comprehensive insight into the application of white rot fungi and their lignocellulolytic enzymes in the removal of organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146132. [PMID: 33714829 DOI: 10.1016/j.scitotenv.2021.146132] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 05/14/2023]
Abstract
Environmental problems resultant from organic pollutants are a major current challenge for modern societies. White rot fungi (WRF) are well known for their extensive organic compound degradation abilities. The unique oxidative and extracellular ligninolytic systems of WRF that exhibit low substrate specificity, enable them to display a considerable ability to transform or degrade different environmental contaminants. In recent decades, WRF and their ligninolytic enzymes have been widely applied in the removal of polycyclic aromatic hydrocarbons (PAHs), pharmaceutically active compounds (PhACs), endocrine disruptor compounds (EDCs), pesticides, synthetic dyes, and other environmental pollutants, wherein promising results have been achieved. This review focuses on advances in WRF-based bioremediation of organic pollutants over the last 10 years. We comprehensively document the application of WRF and their lignocellulolytic enzymes for removing organic pollutants. Moreover, potential problems and intriguing observations that are worthy of additional research attention are highlighted. Lastly, we discuss trends in WRF-remediation system development and avenues that should be considered to advance research in the field.
Collapse
Affiliation(s)
- Rui Zhuo
- Institute of Plant and Microbiology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China.
| | - Fangfang Fan
- Harvard Medical School, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Jureczko M, Przystaś W. Removal of two cytostatic drugs: bleomycin and vincristine by white-rot fungi - a sorption study. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:651-662. [PMID: 34150265 PMCID: PMC8172822 DOI: 10.1007/s40201-021-00635-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 02/15/2021] [Indexed: 05/27/2023]
Abstract
PURPOSE Cytostatic drugs cannot be easily removed by conventional sewage treatment plants, resulting in their ultimate release into aquatic systems where they become a threat. Thus, new technologies which can be used to eliminate these drugs more effectively before they enter the environment are increasingly important. Fungal treatment of wastewaters is a promising and environmentally friendly technology for pharmaceutical remediation. The aim of this work is to examine the biosorption of two cytostatics, bleomycin and vincristine, in the aqueous solution by fungal biomass. METHODS Five white-rot fungi were used in this study: Fomes fomentarius (CB13), Hypholoma fasciculare (CB15), Phyllotopsis nidulans (CB14), Pleurotus ostreatus (BWPH), and Trametes versicolor (CB8). Tests were conducted on different types of biomass (alive and dead - autoclaved) and in various physico-chemical conditions: varied drug concentrations (5, 10 and 15 mg/L), temperatures (from 15.4 to 29.6 °C), and pH (from 3.2 to 8.8). RESULTS The results showed that among alive biomass, T. versicolor (CB8) had the greatest sorption ability for bleomycin and P. nidulans (CB14) worked best for vincristine. The tested sorption process could be described by a pseudo-second order kinetics model. Sorption equilibrium studies demonstrated that for bleomycin Redlich-Peterson, while for vincristine Langmuir model fitted best. The thermodynamic studies showed that the sorption process was endothermic chemisorption for bleomycin, and exothermic physisorption for vincristine. For both drugs the sorption ability increased with an increase of the pH value. CONCLUSION The biosorption on fungal biomass is a favorable alternative to conventional wastewater treatment processes for anticancer drug removal.
Collapse
Affiliation(s)
- Marcelina Jureczko
- Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, The Silesian University of Technology, Akademicka 2, 44-100 Gliwice, Poland
- The Biotechnology Centre, The Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Wioletta Przystaś
- Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, The Silesian University of Technology, Akademicka 2, 44-100 Gliwice, Poland
- The Biotechnology Centre, The Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| |
Collapse
|
19
|
Pereira JCV, Serbent MP, Skoronski E. Application of immobilized mycelium-based pellets for the removal of organochlorine compounds: a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:1781-1796. [PMID: 33905352 DOI: 10.2166/wst.2021.093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organochlorines have diverse structures and applications and are included in the list of persistent organic pollutants (POPs) due to their toxicity and environmental persistence. The reduced capacity of conventional wastewater treatment plants to remove these compounds encourages the development of cost-effective and efficient remediation approaches. Fungal biotechnology can contribute to the development of these technologies through their enzymatic machinery but faces several drawbacks related to the use of dispersed mycelium. In this sense, investigations concerning the degradation of organochlorines using immobilized fungi demonstrated an increase in contaminant removal efficiency compared with degradation by free cells. Despite this interest, the mechanisms of immobilized fungi have not been comprehensively reviewed. In this paper, recent advances of laboratory and field studies in organochlorine compounds removal by fungi are reviewed, focusing on the role of immobilization techniques. Firstly, the mechanisms of organochlorines bioconversion by fungi and the factors affecting enzyme activity are elucidated and discussed in detail. Then, the main targeted compounds, fungi, technics, and materials used for immobilization are discussed, as well as their advantages and limitations. Furthermore, critical points for future studies of fungi immobilization for organochlorine removal are proposed.
Collapse
Affiliation(s)
- J C V Pereira
- Department of Sanitary Engineering, State University of Santa Catarina, 2822 Dr Getúlio Vargas Road, Ibirama, Brazil E-mail:
| | - M P Serbent
- Department of Sanitary Engineering, State University of Santa Catarina, 2822 Dr Getúlio Vargas Road, Ibirama, Brazil E-mail:
| | - E Skoronski
- Department of Environmental and Sanitary Engineering, State University of Santa Catarina, 2090 Luís de Camões Avenue, Lages, Brazil
| |
Collapse
|
20
|
Mayans B, Camacho-Arévalo R, García-Delgado C, Antón-Herrero R, Escolástico C, Segura ML, Eymar E. An assessment of Pleurotus ostreatus to remove sulfonamides, and its role as a biofilter based on its own spent mushroom substrate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7032-7042. [PMID: 33025433 DOI: 10.1007/s11356-020-11078-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
A double strategy based on the removal of sulfonamide antibiotics by Pleurotus ostreatus and adsorption on spent mushroom substrate was assessed to reclaim contaminated wastewater. P. ostreatus was firstly tested in a liquid medium fortified with five sulfonamides: sulfamethoxazole, sulfadiazine, sulfathiazole, sulfapyridine and sulfamethazine, to evaluate its capacity to remove them and to test for any adverse effects on fungal growth and for any reduction in residual antibiotic activity. P. ostreatus was effective in removing sulfonamides up to 83 to 91% of the applied doses over 14 days. The antibiotic activity of the sulfonamide residues was reduced by 50%. Sulfamethoxazole transformation products by laccase were identified, and the degradation pathway was proposed. In addition, P. ostreatus growth on a semi-solid medium of spent mushroom substrate and malt extract agar was used to develop a biofilter for the removal of sulfonamides from real wastewater. The biofilter was able to remove more than 90% of the sulfonamide concentrations over 24 h by combining adsorption and biodegradation mechanisms.
Collapse
Affiliation(s)
- Begoña Mayans
- Department of Agricultural Chemistry and Food Sciences, Autonomous University of Madrid, 28049, Madrid, Spain
- Department of Organic and Bioorganic Chemistry, National Distance Education University (UNED), 28040, Madrid, Spain
| | - Raquel Camacho-Arévalo
- Department of Agricultural Chemistry and Food Sciences, Autonomous University of Madrid, 28049, Madrid, Spain
| | - Carlos García-Delgado
- Institute of Natural Resources and Agrobiology of Salamanca (INASA-CSIC), 37008, Salamanca, Spain.
- Department of Geology and Geochemistry, Autonomous University of Madrid, 28049, Madrid, Spain.
| | - Rafael Antón-Herrero
- Department of Agricultural Chemistry and Food Sciences, Autonomous University of Madrid, 28049, Madrid, Spain
| | - Consuelo Escolástico
- Department of Organic and Bioorganic Chemistry, National Distance Education University (UNED), 28040, Madrid, Spain
| | - María Luz Segura
- Institute of Research and Training in Agriculture and Fisheries (IFAPA), Junta of Andalusia, 0475, La Mojonera, Almeria, Spain
| | - Enrique Eymar
- Department of Agricultural Chemistry and Food Sciences, Autonomous University of Madrid, 28049, Madrid, Spain
| |
Collapse
|
21
|
Hu K, Torán J, López-García E, Barbieri MV, Postigo C, de Alda ML, Caminal G, Sarrà M, Blánquez P. Fungal bioremediation of diuron-contaminated waters: Evaluation of its degradation and the effect of amendable factors on its removal in a trickle-bed reactor under non-sterile conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140628. [PMID: 32652358 DOI: 10.1016/j.scitotenv.2020.140628] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/25/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
The occurrence of the extensively used herbicide diuron in the environment poses a severe threat to the ecosystem and human health. Four different ligninolytic fungi were studied as biodegradation candidates for the removal of diuron. Among them, T. versicolor was the most effective species, degrading rapidly not only diuron (83%) but also the major metabolite 3,4-dichloroaniline (100%), after 7-day incubation. During diuron degradation, five transformation products (TPs) were found to be formed and the structures for three of them are tentatively proposed. According to the identified TPs, a hydroxylated intermediate 3-(3,4-dichlorophenyl)-1-hydroxymethyl-1-methylurea (DCPHMU) was further metabolized into the N-dealkylated compounds 3-(3,4-dichlorophenyl)-1-methylurea (DCPMU) and 3,4-dichlorophenylurea (DCPU). The discovery of DCPHMU suggests a relevant role of hydroxylation for subsequent N-demethylation, helping to better understand the main reaction mechanisms of diuron detoxification. Experiments also evidenced that degradation reactions may occur intracellularly and be catalyzed by the cytochrome P450 system. A response surface method, established by central composite design, assisted in evaluating the effect of operational variables in a trickle-bed bioreactor immobilized with T. versicolor on diuron removal. The best performance was obtained at low recycling ratios and influent flow rates. Furthermore, results indicate that the contact time between the contaminant and immobilized fungi plays a crucial role in diuron removal. This study represents a pioneering step forward amid techniques for bioremediation of pesticides-contaminated waters using fungal reactors at a real scale.
Collapse
Affiliation(s)
- Kaidi Hu
- Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Josefina Torán
- Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Ester López-García
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Maria Vittoria Barbieri
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Cristina Postigo
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Miren López de Alda
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Gloria Caminal
- Institut de Química Avançada de Catalunya (IQAC), CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Montserrat Sarrà
- Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - Paqui Blánquez
- Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
22
|
Elshafie HS, Camele I, Sofo A, Mazzone G, Caivano M, Masi S, Caniani D. Mycoremediation effect of Trichoderma harzianum strain T22 combined with ozonation in diesel-contaminated sand. CHEMOSPHERE 2020; 252:126597. [PMID: 32229361 DOI: 10.1016/j.chemosphere.2020.126597] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/09/2020] [Accepted: 03/22/2020] [Indexed: 06/10/2023]
Abstract
This study aimed to determine the ability of the fungus Trichoderma harzianum strain T22 (Th-T22) to utilize diesel fuel as a carbon source. The potential use of Th-T22 for diesel bioremediation in an artificial soil was tested by inoculating a diesel-sand mixture with a fungal mycelial suspension of Th-T22. Given the ability of ozone to degrade compounds with low biochemical reactivity, the effect of a pre- and post-ozonation was also evaluated. The survival, growth and sporulation of Th-T22 throughout the bioremediation trial were monitored in all the treatments. In the post-ozonation treatments, the biodegradation percentages of diesel removal were 70.16% and 88.35% in Th-T22-inoculated sand treated or untreated with the antibacterial streptomycin, respectively. The results showed that ozonation alone caused good removal efficiencies (41.9%) but it was much more effective if combined with Th-T22 in a post-ozonation regime, whereas pre-ozonation negatively affected the subsequent biodegradation, likely due to its disinfectant and oxidizing effect on Th-T22. The results obtained demonstrated the significant mycoremediation ability of Th-T22 in diesel-contaminated sand and its possible use as a bioremediation agent for diesel spills in polluted sites.
Collapse
Affiliation(s)
- H S Elshafie
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - I Camele
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy.
| | - A Sofo
- Department of European and Mediterranean Cultures: Architecture, Environment and Cultural Heritage (DiCEM), University of Basilicata, Via Lanera 20, 75100, Matera, Italy
| | - G Mazzone
- School of Engineering (SI), University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - M Caivano
- School of Engineering (SI), University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - S Masi
- School of Engineering (SI), University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - D Caniani
- School of Engineering (SI), University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| |
Collapse
|
23
|
Chemically Modified Biosorbents and Their Role in the Removal of Emerging Pharmaceutical Waste in the Water System. WATER 2020. [DOI: 10.3390/w12061551] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Presence of pharmaceutically active compounds (PACs) as emerging contaminants in water is a major concern. Recent reports have confirmed the presence of PACs in natural and wastewater systems, which have caused several problems indicating the urgent need for their removal. The current review evaluates the role of chemically modified biosorbents in the removal of PACs in water. Reported biosorbents include plant and animal solid waste, microorganisms and bio-composite. Bio-composites exhibited better prospects when compared with other biosorbents. Types of chemical treatment reported include acid, alkaline, solvent extraction, metal salt impregnation and surface grafting, with alkaline treatment exhibiting better results when compared with other treatments. The biosorption processes mostly obeyed the pseudo-second-order model and the Langmuir isotherm model in a process described mainly by ionic interaction. Desorption and regeneration capacity are very important in selecting an appropriate biosorbent for the biosorption process. Depending on the type of biosorbent, the cost of water treatment per million liters of water was estimated as US $10–US $200, which presents biosorption as a cheap process compared to other known water treatment processes. However, there is a need to conduct large-scale studies on the biosorption process for removing PACs in water.
Collapse
|
24
|
Tyumina EA, Bazhutin GA, Cartagena Gómez ADP, Ivshina IB. Nonsteroidal Anti-inflammatory Drugs as Emerging Contaminants. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720020125] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
25
|
Cruz Del Álamo A, Pariente MI, Martínez F, Molina R. Trametes versicolor immobilized on rotating biological contactors as alternative biological treatment for the removal of emerging concern micropollutants. WATER RESEARCH 2020; 170:115313. [PMID: 31770646 DOI: 10.1016/j.watres.2019.115313] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 05/25/2023]
Abstract
White rot fungi have been studied for the removal of micropollutants of emerging concern from wastewater during the last decade. However, several issues need to be overcome for its plausible implementation at full-scale installations such as the addition of supplementary substrates, the partial re-inoculation of fresh fungi or the use of extended hydraulic retention times. This work proposes the immobilization of Trametes versicolor on rotating biological contactors at bench scale (flowrates of 10 L/d and reactor capacity of 10 L) for the treatment of different urban wastewater. This type of bioreactor achieved remarkable reductions of the total organic carbon loading of the wastewater (70-75%) in a wide range of C:N and C:P ratios with limited addition of supplementary substrates, non-refreshment of the fungal biomass and only 1-day of hydraulic retention. The addition of gallic acid as quinone-like mediator and quelated iron and manganese complexes increased the removal of pharmaceutical micropollutants mediated by the so-called advanced bio-oxidation process. The immobilization of Trametes versicolor on rotating biological contactors also showed a remarkable stabilization of the fungi during the continuous treatment of different urban wastewater under non-sterile conditions. Thus, this system is a sound alternative for biological urban wastewater treatment with pharmaceutical removal because overcome all the problems usually associated with the water treatment technologies based on white rot fungi that makes difficult the scaling-up of the process and its implementation in full scale wastewater treatment plants.
Collapse
Affiliation(s)
- A Cruz Del Álamo
- Department of Chemical and Environmental Technology. ESCET. Rey Juan Carlos University, Móstoles, Madrid, Spain
| | - M I Pariente
- Department of Chemical and Environmental Technology. ESCET. Rey Juan Carlos University, Móstoles, Madrid, Spain
| | - F Martínez
- Department of Chemical and Environmental Technology. ESCET. Rey Juan Carlos University, Móstoles, Madrid, Spain
| | - R Molina
- Department of Chemical and Environmental Technology. ESCET. Rey Juan Carlos University, Móstoles, Madrid, Spain.
| |
Collapse
|
26
|
Zdarta J, Meyer AS, Jesionowski T, Pinelo M. Multi-faceted strategy based on enzyme immobilization with reactant adsorption and membrane technology for biocatalytic removal of pollutants: A critical review. Biotechnol Adv 2019; 37:107401. [DOI: 10.1016/j.biotechadv.2019.05.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/29/2019] [Accepted: 05/20/2019] [Indexed: 01/22/2023]
|
27
|
The Use of Algae and Fungi for Removal of Pharmaceuticals by Bioremediation and Biosorption Processes: A Review. WATER 2019. [DOI: 10.3390/w11081555] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The occurrence and fate of pharmaceuticals in the aquatic environment is recognized as one of the emerging issues in environmental chemistry. Conventional wastewater treatment plants (WWTPs) are not designed to remove pharmaceuticals (and their metabolites) from domestic wastewaters. The treatability of pharmaceutical compounds in WWTPs varies considerably depending on the type of compound since their biodegradability can differ significantly. As a consequence, they may reach the aquatic environment, directly or by leaching of the sludge produced by these facilities. Currently, the technologies under research for the removal of pharmaceuticals, namely membrane technologies and advanced oxidation processes, have high operation costs related to energy and chemical consumption. When chemical reactions are involved, other aspects to consider include the formation of harmful reaction by-products and the management of the toxic sludge produced. Research is needed in order to develop economic and sustainable treatment processes, such as bioremediation and biosorption. The use of low-cost materials, such as biological matrices (e.g., algae and fungi), has advantages such as low capital investment, easy operation, low operation costs, and the non-formation of degradation by-products. An extensive review of existing research on this subject is presented.
Collapse
|
28
|
Chefetz B, Marom R, Salton O, Oliferovsky M, Mordehay V, Ben-Ari J, Hadar Y. Transformation of lamotrigine by white-rot fungus Pleurotus ostreatus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:546-553. [PMID: 31026702 DOI: 10.1016/j.envpol.2019.04.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
One of the most persistent pharmaceutical compounds commonly found in treated wastewater is lamotrigine (LTG). It has also been detected in soils and crops irrigated with treated wastewater. Here we focused on the ability of the white-rot edible mushroom Pleurotus ostreatus to remove and transform LTG in liquid cultures. At concentrations of environmental relevance (1 and 10 μg L-1) LTG was almost completely removed from the culture medium within 20 days. To elucidate the mechanism of LTG removal and transformation, we applied a physiological-based approach using inhibitors and a competing agent. These experiments were conducted at a higher concentration for metabolites detection. Based on identification of sulfur-containing metabolites and LTG N2-oxide and the effect of specific inhibitors, cytochrome P450 oxidation is suggested as one of the reaction mechanisms leading to LTG transformation. The variety and number of transformation products (i.e., conjugates) found in the current study were larger than reported in mammals. Moreover, known conjugates with glucuronide, glutathione, or cysteine/glycine, were not found in our system. Since the majority of the identified transformation products were conjugates of LTG, this study highlights the persistence of LTG as an organic pollutant in ecosystems exposed to wastewater.
Collapse
Affiliation(s)
- Benny Chefetz
- Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel.
| | - Rotem Marom
- Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Orit Salton
- Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Mariana Oliferovsky
- Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Vered Mordehay
- Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Julius Ben-Ari
- Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Yitzhak Hadar
- Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel.
| |
Collapse
|
29
|
Palli L, Spina F, Varese GC, Vincenzi M, Aragno M, Arcangeli G, Mucci N, Santianni D, Caffaz S, Gori R. Occurrence of selected pharmaceuticals in wastewater treatment plants of Tuscany: An effect-based approach to evaluate the potential environmental impact. Int J Hyg Environ Health 2019; 222:717-725. [DOI: 10.1016/j.ijheh.2019.05.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 01/14/2023]
|
30
|
Olicón-Hernández DR, Camacho-Morales RL, Pozo C, González-López J, Aranda E. Evaluation of diclofenac biodegradation by the ascomycete fungus Penicillium oxalicum at flask and bench bioreactor scales. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:607-614. [PMID: 30699381 DOI: 10.1016/j.scitotenv.2019.01.248] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/12/2019] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
Diclofenac (DFC) is a common anti-inflammatory drug, and has attracted the significant attention due to its massive use around the world and its environmental impact. In this work, we describe for the first time the use of Penicillium oxalicum, an ascomycetes fungus, for the biotransformation of DFC at flask and bench bioreactor scales. We present a complete study of the role of enzymes, metabolic pathway, acute toxicity assays and comparison between free and immobilised biomass. Pellets of P. oxalicum degraded 100 μM of DFC within 24 h, and the activity of CYP450 enzymes was key for the elimination of the drug. The scaling-up to bench bioreactor was optimised by the reduction of nutrients, and characterising the actions of free pellets, polyurethane foam- and plastic K1-immobilised biomass revealed free pellets to be the most efficient DFC removal system (total elimination occurred in 36 h). Hydroxylated metabolites were detected during the process, suggesting that a mixture of biological and physical processes were involved in the elimination of DFC. The use of P. oxalicum reduced the acute toxicity of the medium supplemented with diclofenac and represents a novel and attractive alternative for the elimination of pharmaceutical compounds.
Collapse
Affiliation(s)
| | - R Lucero Camacho-Morales
- Institute of Water Research, University of Granada, Ramón y Cajal, 4, Fray Luis Bldg, ZIP 18071 Granada, Spain
| | - Clementina Pozo
- Institute of Water Research, University of Granada, Ramón y Cajal, 4, Fray Luis Bldg, ZIP 18071 Granada, Spain; Department of Microbiology, University of Granada, 18071 Granada, Spain
| | - Jesús González-López
- Institute of Water Research, University of Granada, Ramón y Cajal, 4, Fray Luis Bldg, ZIP 18071 Granada, Spain; Department of Microbiology, University of Granada, 18071 Granada, Spain
| | - Elisabet Aranda
- Institute of Water Research, University of Granada, Ramón y Cajal, 4, Fray Luis Bldg, ZIP 18071 Granada, Spain; Department of Microbiology, University of Granada, 18071 Granada, Spain.
| |
Collapse
|
31
|
Jaén-Gil A, Castellet-Rovira F, Llorca M, Villagrasa M, Sarrà M, Rodríguez-Mozaz S, Barceló D. Fungal treatment of metoprolol and its recalcitrant metabolite metoprolol acid in hospital wastewater: Biotransformation, sorption and ecotoxicological impact. WATER RESEARCH 2019; 152:171-180. [PMID: 30669039 DOI: 10.1016/j.watres.2018.12.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 05/03/2023]
Abstract
Hospital wastewater (HWW) effluents represent an important source of contaminants such as pharmaceutical compounds and their human metabolites. To better evaluate dedicated treatment of hospital effluents for pollutant mitigation, not only the parent compounds should be considered but also the intermediates generated during treatment. The metabolite metoprolol acid (MTPA) has been found in urban wastewaters at higher concentration than its parent compound metoprolol (MTP), being more recalcitrant to biodegradation. The aim of this study was to investigate degradation, transformation and sorption of the β-blocker MTP, and its recalcitrant metabolite MTPA, during water treatment based on the fungi Ganoderma lucidum, Trametes versicolor and Pleurotus ostreatus. Fourteen intermediates were identified in MTP biotransformation while five of them also attributed to MTPA biodegradation and two to MTPA only. Their identification allowed their correlation in separate biotransformation pathways suggested. The highest degradation rate of metoprolol (up to 51%) and metoprolol acid (almost 77%) was found after 15-days treatment with Ganoderma lucidum, with an increase in toxicity up to 29% and 4%, respectively. This fungus was further selected for treating real HWW in a batch fluidized bed bioreactor (FBB). Treated wastewater and fungal biomass samples were used to evaluate the distribution of the target compounds and the intermediates identified between solid and liquid phases. While similar elimination capabilities were observed for the removal of metoprolol, and even higher for its persistent metabolite metoprolol acid, the extent on compound transformation diminished considerably compared with the study treating purified water: a high level of the persistent α-HMTP and TP240 were still present in effluent samples (15% and 6%, respectively), being both TPs present at high proportion (up to 28%) in fungal biomass. This is the first time that pharmaceutical TPs have been investigated in the fungal biomass.
Collapse
Affiliation(s)
- Adrián Jaén-Gil
- Catalan Institute for Water Research (ICRA), H(2)O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, E-17003, Girona, Spain
| | - Francesc Castellet-Rovira
- Chemical, Biological and Environmental Engineering Department, Universitat Autònoma de Barcelona (UAB), E-08193, Bellaterra, Spain
| | - Marta Llorca
- Water and Soil Quality Research Group, Department of Environmental Chemistry, (IDAEA-CSIC), Jordi Girona 18-26, E-08034, Barcelona, Spain
| | - Marta Villagrasa
- Catalan Institute for Water Research (ICRA), H(2)O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, E-17003, Girona, Spain
| | - Montserrat Sarrà
- Chemical, Biological and Environmental Engineering Department, Universitat Autònoma de Barcelona (UAB), E-08193, Bellaterra, Spain
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA), H(2)O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, E-17003, Girona, Spain.
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA), H(2)O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, E-17003, Girona, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, (IDAEA-CSIC), Jordi Girona 18-26, E-08034, Barcelona, Spain
| |
Collapse
|
32
|
Connecting the dots - Anthropogenic pollutants, emergence of pathogens, antibiotic resistance, and emergency preparedness from an ecological perspective. Int J Hyg Environ Health 2019; 222:591-592. [PMID: 30922702 DOI: 10.1016/j.ijheh.2019.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Llorca M, Castellet-Rovira F, Farré MJ, Jaén-Gil A, Martínez-Alonso M, Rodríguez-Mozaz S, Sarrà M, Barceló D. Fungal biodegradation of the N-nitrosodimethylamine precursors venlafaxine and O-desmethylvenlafaxine in water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:346-356. [PMID: 30577003 DOI: 10.1016/j.envpol.2018.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/04/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Antidepressant drugs such as Venlafaxine (VFX) and O-desmethylvenlafaxine (ODMVFX) are emerging contaminants that are commonly detected in aquatic environments, since conventional wastewater treatment plants are unable to completely remove them. They can be precursors of hazardous by-products, such as the carcinogenic N-nitrosodimethylamine (NDMA), generated upon water chlorination, as they contain the dimethylamino moiety, necessary for the formation of NDMA. In this study, the capability of three white rot fungi (Trametes versicolor, Ganoderma lucidum and Pleurotus ostreatus) to remove both antidepressants from water and to decrease NDMA formation potential was investigated. Furthermore, transformation by-products (TPs) generated along the treatment process were elucidated and also correlated with their NDMA formation potential. Very promising results were obtained for T. versicolor and G. lucidum, both being able to remove up to 100% of ODMVFX. In the case of VFX, which is very recalcitrant to conventional wastewater treatment, a 70% of removal was achieved by T. versicolor, along with a reduction in NDMA formation potential, thus decreasing the associated problems for human health and the environment. However, the NDMA formation potential remained practically constant during treatment with G. lucidum despite of the equally high VFX removal (70%). This difference was attributed to the generation of different TPs during both fungal treatments. For example, G. lucidum generated more ODMVFX, which actually has a higher NDMA formation potential than the parent compound itself.
Collapse
Affiliation(s)
- Marta Llorca
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003, Girona, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Francesc Castellet-Rovira
- Department of Chemical, Biological, and Environmental Engineering, Engineering School, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - María-José Farré
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003, Girona, Spain
| | - Adrián Jaén-Gil
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003, Girona, Spain
| | - Maira Martínez-Alonso
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003, Girona, Spain.
| | - Montserrat Sarrà
- Department of Chemical, Biological, and Environmental Engineering, Engineering School, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003, Girona, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| |
Collapse
|
34
|
Mir-Tutusaus JA, Baccar R, Caminal G, Sarrà M. Can white-rot fungi be a real wastewater treatment alternative for organic micropollutants removal? A review. WATER RESEARCH 2018; 138:137-151. [PMID: 29579480 DOI: 10.1016/j.watres.2018.02.056] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 05/20/2023]
Abstract
Micropollutants are a diverse group of compounds that are detected at trace concentrations and may have a negative effect on the environment and/or human health. Most of them are unregulated contaminants, although they have raised a concern in the scientific and global community and future regulation might be written in the near future. Several approaches have been tested to remove micropollutants from wastewater streams. In this manuscript, a focus is placed in reactor biological treatments that use white-rot fungi. A critical review of white-rot fungal-based technologies for micropollutant removal from wastewater has been conducted, several capabilities and limitations of such approaches have been identified and a range of solutions to overcome most of the limitations have been reviewed and/or proposed. Overall, this review argues that white-rot fungal reactors could be an efficient technology to remove micropollutants from specific wastewater streams.
Collapse
Affiliation(s)
- Josep Anton Mir-Tutusaus
- Departament d'Enginyeria Química Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Rim Baccar
- ENIS Laboratory of Environmental Engineering and Eco Technology, University of Sfax, BP 1173-3038, Sfax, Tunisia
| | - Glòria Caminal
- Institut de Química Avançada de Catalunya (IQAC), CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Montserrat Sarrà
- Departament d'Enginyeria Química Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|