1
|
Arend P. Why blood group A individuals are at risk whereas blood group O individuals are protected from SARS-CoV-2 (COVID-19) infection: A hypothesis regarding how the virus invades the human body via ABO(H) blood group-determining carbohydrates. Immunobiology 2021; 226:152027. [PMID: 33706067 PMCID: PMC7609233 DOI: 10.1016/j.imbio.2020.152027] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/16/2020] [Accepted: 10/18/2020] [Indexed: 12/31/2022]
Abstract
While the angiotensin converting enzyme 2 (ACE2) protein is defined as the primary severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor, the viral serine molecule might be mobilized by the host's transmembrane protease serine subtype 2 (TMPRSS2) enzyme from the viral spike (S) protein and hijack the host's N-acetyl-D-galactosamine (GalNAc) metabolism. The resulting hybrid, serologically A-like/Tn (T nouvelle) structure potentially acts as a host-pathogen functional molecular bridge. In humans, this intermediate structure will hypothetically be replaced by ABO(H) blood group-specific, mucin-type structures, in the case of infection hybrid epitopes, implicating the phenotypically glycosidic accommodation of plasma proteins. The virus may, by mimicking the synthetic pathways of the ABO(H) blood groups, bind to the cell surfaces of the blood group O(H) by formation of a hybrid H-type antigen as the potential precursor of hybrid non-O blood groups, which does not affect the highly anti-glycan aggressive anti-A and anti-B isoagglutinin activities, exerted by the germline-encoded nonimmune immunoglobulin M (IgM). In the non-O blood groups, which have developed from the H-type antigen, these IgM activities are downregulated by phenotypic glycosylation, while adaptive immunoglobulins might arise in response to the hybrid A and B blood group structures, bonds between autologous carbohydrates and foreign peptides, suggesting the exertion of autoreactivity. The non-O blood groups thus become a preferred target for the virus, whereas blood group O(H) individuals, lacking the A/B phenotype-determining enzymes and binding the virus alone by hybrid H-type antigen formation, have the least molecular contact with the virus and maintain the critical anti-A and anti-B isoagglutinin activities, exerted by the ancestral IgM, which is considered the humoral spearhead of innate immunity.
Collapse
Affiliation(s)
- Peter Arend
- Philipps University Marburg, Department of Medicine, D-355 Marburg, Lahn, Germany(2); Gastroenterology Research Laboratory, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA(2); Research Laboratories, Chemie Grünenthal GmbH, D-52062 Aachen, Germany(2).
| |
Collapse
|
2
|
Eaton VE, Pettit S, Elkinson A, Houseknecht KL, King TE, May M. Polymicrobial abscess following ovariectomy in a mouse. BMC Vet Res 2019; 15:364. [PMID: 31651316 PMCID: PMC6814026 DOI: 10.1186/s12917-019-2125-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 10/03/2019] [Indexed: 01/05/2023] Open
Abstract
Background Ovariectomy is a common procedure in laboratory rodents used to create a post-menopausal state. Complications including post-surgical abscess are rarely reported, but merit consideration for the health and safety of experimental animals. Case presentation A female C57/black6 mouse was ovariectomized as part of a cohort study. At Day 14 post-surgery, she developed a visible swelling on the right side, which 7 days later increased in size over 24 h, leading to euthanasia of the animal. Gross pathology was consistent with abscess. A core of necrotic tissue was present in the uterine horn. Abscess fluid and affected tissue were collected for Gram stain and bacteriological culture. The abscess core and fluid yielded three distinct types of bacterial colonies identified by 16S ribosomal RNA sequencing as Streptococcus acidominimus, Pasteurella caecimuris, and a novel species in the genus Gemella. Conclusions This is the first report of polymicrobial abscess in a rodent as a complication of ovariectomy, and the first description of a novel Gemella species for which we have proposed the epithet Gemella muriseptica. This presentation represents a potential complication of ovariectomy in laboratory animals.
Collapse
Affiliation(s)
- Victoria E Eaton
- Department of Biomedical Sciences, University of New England, 11 Hills Beach Road, Biddeford, ME, 04005, USA.,Center of Excellences in the Neurosciences, University of New England, 11 Hills Beach Road, Biddeford, ME, 04005, USA
| | - Samuel Pettit
- Department of Biomedical Sciences, University of New England, 11 Hills Beach Road, Biddeford, ME, 04005, USA
| | - Andrew Elkinson
- Department of Biomedical Sciences, University of New England, 11 Hills Beach Road, Biddeford, ME, 04005, USA
| | - Karen L Houseknecht
- Department of Biomedical Sciences, University of New England, 11 Hills Beach Road, Biddeford, ME, 04005, USA
| | - Tamara E King
- Department of Biomedical Sciences, University of New England, 11 Hills Beach Road, Biddeford, ME, 04005, USA.,Center of Excellences in the Neurosciences, University of New England, 11 Hills Beach Road, Biddeford, ME, 04005, USA
| | - Meghan May
- Department of Biomedical Sciences, University of New England, 11 Hills Beach Road, Biddeford, ME, 04005, USA.
| |
Collapse
|
3
|
Targeting Programmed Fusobacterium nucleatum Fap2 for Colorectal Cancer Therapy. Cancers (Basel) 2019; 11:cancers11101592. [PMID: 31635333 PMCID: PMC6827134 DOI: 10.3390/cancers11101592] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/18/2022] Open
Abstract
Colorectal patients generally have the maximum counts of Fusobacterium nucleatum (F. nucleatum) in tumors and elevate colorectal adenomas and carcinomas, which show the lowest rate of human survival. Hence, F. nucleatum is a diagnostic marker of colorectal cancer (CRC). Studies demonstrated that targeting fusobacterial Fap2 or polysaccharide of the host epithelium may decrease fusobacteria count in the CRC. Attenuated F. nucleatum-Fap2 prevents transmembrane signals and inhibits tumorigenesis inducing mechanisms. Hence, in this review, we hypothesized that application of genetically programmed fusobacterium can be skillful and thus reduce fusobacterium in the CRC. Genetically programmed F. nucleatum is a promising antitumor strategy.
Collapse
|
4
|
Arend P. ABO phenotype-protected reproduction based on human specific α1,2 L-fucosylation as explained by the Bombay type formation. Immunobiology 2018; 223:684-693. [PMID: 30075871 DOI: 10.1016/j.imbio.2018.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/10/2018] [Indexed: 12/19/2022]
Abstract
The metabolic relationship between the formation of the ABO(H) blood group phenotype and human fertility is evident in the case of the (Oh) or Bombay blood type, which Charles Darwin would have interpreted as resulting from reduced male fertility in consanguinities, based on the history of his own family, the Darwin/Wedgwood Dynasty. The classic Bombay type occurs with the extremely rare, human-specific genotype (h/h; se/se), which (due to point mutations) does not encode fucosyltransferases 1(FUT1) and 2 (FUT2). These enzymes are the basis for ABO(H) phenotype formation on the cell surfaces and fucosylation of plasma proteins, involving neonatal immunoglobulin M (IgM). In the normal human blood group O(H), which is not protected by clonal selection with regard to environmental A/B immunization, the plasma contains a mixture of non-immune and adaptive anti-A/B reactive isoagglutinins, which in the O(h) Bombay type show extremely elevated levels, associated with decreased levels of fucosylation-dependent functional plasma proteins, suchs as the van Willebrand factor (vWF) and clotting factor VIII. In fact, while the involvement of adaptive immunoglobulins remains unknown, poor fucosylation may explain the polyreactivity in the Bombay type plasma, which exhibits pronounced complement-binding cross-reactive anti-A/Tn and anti-B IgM levels, with additional anti-H reactivity, acting over a wide range of temperatures, with an amplitude at 37 °C. This aggressive anti-glycan-reactive IgM molecule suggests the induction of ADCC (antibody-dependent) and/or complement-mediated cytotoxicity via overexpressed glycosidic bond sites against the embryogenic stem cell-to-germ cell transformation, which is characterized by fleeting appearances of A-like, developmental trans-species GalNAcα1-O-Ser/Thr-R glycan, also referred to as the Tn (T "nouvelle") antigen.
Collapse
Affiliation(s)
- Peter Arend
- Philipps University Marburg, Department of Medicine, D-355, Marburg, Lahn, Germany; Gastroenterology Research Laboratory, University of Iowa, College of Medicine, Iowa City, IA, USA; Research Laboratories, Chemie Grünenthal GmbH, D-52062 Aachen, Germany.
| |
Collapse
|
5
|
Shahverdi E, Moghaddam M, Hajbeigi B, Pourfathollah AA, Hassani F, Herfat F. The First Comprehensive Study of H-Deficient Phenotypes in Iran. Transfus Med Hemother 2018; 46:376-380. [PMID: 31832063 DOI: 10.1159/000491880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 07/06/2018] [Indexed: 11/19/2022] Open
Abstract
Background The lack of correct blood grouping practices can lead to missing of the rare Bombay Oh phenotype and subjecting patients to the risk of severe hemolytic transfusion reaction. In the absence of blood donor registry, transfusion management of patients is a challenge. We performed this study in order to estimate the prevalence of the Bombay blood group (Oh) in Iran and to determine whether consanguinity plays a role in the prevalence of Oh group. Methods This is a descriptive study in the Immunohematology Reference Laboratory of the Iranian Blood Transfusion Organization (IBTO) Tehran, Iran, over a period of 7 years. All donor blood samples showing blood group O and a strong initial reaction with blood group O RBC control cells were tested with anti-H lectin. Also blood samples from blood group O patients were tested with anti-H lectin if all cells on both antibody screening tests and antibody identification panels were reactive with negative auto control test. Specialized tests like adsorption/elution technique and inhibition assay for determination of secretor status were performed on Oh cases. Any history of consanguineous marriages were recorded. All variables were categorical variables, and percentage and proportions were calculated manually. Results Analysis of the results of over 7 million first-time blood donors in Iran showed that the most common ABO blood group was O, with 2,520,000 (36%) subjects. 56 Oh individuals' (donors and patients) phenotypes (0.0008%) were detected. Consanguinity was observed in 50 cases (89%). Conclusions This study shows that the prevalence of Bombay blood group in the general population of Iran is relatively high (0.0008%) and associated with consanguineous marriage. Thus, consanguinity is still an important risk factor present.
Collapse
Affiliation(s)
- Ehsan Shahverdi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.,Blood and Cancer Research Center, MAHAK Pediatric Cancer Treatment and Research Center, Tehran, Iran
| | - Mostafa Moghaddam
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Bashir Hajbeigi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Ali Akbar Pourfathollah
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.,Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Hassani
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Fahimeh Herfat
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
6
|
Arend P. Position of human blood group O(H) and phenotype-determining enzymes in growth and infectious disease. Ann N Y Acad Sci 2018; 1425:5-18. [PMID: 29754430 PMCID: PMC7676429 DOI: 10.1111/nyas.13694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/22/2018] [Accepted: 03/06/2018] [Indexed: 12/12/2022]
Abstract
The human ABO(H) blood group phenotypes arise from the evolutionarily oldest genetic system found in primate populations. While the blood group antigen A is considered the ancestral primordial structure, under the selective pressure of life‐threatening diseases blood group O(H) came to dominate as the most frequently occurring blood group worldwide. Non‐O(H) phenotypes demonstrate impaired formation of adaptive and innate immunoglobulin specificities due to clonal selection and phenotype formation in plasma proteins. Compared with individuals with blood group O(H), blood group A individuals not only have a significantly higher risk of developing certain types of cancer but also exhibit high susceptibility to malaria tropica or infection by Plasmodium falciparum. The phenotype‐determining blood group A glycotransferase(s), which affect the levels of anti‐A/Tn cross‐reactive immunoglobulins in phenotypic glycosidic accommodation, might also mediate adhesion and entry of the parasite to host cells via trans‐species O‐GalNAc glycosylation of abundantly expressed serine residues that arise throughout the parasite's life cycle, while excluding the possibility of antibody formation against the resulting hybrid Tn antigen. In contrast, human blood group O(H), lacking this enzyme, is indicated to confer a survival advantage regarding the overall risk of developing cancer, and individuals with this blood group rarely develop life‐threatening infections involving evolutionarily selective malaria strains.
Collapse
Affiliation(s)
- Peter Arend
- Department of Medicine, Philipps University Marburg, Marburg/Lahn, Germany. Gastroenterology Research Laboratory, College of Medicine, University of Iowa, Iowa City, Iowa. Research Laboratories, Chemie Grünenthal GmbH, Aachen, Germany
| |
Collapse
|
7
|
Arend P. Early ovariectomy reveals the germline encoding of natural anti-A- and Tn-cross-reactive immunoglobulin M (IgM) arising from developmental O-GalNAc glycosylations. (Germline-encoded natural anti-A/Tn cross-reactive IgM). Cancer Med 2017; 6:1601-1613. [PMID: 28580709 PMCID: PMC5504323 DOI: 10.1002/cam4.1079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/26/2017] [Accepted: 03/24/2017] [Indexed: 01/02/2023] Open
Abstract
While native blood group A-like glycans have not been demonstrated in prokaryotic microorganisms as a source of human "natural" anti-A isoagglutinin production, and metazoan eukaryotic N-acetylgalactosamine O-glycosylation of serine or threonine residues (O-GalNAc-Ser/Thr-R) does not occur in bacteria, the O-GalNAc glycan-bearing ovarian glycolipids, discovered in C57BL/10 mice, are complementary to the syngeneic anti-A-reactive immunoglobulin M (IgM), which is not present in animals that have undergone ovariectomy prior to the onset of puberty. These mammalian ovarian glycolipids are complementary also to the anti-A/Tn cross-reactive Helix pomatia agglutinin (HPA), a molluscan defense protein, emerging from the coat proteins of fertilized eggs and reflecting the snail-intrinsic, reversible O-GalNAc glycosylations. The hexameric structure of this primitive invertebrate defense protein gives rise to speculation regarding an evolutionary relationship to the mammalian nonimmune, anti-A-reactive immunoglobulin M (IgM) molecule. Hypothetically, this molecule obtains its complementarity from the first step of protein glycosylations, initiated by GalNAc via reversible O-linkages to peptides displaying Ser/Thr motifs, whereas the subsequent transferase depletion completes germ cell maturation and cell renewal, associated with loss of glycosidic bonds and release of O-glycan-depleted proteins, such as complementary IgM revealing the structure of the volatilely expressed "lost" glycan carrier through germline Ser residues. Consequently, the evolutionary/developmental first glycosylations of proteins appear metabolically related or identical to that of the mucin-type, potentially "aberrant" monosaccharide GalNAcα1-O-Ser/Thr-R, also referred to as the Tn (T "nouvelle") antigen, and explain the anti-Tn cross-reactivity of human innate or "natural" anti-A-specific isoagglutinin and the pronounced occurrence of cross-reactive anti-Tn antibody in plasma from humans with histo-blood group O. In fact, A-allelic, phenotype-specific GalNAc glycosylation of plasma proteins does not occur in human blood group O, affecting anti-Tn antibody levels, which may function as a growth regulator that contributes to a potential survival advantage of this group in the overall risk of developing cancer when compared with non-O blood groups.
Collapse
Affiliation(s)
- Peter Arend
- Philipps University MarburgDepartment of MedicineD‐355 Marburg/Lahn, Germany
- Gastroenterology Research LaboratoryUniversity of Iowa, College of MedicineIowa CityIowa
- Research LaboratoriesChemie Grünenthal GmbHD‐52062AachenGermany
| |
Collapse
|