1
|
Xu Z, Lei Z, Peng S, Fu X, Xu Y, Pan G. Dysregulation of deubiquitinases in gastric cancer progression. Front Oncol 2024; 14:1456710. [PMID: 39605891 PMCID: PMC11598704 DOI: 10.3389/fonc.2024.1456710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Gastric cancer (GC), characterized by a high incidence rate, poses significant clinical challenges owing to its poor prognosis despite advancements in diagnostic and therapeutic approaches. Therefore, a comprehensive understanding of the molecular mechanisms driving GC progression is crucial for identifying predictive markers and defining treatment targets. Deubiquitinating enzymes (DUBs), also called deubiquitinases, function as reverse transcriptases within the ubiquitin-proteasome system to counteract protein degradation. Recent findings suggest that DUB dysregulation could be a crucial factor in GC pathogenesis. In this review, we examined recent research findings on DUBs in the context of GC, elucidating their molecular characteristics, categorizations, and roles while also exploring the potential mechanisms underlying their dysregulation in GC. Furthermore, we assessed the therapeutic efficacy of DUB inhibitors in treating malignancies and evaluated the prevalence of aberrant DUB expression in GC.
Collapse
Affiliation(s)
| | | | | | | | | | - Guoqing Pan
- First Affiliated Hospital of Kunming Medical University, Department of Pathology, Kunming, China
| |
Collapse
|
2
|
Ekstrom TL, Hussain S, Bedekovics T, Ali A, Paolini L, Mahmood H, Rosok RM, Koster J, Johnsen SA, Galardy PJ. USP44 Overexpression Drives a MYC-Like Gene Expression Program in Neuroblastoma through Epigenetic Reprogramming. Mol Cancer Res 2024; 22:812-825. [PMID: 38775808 PMCID: PMC11372370 DOI: 10.1158/1541-7786.mcr-23-0454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 04/05/2024] [Accepted: 05/20/2024] [Indexed: 09/05/2024]
Abstract
Neuroblastoma is an embryonic cancer that contributes disproportionately to death in young children. Sequencing data have uncovered few recurrently mutated genes in this cancer, although epigenetic pathways have been implicated in disease pathogenesis. We used an expression-based computational screen that examined the impact of deubiquitinating enzymes on patient survival to identify potential new targets. We identified the histone H2B deubiquitinating enzyme USP44 as the enzyme with the greatest impact on survival in patients with neuroblastoma. High levels of USP44 significantly correlate with metastatic disease, unfavorable histology, advanced patient age, and MYCN amplification. The subset of patients with tumors expressing high levels of USP44 had significantly worse survival, including those with tumors lacking MYCN amplification. We showed experimentally that USP44 regulates neuroblastoma cell proliferation, migration, invasion, and neuronal development. Depletion of the histone H2B ubiquitin ligase subunit RNF20 resulted in similar findings, strongly implicating this histone mark as the target of USP44 activity in this disease. Integration of transcriptome and epigenome in analyses demonstrates a distinct set of genes that are regulated by USP44, including those in Hallmark MYC target genes in both murine embryonic fibroblasts and the SH-SY5Y neuroblastoma cell line. We conclude that USP44 is a novel epigenetic regulator that promotes aggressive features and may be a novel target in neuroblastoma. Implications: This study identifies a new genetic marker of aggressive neuroblastoma and identifies the mechanisms by which its overactivity contributes to the pathophysiology of this disease.
Collapse
Affiliation(s)
- Thomas L. Ekstrom
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota.
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany.
| | - Sajjad Hussain
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.
- Department of Family Medicine, Mayo Clinic, Rochester, Minnesota.
| | - Tibor Bedekovics
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.
| | - Asma Ali
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.
| | - Lucia Paolini
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.
- Department of Pediatrics, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy.
| | - Hina Mahmood
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.
| | - Raya M. Rosok
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany.
| | - Jan Koster
- Department of CEMM, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | | | - Paul J. Galardy
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.
- Division of Pediatric Hematology-Oncology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
3
|
Zhang K, Zhao J, Bi Z, Feng Y, Zhang H, Zhang J, Qin X, Zhao Y, Niu R, Mei X, He Z, Yang J, Lv J, Guo W. Mechanism of miR-98-5p in gastric cancer cell proliferation, migration, and invasion through the USP44/CTCFL axis. Toxicol Res (Camb) 2024; 13:tfae040. [PMID: 38500512 PMCID: PMC10944557 DOI: 10.1093/toxres/tfae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 03/20/2024] Open
Abstract
Objectives Gastric cancer (GC) is the leading digestive malignancy with high incidence and mortality rate. microRNAs (miRs) play an important role in GC progresssion. This study aimed to investigate the effect of miR-98-5p on proliferation, migration, and invasion of GC cells. Methods The expression levels of miR-98-5p, ubiquitin specific peptidase 44 (USP44), and CCCTCbinding factor-like (CTCFL) in GC tissues and cells were identified using reversetranscription quantitative polymerase chain reaction and Western blot assay. The relationship between miR-98-5p expression/USP44 and the clinicopathological features in GC patients was analyzed. GC cell proliferation, invasion, and migration were evaluated by cell counting kit-8 and clone formation assays and Transwell assays. The bindings of miR-98-5p to USP44 and USP44 to CTCFL were examined using dualluciferase assay and co-immunoprecipitation. GC cells were treated with MG132 and the ubiquitination level of CTCFL was examined using ubiquitination assay. Rescue experiments were performed to verify the roles of USP44 and CTCFL in GC cells. Results miR-98-5p was downregulated in GC. miR-98-5p overexpression inhibited the proliferation, migration, and invasion of GC cells. miR-98-5p inhibited USP44 expression. USP44 bound to CTCFL and limited ubiquitination degradation of CTCFL. Overexpression of USP44 and CTCFL attenuated the inhibitory effects of miR-98-5p overexpression on GC cell progression. Conclusion miR-98-5p overexpression limited USP44-mediated CTCFL deubiquitination, and suppressed CTCFL expression, mitigating GC cell proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Kangkang Zhang
- Department of gastrointestinal surgery, Changzhi Medical College Affiliated Heji Hospital, No. 271 Taihang East Street, Luzhou District, Changzhi, Shanxi 046000, China
| | - Jinjiang Zhao
- Department of gastrointestinal surgery, Changzhi Medical College Affiliated Heji Hospital, No. 271 Taihang East Street, Luzhou District, Changzhi, Shanxi 046000, China
| | - Zhibin Bi
- Department of gastrointestinal surgery, Changzhi Medical College Affiliated Heji Hospital, No. 271 Taihang East Street, Luzhou District, Changzhi, Shanxi 046000, China
| | - Yafei Feng
- Department of gastrointestinal surgery, Changzhi Medical College Affiliated Heji Hospital, No. 271 Taihang East Street, Luzhou District, Changzhi, Shanxi 046000, China
| | - Huipeng Zhang
- Department of gastrointestinal surgery, Changzhi Medical College Affiliated Heji Hospital, No. 271 Taihang East Street, Luzhou District, Changzhi, Shanxi 046000, China
| | - Jinjie Zhang
- Department of gastrointestinal surgery, Changzhi Medical College Affiliated Heji Hospital, No. 271 Taihang East Street, Luzhou District, Changzhi, Shanxi 046000, China
| | - Xiaowei Qin
- Department of gastrointestinal surgery, Changzhi Medical College Affiliated Heji Hospital, No. 271 Taihang East Street, Luzhou District, Changzhi, Shanxi 046000, China
| | - Yanbo Zhao
- Department of gastrointestinal surgery, Changzhi Medical College Affiliated Heji Hospital, No. 271 Taihang East Street, Luzhou District, Changzhi, Shanxi 046000, China
| | - Ruilong Niu
- Department of gastrointestinal surgery, Changzhi Medical College Affiliated Heji Hospital, No. 271 Taihang East Street, Luzhou District, Changzhi, Shanxi 046000, China
| | - Xianghuang Mei
- Department of gastrointestinal surgery, Changzhi Medical College Affiliated Heji Hospital, No. 271 Taihang East Street, Luzhou District, Changzhi, Shanxi 046000, China
| | - Zhipeng He
- Department of gastrointestinal surgery, Changzhi Medical College Affiliated Heji Hospital, No. 271 Taihang East Street, Luzhou District, Changzhi, Shanxi 046000, China
| | - Jingcheng Yang
- Department of gastrointestinal surgery, Changzhi Medical College Affiliated Heji Hospital, No. 271 Taihang East Street, Luzhou District, Changzhi, Shanxi 046000, China
| | - Jiake Lv
- Department of gastrointestinal surgery, Changzhi Medical College Affiliated Heji Hospital, No. 271 Taihang East Street, Luzhou District, Changzhi, Shanxi 046000, China
| | - Wei Guo
- Department of gastrointestinal surgery, Changzhi Medical College Affiliated Heji Hospital, No. 271 Taihang East Street, Luzhou District, Changzhi, Shanxi 046000, China
| |
Collapse
|
4
|
An T, Lu Y, Gong Z, Wang Y, Su C, Tang G, Hou J. Research Progress for Targeting Deubiquitinases in Gastric Cancers. Cancers (Basel) 2022; 14:cancers14235831. [PMID: 36497313 PMCID: PMC9735992 DOI: 10.3390/cancers14235831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Gastric cancers (GCs) are malignant tumors with a high incidence that threaten global public health. Despite advances in GC diagnosis and treatment, the prognosis remains poor. Therefore, the mechanisms underlying GC progression need to be identified to develop prognostic biomarkers and therapeutic targets. Ubiquitination, a post-translational modification that regulates the stability, activity, localization, and interactions of target proteins, can be reversed by deubiquitinases (DUBs), which can remove ubiquitin monomers or polymers from modified proteins. The dysfunction of DUBs has been closely linked to tumorigenesis in various cancer types, and targeting certain DUBs may provide a potential option for cancer therapy. Multiple DUBs have been demonstrated to function as oncogenes or tumor suppressors in GC. In this review, we summarize the DUBs involved in GC and their associated upstream regulation and downstream mechanisms and present the benefits of targeting DUBs for GC treatment, which could provide new insights for GC diagnosis and therapy.
Collapse
Affiliation(s)
- Tao An
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yanting Lu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250353, China
| | - Zhaoqi Gong
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yongtao Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Chen Su
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Guimei Tang
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Correspondence: (G.T.); (J.H.)
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361005, China
- Correspondence: (G.T.); (J.H.)
| |
Collapse
|
5
|
Lou Y, Ye M, Xu C, Tao F. Insight into the physiological and pathological roles of USP44, a potential tumor target (Review). Oncol Lett 2022; 24:455. [PMID: 36380875 PMCID: PMC9650596 DOI: 10.3892/ol.2022.13575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022] Open
Abstract
Ubiquitin-specific peptidase 44 (USP44) is a member of the ubiquitin-specific proteases (USPs) family and its functions in various biological processes have been gradually elucidated in recent years. USP44 targets multiple downstream factors and regulates multiple mechanisms through its deubiquitination activity. Ubiquitination is, in essence, a process in which a single ubiquitin molecule or a multiubiquitin chain binds to a substrate protein to form an isopeptide bond. Deubiquitination is the catalyzing of the isopeptide bonds between ubiquitin and substrate proteins through deubiquitylating enzymes. These two processes serve an important role in the regulation of the expression, conformation, localization and function of substrate proteins by regulating their binding to ubiquitin. Based on existing research, this paper summarized the current state of knowledge about USP44. The physiological roles of USP44 in various cellular events and its pathophysiological roles in different cancer types are evaluated and the therapeutic potential of USP44 for cancer treatment is evaluated.
Collapse
Affiliation(s)
- Yuming Lou
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China,Department of Stomach and Intestine Surgery, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, P.R. China
| | - Minfeng Ye
- Department of Stomach and Intestine Surgery, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, P.R. China
| | - Chaoyang Xu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China,Department of Stomach and Intestine Surgery, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, P.R. China,Correspondence to: Dr Chaoyang Xu, Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, 365 Renmin East Road, Jinhua, Zhejiang 321000, P.R. China, E-mail:
| | - Feng Tao
- Department of Stomach and Intestine Surgery, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, P.R. China,Professor Feng Tao, Department of Stomach and Intestine Surgery, Shaoxing Hospital, Zhejiang University School of Medicine, 568 Zhongxing North Road, Shaoxing, Zhejiang 312000, P.R. China, E-mail:
| |
Collapse
|
6
|
Chen Y, Zhao Y, Yang X, Ren X, Huang S, Gong S, Tan X, Li J, He S, Li Y, Hong X, Li Q, Ding C, Fang X, Ma J, Liu N. USP44 regulates irradiation-induced DNA double-strand break repair and suppresses tumorigenesis in nasopharyngeal carcinoma. Nat Commun 2022; 13:501. [PMID: 35079021 PMCID: PMC8789930 DOI: 10.1038/s41467-022-28158-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 01/07/2022] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy is the primary treatment for patients with nasopharyngeal carcinoma (NPC), and approximately 20% of patients experience treatment failure due to tumour radioresistance. However, the exact regulatory mechanism remains poorly understood. Here, we show that the deubiquitinase USP44 is hypermethylated in NPC, which results in its downregulation. USP44 enhances the sensitivity of NPC cells to radiotherapy in vitro and in vivo. USP44 recruits and stabilizes the E3 ubiquitin ligase TRIM25 by removing its K48-linked polyubiquitin chains at Lys439, which further facilitates the degradation of Ku80 and inhibits its recruitment to DNA double-strand breaks (DSBs), thus enhancing DNA damage and inhibiting DNA repair via non-homologous end joining (NHEJ). Knockout of TRIM25 reverses the radiotherapy sensitization effect of USP44. Clinically, low expression of USP44 indicates a poor prognosis and facilitates tumour relapse in NPC patients. This study suggests the USP44-TRIM25-Ku80 axis provides potential therapeutic targets for NPC patients. Radiotherapy is the mainstay treatment for nasopharyngeal carcinoma (NPC). Here the authors show that the deubiquitinase, USP44, increases radiosensitivity of NPC cells by promoting the degradation of Ku80, and thus enhancing the levels of DNA damage.
Collapse
|
7
|
Chi Z, Zhang B, Sun R, Wang Y, Zhang L, Xu G. USP44 accelerates the growth of T-cell acute lymphoblastic leukemia through interacting with WDR5 and repressing its ubiquitination. Int J Med Sci 2022; 19:2022-2032. [PMID: 36483601 PMCID: PMC9724245 DOI: 10.7150/ijms.74535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/26/2022] [Indexed: 11/24/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a common hematologic malignancy. Based on the data from GSE66638 and GSE141140, T-ALL patients depicted a higher USP44 level. However, its role in T-ALL is still unclear. In the present study, we investigated the role of USP44 in T-ALL growth. USP44 overexpression elevated the proliferation of CCRF-CEM cells, while USP44 knockdown suppressed the proliferation of Jurkat and MOLT-4 cells. In addition, USP44 accelerated the cell cycle progression, with boosted cyclinD and PCNA levels. However, USP44 knockdown induced apoptosis in Jurkat and MOLT-4 cells, with an upheaval among cleaved caspase-3 and PARP levels. Mechanistically, USP44 co-localized and interacted with WDR5, leading to the repression of its ubiquitination and degradation. Interestingly, WDR5 overexpression abolished the apoptosis induced by USP44 knockdown. Consistently, the in vivo study revealed that USP44 knockdown restricted the leukemic engraftments in the bone marrow and spleens and reduced the infiltration of T-ALL cells in the livers and lungs. In conclusion, this study indicated that USP44 enhanced the growth of T-ALL through interacting with WDR5 and repressing its ubiquitination. This study highlights the potential use of USP44 as a therapeutic target of T-ALL.
Collapse
Affiliation(s)
- Zuofei Chi
- The Second Department of Pediatric Hematology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Bin Zhang
- The Second Department of Pediatric Hematology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Ruowen Sun
- The Second Department of Pediatric Hematology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Ye Wang
- The Second Department of Pediatric Hematology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Linlin Zhang
- The Second Department of Pediatric Hematology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Gang Xu
- The Second Department of Pediatric Hematology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| |
Collapse
|
8
|
Zhong M, Zhou L, Fang Z, Yao YY, Zou JP, Xiong JP, Xiang XJ, Deng J. Ubiquitin-specific protease 15 contributes to gastric cancer progression by regulating the Wnt/β-catenin signaling pathway. World J Gastroenterol 2021; 27:4221-4235. [PMID: 34326621 PMCID: PMC8311539 DOI: 10.3748/wjg.v27.i26.4221] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/27/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ubiquitin-specific protease 15 (USP15) is an important member of the ubiquitin-specific protease family, the largest deubiquitinase subfamily, whose expression is dysregulated in many types of cancer. However, the biological function and the underlying mechanisms of USP15 in gastric cancer (GC) progression have not been elucidated.
AIM To explore the biological role and underlying mechanisms of USP15 in GC progression.
METHODS Bioinformatics databases and western blot analysis were utilized to determine the expression of USP15 in GC. Immunohistochemistry was performed to evaluate the correlation between USP15 expression and clinicopathological characteristics of patients with GC. A loss- and gain-of-function experiment was used to investigate the biological effects of USP15 on GC carcinogenesis. RNA sequencing, immunofluorescence, and western blotting were performed to explore the potential mechanism by which USP15 exerts its oncogenic functions.
RESULTS USP15 was up-regulated in GC tissue and cell lines. The expression level of USP15 was positively correlated with clinical characteristics (tumor size, depth of invasion, lymph node involvement, tumor-node-metastasis stage, perineural invasion, and vascular invasion), and was related to poor prognosis. USP15 knockdown significantly inhibited cell proliferation, invasion and epithelial-mesenchymal transition (EMT) of GC in vitro, while overexpression of USP15 promoted these processes. Knockdown of USP15 inhibited tumor growth in vivo. Mechanistically, RNA sequencing analysis showed that USP15 regulated the Wnt signaling pathway in GC. Western blotting confirmed that USP15 silencing led to significant down-regulation of β-catenin and Wnt/β-catenin downstream genes (c-myc and cyclin D1), while overexpression of USP15 yielded an opposite result and USP15 mutation had no change. Immunofluorescence indicated that USP15 promoted nuclear translocation of β-catenin, suggesting activation of the Wnt/β-catenin signaling pathway, which may be the critical mechanism promoting GC progression. Finally, rescue experiments showed that the effect of USP15 on gastric cancer progression was dependent on Wnt/β-catenin pathway.
CONCLUSION USP15 promotes cell proliferation, invasion and EMT progression of GC via regulating the Wnt/β-catenin pathway, which suggests that USP15 is a novel potential therapeutic target for GC.
Collapse
Affiliation(s)
- Min Zhong
- Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Ling Zhou
- Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Zhi Fang
- Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yang-Yang Yao
- Department of Cancer Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jian-Ping Zou
- Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jian-Ping Xiong
- Department of Cancer Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xiao-Jun Xiang
- Department of Cancer Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jun Deng
- Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
9
|
Rao D, Yu C, Sheng J, Lv E, Huang W. The Emerging Roles of circFOXO3 in Cancer. Front Cell Dev Biol 2021; 9:659417. [PMID: 34150756 PMCID: PMC8213346 DOI: 10.3389/fcell.2021.659417] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of endogenous non-coding RNAs which are mainly formed by reverse splicing of precursor mRNAs. They are relatively stable and resistant to RNase R because of their covalently closed structure without 5' caps or 3' poly-adenylated tails. CircRNAs are widely expressed in eukaryotic cells and show tissue, timing, and disease specificity. Recent studies have found that circRNAs play an important role in many diseases. In particular, they affect the proliferation, invasion and prognosis of cancer by regulating gene expression. CircRNA Forkhead box O3 (circFOXO3) is a circRNA confirmed to be abnormally expressed in a variety of cancers, including prostate cancer, hepatocellular carcinoma, glioblastoma, bladder cancer, and breast cancer, etc. At present, the feature of circFOXO3 as a molecular sponge is widely studied to promote or inhibit the development of cancers. However, the diverse functions of circFOXO3 have not been fully understood. Hence, it is important to review the roles of circFOXO3 in cancers. This review has summarized and discussed the roles and molecular mechanism of circFOXO3 and its target genes in these cancers, which can help to enrich our understanding to the functions of circRNAs and carry out subsequent researches on circFOXO3.
Collapse
Affiliation(s)
- Dean Rao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengpeng Yu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaqi Sheng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Enjun Lv
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjie Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Huang T, Zhang Q, Ren W, Yan B, Yi L, Tang T, Lin H, Zhang Y. USP44 suppresses proliferation and enhances apoptosis in colorectal cancer cells by inactivating the Wnt/β-catenin pathway via Axin1 deubiquitination. Cell Biol Int 2020; 44:1651-1659. [PMID: 32285989 PMCID: PMC7496820 DOI: 10.1002/cbin.11358] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/20/2020] [Accepted: 04/11/2020] [Indexed: 12/27/2022]
Abstract
Colorectal cancer (CRC) is the leading cause of cancer death, and its 5-year survival rate remains unsatisfactory. Recent studies have revealed that ubiquitin-specific protease 44 (USP44) is a cancer suppressor or oncogene depending on the type of neoplasm. However, its role in CRC remains unclear. Here, we found that the USP44 expression level was markedly decreased in CRC, and USP44 overexpression inhibited proliferation while enhancing apoptosis in CRC cells, suggesting that USP44 is a cancer suppressor in CRC. We then investigated if USP44 functioned through regulating the Wnt/β-catenin pathway. We found that USP44 overexpression increased the Axin1 protein while decreasing β-catenin, c-myc, and cyclin D1 proteins, suggesting that USP44 inhibited the activation of the Wnt/β-catenin pathway. Moreover, we found that two Wnt/β-catenin activators, LiCl and SKL2001, both attenuated oeUSP44-mediated proliferation and apoptosis in CRC cells. Collectively, these data points indicated that USP44 inhibited proliferation while promoting apoptosis in CRC cells by inhibiting the Wnt/β-catenin pathway. Interestingly, we observed that USP44 overexpression did not affect the Axin1 mRNA level. Further study uncovered that USP44 interacted with Axin1 and reduced the ubiquitination of Axin1. Furthermore, Axin1 knock-down abolished the effects of oeUSP44 on proliferation, apoptosis, and Wnt/β-catenin activity in CRC cells. Taken together, this study demonstrates that USP44 inhibits proliferation while enhancing apoptosis in CRC cells by inactivating the Wnt/β-catenin pathway via Axin1 deubiquitination. USP44 is a cancer suppressor in CRC and a potential target for CRC therapy.
Collapse
Affiliation(s)
- Tong Huang
- Department of General Surgery, General Hospital of XinJiang Military Command, YouHaoBeiLu, Urumqi, Xinjiang, China
| | - Qingquan Zhang
- Department of General Surgery, No. 948 Hospital of People's Liberation Army, Changzheng Road, Wusu, Xinjiang, China
| | - Wei Ren
- Department of General Surgery, No. 948 Hospital of People's Liberation Army, Changzheng Road, Wusu, Xinjiang, China
| | - Bing Yan
- Department of General Surgery, General Hospital of XinJiang Military Command, YouHaoBeiLu, Urumqi, Xinjiang, China
| | - Liang Yi
- Department of General Surgery, No. 948 Hospital of People's Liberation Army, Changzheng Road, Wusu, Xinjiang, China
| | - Tielun Tang
- Department of General Surgery, No. 948 Hospital of People's Liberation Army, Changzheng Road, Wusu, Xinjiang, China
| | - Hai Lin
- Department of General Surgery, General Hospital of XinJiang Military Command, YouHaoBeiLu, Urumqi, Xinjiang, China
| | - Yongjiu Zhang
- Department of General Surgery, General Hospital of XinJiang Military Command, YouHaoBeiLu, Urumqi, Xinjiang, China
| |
Collapse
|
11
|
Zhou J, Wang T, Qiu T, Chen Z, Ma X, Zhang L, Zou J. Ubiquitin-specific protease-44 inhibits the proliferation and migration of cells via inhibition of JNK pathway in clear cell renal cell carcinoma. BMC Cancer 2020; 20:214. [PMID: 32164618 PMCID: PMC7068999 DOI: 10.1186/s12885-020-6713-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/03/2020] [Indexed: 01/02/2023] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is the most common form of adult kidney cancer. Ubiquitin-specific protease (USP)44 has been reported to be involved in various cancers. We investigated the function, role and molecular mechanism of USP44 in ccRCC. Methods Data obtained from the Cancer Genome Atlas Data Portal and Gene Expression Omnibus database were analyzed to uncover the clinical relevance of USP44 expression and tumor development. USP44 function in the proliferation and migration of tumor cells was assessed by cellular and molecular analyses using ccRCC lines (786-O cells and Caki-1 cells). Results USP44 showed low expression in ccRCC cancer tissues compared with that in normal tissue. USP44 expression was negatively correlated with tumor stage, tumor grade, and patient survival. USP44 overexpression inhibited the proliferation and migration of 786-O cells and Caki-1 cells significantly. USP44 overexpression also prohibited cell proliferation by upregulating expression of P21, downregulating cyclin-D1 expression, and inhibiting cell migration by downregulating expression of matrix metalloproteinase (MMP)2 and MMP9. USP44 knockdown enhanced the proliferation and migration of 786-O cells and Caki-1 cells. USP44 function in inhibiting the proliferation and migration of 786-O cells and Caki-1 cells was associated with phosphorylation of Jun N-terminal kinase (JNK). Conclusion USP44 may be a marker in predicting ccRCC progression. Inhibition by USP44 of the proliferation and migration of 786-O cells and Caki-1 cells is dependent upon the JNK pathway.
Collapse
Affiliation(s)
- Jiangqiao Zhou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, 99 ZiYang Road, Wuhan, 430060, China
| | - Tianyu Wang
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, 99 ZiYang Road, Wuhan, 430060, China
| | - Tao Qiu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, 99 ZiYang Road, Wuhan, 430060, China.
| | - Zhongbao Chen
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, 99 ZiYang Road, Wuhan, 430060, China
| | - Xiaoxiong Ma
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, 99 ZiYang Road, Wuhan, 430060, China
| | - Long Zhang
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, 99 ZiYang Road, Wuhan, 430060, China
| | - Jilin Zou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, 99 ZiYang Road, Wuhan, 430060, China
| |
Collapse
|
12
|
The role of deubiquitinating enzymes in cancer drug resistance. Cancer Chemother Pharmacol 2020; 85:627-639. [PMID: 32146496 DOI: 10.1007/s00280-020-04046-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/19/2020] [Indexed: 12/18/2022]
Abstract
Drug resistance is a well-known phenomenon leading to a reduction in the effectiveness of pharmaceutical treatments. Resistance to chemotherapeutic agents can involve various intrinsic cellular processes including drug efflux, increased resistance to apoptosis, increased DNA damage repair capabilities in response to platinum salts or other DNA-damaging drugs, drug inactivation, drug target alteration, epithelial-mesenchymal transition (EMT), inherent cell heterogeneity, epigenetic effects, or any combination of these mechanisms. Deubiquitinating enzymes (DUBs) reverse ubiquitination of target proteins, maintaining a balance between ubiquitination and deubiquitination of proteins to maintain cell homeostasis. Increasing evidence supports an association of altered DUB activity with development of several cancers. Thus, DUBs are promising candidates for targeted drug development. In this review, we outline the involvement of DUBs, particularly ubiquitin-specific proteases, and their roles in drug resistance in different types of cancer. We also review potential small molecule DUB inhibitors that can be used as drugs for cancer treatment.
Collapse
|
13
|
Functional analysis of deubiquitylating enzymes in tumorigenesis and development. Biochim Biophys Acta Rev Cancer 2019; 1872:188312. [DOI: 10.1016/j.bbcan.2019.188312] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
|
14
|
Sun J, Shi X, Mamun MAA, Gao Y. The role of deubiquitinating enzymes in gastric cancer. Oncol Lett 2019; 19:30-44. [PMID: 31897112 PMCID: PMC6924028 DOI: 10.3892/ol.2019.11062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 10/22/2019] [Indexed: 12/24/2022] Open
Abstract
The epigenetic regulation of gene expression (via DNA methylation, histone modification and microRNA interference) contributes to a variety of diseases, particularly cancer. Protein deubiquitination serves a key role in the mechanism underlying histone modification, and consequently influences tumor development and progression. Improved characterization of the role of ubiquitinating enzymes has led to the identification of numerous deubiquitinating enzymes (DUBs) with various functions. Gastric cancer (GC) is a highly prevalent cancer type that exhibits a high mortality rate. Latest analysis about cancer patient revealed that GC is sixth deadliest cancer type, which frequently occur in male (7.2%) than female (4.1%). Complex associations between DUBs and GC progression have been revealed in multiple studies; however, the molecular mechanism underpinning the metastasis and recurrence of GC is yet to be elucidated. Generally, DUBs were upregulated in gastric cancer. The relation of DUBs and tumor size, classification and staging was observed in GC. Besides, 5-yar survival rate of patients with GC is effeccted by expression level of DUBs. Among the highly expressed DUBs, specifically six DUBs namely UCHs, USPs, OTUs, MJDs, JAMMs and MCPIPs effect on this survival rate. Consequently, the association between GC and DUBs has received increasing attention in recent years. Therefore, in the present review, literature investigating the association between DUBs and GC pathophysiology was analyzed and critically appraised.
Collapse
Affiliation(s)
- Jiangang Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaojing Shi
- Zhengzhou University School of Pharmaceutical Science, Zhengzhou, Henan 450001, P.R. China
| | - M A A Mamun
- Zhengzhou University School of Pharmaceutical Science, Zhengzhou, Henan 450001, P.R. China
| | - Yongshun Gao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
15
|
Maehara Y, Soejima Y, Yoshizumi T, Kawahara N, Oki E, Saeki H, Akahoshi T, Ikegami T, Yamashita YI, Furuyama T, Sugimachi K, Harada N, Tagawa T, Harimoto N, Itoh S, Sonoda H, Ando K, Nakashima Y, Nagao Y, Yamashita N, Kasagi Y, Yukaya T, Kurihara T, Tsutsumi R, Takamori S, Sasaki S, Ikeda T, Yonemitsu Y, Fukuhara T, Kitao H, Iimori M, Kataoka Y, Wakasa T, Suzuki M, Teraishi K, Yoshida Y, Mori M. The evolution of surgical treatment for gastrointestinal cancers. Int J Clin Oncol 2019; 24:1333-1349. [PMID: 31522313 DOI: 10.1007/s10147-019-01499-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 06/22/2019] [Indexed: 01/28/2023]
Abstract
INTRODUCTION According to the latest Japanese nationwide estimates, over a million Japanese people are newly diagnosed with cancer each year. Since gastrointestinal cancers account for more than 40% of all cancer-related deaths, it is imperative to formulate effective strategies to control them. MATERIALS AND METHODS, AND RESULTS Basic drug discovery research Our research has revealed that the abnormal expression of regulators of chromosomal stability is a cause of cancers and identified an effective compound against cancers with chromosomal instability. We revealed the molecular mechanism of peritoneal dissemination of cancer cells via the CXCR4/CXCL12 axis to CAR-like cells and identified an MEK inhibitor effective against these tumors. Residual tumor cells after chemotherapy in colorectal cancer are LGR5-positive cancer stem cells and their ability to eliminate reactive oxygen species is elevated. The development of surgical procedures and devices In cases of gastric tube reconstruction for esophageal cancer, we determined the anastomotic line for evaluating the blood flow using ICG angiography and measuring the tissue O2 metabolism. We established a novel gastric reconstruction method (book-binding technique) for gastric cancer and a new rectal reconstruction method focusing on the intra-intestinal pressure resistance for rectal cancer. We established a novel tissue fusion method, which allows contact-free local heating and retains tissue viability with very little damage, and developed an understanding of the collagen-related processes that underpin laser-induced tissue fusion. Strategy to prevent carcinogenesis We succeeded in cleaving hepatitis B virus DNA integrated into the nucleus of hepatocytes using genome editing tools. The development of HCC from non-alcoholic steatohepatitis (NASH) may be prevented by metabolic surgery. CONCLUSION We believe that these efforts will help to significantly improve the gastrointestinal cancer treatment and survival.
Collapse
Affiliation(s)
- Yoshihiko Maehara
- Kyushu Central Hospital of the Mutual Aid Association of Public School Teachers, Fukuoka, Japan.
| | - Yuji Soejima
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoyuki Kawahara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Saeki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Tomohiko Akahoshi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toru Ikegami
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yo-Ichi Yamashita
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Gastroenterological Surgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Tadashi Furuyama
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keishi Sugimachi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Hepatobiliary-Pancreatic Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Noboru Harada
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuzo Tagawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Norifumi Harimoto
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Shinji Itoh
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideto Sonoda
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Surgery, Imari Arita Kyoritsu Hospital, Saga, Japan
| | - Koji Ando
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichiro Nakashima
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Nagao
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nami Yamashita
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuta Kasagi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Surgery, Fukuoka Higashi Medical Center, Fukuoka, Japan
| | - Takafumi Yukaya
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Surgery, Iizuka Hospital, Iizuka, Fukuoka, Japan
| | - Takeshi Kurihara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryosuke Tsutsumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinkichi Takamori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shun Sasaki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuo Ikeda
- Endoscopy and Endoscopic Surgery, Fukuoka Dental College, Fukuoka, Japan
| | - Yoshikazu Yonemitsu
- R&D Laboratory for Innovative Biotherapeutics, Graduate School of Pharma-Ceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hiroyuki Kitao
- Department of Molecular Cancer Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Makoto Iimori
- Department of Molecular Cancer Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuki Kataoka
- Department of Molecular Cancer Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
- Taiho Pharmaceutical Co. Ltd., Tokyo, Japan
| | - Takeshi Wakasa
- Department of Molecular Cancer Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
- Taiho Pharmaceutical Co. Ltd., Tokyo, Japan
| | | | - Koji Teraishi
- R&D Laboratory for Innovative Biotherapeutics, Graduate School of Pharma-Ceutical Sciences, Kyushu University, Fukuoka, Japan
- Ono Pharmaceutical Co., Ltd., Osaka, Japan
| | | | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
16
|
Xu J, Zhu R, Fan L, Ge S, Wei W, Li X, Da L, Jia Z, Zhao Z, Ning J, Da J, Peng W, Gu K, Sun G. Prognostic value of DNA aneuploidy in gastric cancer: a meta-analysis of 3449 cases. BMC Cancer 2019; 19:650. [PMID: 31266459 PMCID: PMC6607593 DOI: 10.1186/s12885-019-5869-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/24/2019] [Indexed: 11/30/2022] Open
Abstract
Background DNA aneuploidy has attracted growing interest in clinical practice. Nevertheless, its prognostic value in gastric cancer patients remains controversial. This meta-analysis aims to explore the impact of DNA ploidy status on the survival of gastric cancer patients. Methods We used PubMed and Web of Science databases to retrieve relevant articles. The correlation between DNA aneuploidy and the clinicopathological features of gastric cancer, such as stage, depth of invasion (T), lymph node metastasis (N), distant metastasis (M), differentiation (G), tumor types (Lauren classification) and overall survival (OS) were evaluated. Hazard ratios (HRs) with corresponding 95% confidence intervals (CIs) were collected carefully from each article OS was presented with HRs. The relationships between DNA aneuploidy and each characteristic were analyzed using risk ratios (RR) and a 95% confidence interval (CI). Significance was established using P < 0.05. Funnel plot was conducted to detect the publication bias. Results After careful selection, 25 studies involving 3449 cases were eligible for further analyses. Patients with DNA aneuploidy were considered at risk of more advanced stages (stage III-IV vs. stages I-II, RR = 1.23; 95% CI, 1.07 to 1.42; P = 0.003), lymph node metastasis (N+ vs. N-: RR = 1.43; 95% CI, 1.12 to 1.82, P = 0.004), and intestinal tumor type (intestinal vs. diffuse: RR = 1.45; 95% CI, 1.02 to 2.06; P = 0.04). And an adverse relation was observed between DNA aneuploidy and tumor differentiation. While no association was found between DNA aneuploidy and distant metastasis (P = 0.42) nor depth of tumor invasion (P = 0.86). Regarding overall survival, aneuploid tumors were associated with worse survival in all patients (P < 0.00001). Conclusions We found that DNA aneuploidy was an important predictor for gastric cancer patients, and should be used as a potential biomarker for further classification in gastric cancer. Electronic supplementary material The online version of this article (10.1186/s12885-019-5869-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Xu
- Department of Medical Oncology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
| | - Ruolin Zhu
- The Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
| | - Lulu Fan
- Department of Medical Oncology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
| | - Shangqing Ge
- Department of Medical Oncology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
| | - Wei Wei
- Department of Medical Oncology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
| | - Xiaoqiu Li
- Department of Medical Oncology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
| | - Liangshan Da
- Department of Medical Oncology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
| | - Zhenya Jia
- Department of Medical Oncology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
| | - Zhiyan Zhao
- Department of Medical Oncology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
| | - Jie Ning
- Department of Medical Oncology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
| | - Jie Da
- Department of Medical Oncology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
| | - Wanren Peng
- Department of Medical Oncology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
| | - Kangsheng Gu
- Department of Medical Oncology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
| | - Guoping Sun
- Department of Medical Oncology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China.
| |
Collapse
|
17
|
Young MJ, Hsu KC, Lin TE, Chang WC, Hung JJ. The role of ubiquitin-specific peptidases in cancer progression. J Biomed Sci 2019; 26:42. [PMID: 31133011 PMCID: PMC6537419 DOI: 10.1186/s12929-019-0522-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022] Open
Abstract
Protein ubiquitination is an important mechanism for regulating the activity and levels of proteins under physiological conditions. Loss of regulation by protein ubiquitination leads to various diseases, such as cancer. Two types of enzymes, namely, E1/E2/E3 ligases and deubiquitinases, are responsible for controlling protein ubiquitination. The ubiquitin-specific peptidases (USPs) are the main members of the deubiquitinase family. Many studies have addressed the roles of USPs in various diseases. An increasing number of studies have indicated that USPs are critical for cancer progression, and some USPs have been used as targets to develop inhibitors for cancer prevention. Herein we collect and organize most of the recent studies on the roles of USPs in cancer progression and discuss the development of USP inhibitors for cancer therapy in the future.
Collapse
Affiliation(s)
- Ming-Jer Young
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
| | - Tony Eight Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jan-Jong Hung
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan. .,The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
18
|
Lin YH, Forster M, Liang Y, Yu M, Wang H, Robert F, Langlais D, Pelletier J, Clare S, Nijnik A. USP44 is dispensable for normal hematopoietic stem cell function, lymphocyte development, and B-cell-mediated immune response in a mouse model. Exp Hematol 2019; 72:1-8. [PMID: 30639577 DOI: 10.1016/j.exphem.2019.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/02/2019] [Accepted: 01/06/2019] [Indexed: 02/06/2023]
Abstract
Ubiquitin-specific protease 44 (USP44) is a nuclear protein with deubiquitinase (DUB) catalytic activity that has been implicated as an important regulator of cell cycle progression, gene expression, and genomic stability. Dysregulation in the molecular machinery controlling cell proliferation, gene expression, and genomic stability in human or mouse is commonly linked to hematopoietic dysfunction, immunodeficiency, and cancer. We therefore set out to explore the role of USP44 in hematopoietic and immune systems through characterization of a Usp44-deficient mouse model. We report that USP44 is dispensable for the maintenance of hematopoietic stem cell numbers and function under homeostatic conditions, and also after irradiation or serial transplantation. USP44 is also not required for normal lymphocyte development. Usp44-deficient B cells show normal activation, proliferation, and immunoglobulin class switching in response to in vitro stimulation, and Usp44-deficient mice mount normal antibody response to immunization. We also tested the effects of USP44 deficiency on disease progression and survival in the Emu-myc model of mouse B-cell lymphoma and observed a trend toward earlier lethality of Usp44-/- Emu-myc mice; however, this did not reach statistical significance. Overall, we conclude that USP44 is dispensable for the normal physiology of hematopoietic and immune systems, and its functions in these systems are likely redundant with other USP family proteins.
Collapse
Affiliation(s)
- Yun Hsiao Lin
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Michael Forster
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Yue Liang
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Mansen Yu
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - HanChen Wang
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Francis Robert
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - David Langlais
- McGill University Centre on Complex Traits, McGill University, Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada; McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, QC, Canada; The Rosalind and Morris Goodman Cancer Research Centre, McGill University, QC, Canada
| | - Simon Clare
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Centre on Complex Traits, McGill University, Montreal, QC, Canada.
| |
Collapse
|
19
|
Fang CL, Lin CC, Chen HK, Hseu YC, Hung ST, Sun DP, Uen YH, Lin KY. Ubiquitin-specific protease 3 overexpression promotes gastric carcinogenesis and is predictive of poor patient prognosis. Cancer Sci 2018; 109:3438-3449. [PMID: 30168892 PMCID: PMC6215897 DOI: 10.1111/cas.13789] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 12/31/2022] Open
Abstract
Although gastric cancer (GC) is one of the most common cancers, knowledge of its development and carcinogenesis is limited. To date, expression of ubiquitin-specific protease 3 (USP3) in all types of cancer, including GC, is still unknown. The present study explored the involvement of USP3 in the carcinogenesis and prognosis of GC. We measured USP3 expression in normal and GC tissues and cell lines. Correlations between USP3 protein level and clinicopathological parameters, as well as the significance of USP3 protein level for disease-free survival were assessed. Small hairpin RNA technology and transfection were used to investigate the effect of USP3 manipulation on cell proliferation and spreading. Moreover, xenograft proliferation and metastasis were used to explore the influence of USP3 on tumor growth and metastasis in animals. An increase in USP3 expression was observed in GC cells and tissues. The overexpression of USP3 was significantly correlated with several clinicopathological parameters and poor disease-free survival. Multivariate Cox regression analysis showed that the overexpression of USP3 was an independent prognostic biomarker. Silencing of USP3 suppressed GC cell proliferation and spreading in vitro as well as xenograft proliferation and metastasis in vivo; however, opposite results were obtained when USP3 was overexpressed. Further studies showed that USP3 influenced cell proliferation and spreading by regulating the cell cycle control- and epithelial-mesenchymal transition-related molecules. This study suggests that USP3 overexpression can be a useful biomarker for predicting the outcomes of GC patients and that USP3 targeting represents a potential modality for treating GC.
Collapse
Affiliation(s)
- Chia-Lang Fang
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chih-Chan Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Han-Kun Chen
- Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Shih-Ting Hung
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Ding-Ping Sun
- Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan.,Department of Food Science and Technology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Yih-Huei Uen
- Department of Surgery, Asia University Hospital, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan.,Department of Surgery, Tainan Municipal An-Nan Hospital, Tainan, Taiwan
| | - Kai-Yuan Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.,Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| |
Collapse
|
20
|
Nishimura S, Oki E, Ando K, Iimori M, Nakaji Y, Nakashima Y, Saeki H, Oda Y, Maehara Y. High ubiquitin-specific protease 44 expression induces DNA aneuploidy and provides independent prognostic information in gastric cancer. Cancer Med 2017; 6:1453-1464. [PMID: 28544703 PMCID: PMC5463085 DOI: 10.1002/cam4.1090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/03/2017] [Accepted: 04/10/2017] [Indexed: 12/20/2022] Open
Abstract
Chromosomal instability (CIN), characterized by aneuploidy, is a major molecular subtype of gastric cancer. The deubiquitinase USP44 is an important regulator of APC activation in the spindle checkpoint and leads to proper chromosome separation to prevent aneuploidy. Aberrant expression of USP44 leads CIN in cells; however, the correlation between USP44 and DNA aneuploidy in gastric cancer is largely unknown. We analyzed USP44 expression in 207 patients with gastric cancer by immunohistochemistry and found that the proportion of USP44 expression was higher in gastric cancer tumors (mean, 39.6%) than in gastric normal mucosa (mean, 14.6%) (P < 0.0001). DNA aneuploidy was observed in 124 gastric cancer cases and high USP44 expression in cancer strongly correlated with DNA aneuploidy (P = 0.0005). The overall survival was significantly poorer in the high USP44 expression group compared with the low USP44 group (P = 0.033). Notably, USP44 expression had no prognostic impact in the diploid subgroup; however, high USP44 expression was a strong poor prognostic factor for progression‐free survival (P = 0.018) and overall survival (P = 0.036) in the aneuploid subgroup. We also confirmed that stable overexpression of USP44 induced somatic copy‐number aberrations in hTERT‐RPE‐1 cells (50.6%) in comparison with controls (6.6%) (P < 0.0001). Collectively, our data show USP44 has clinical impact on the induction of DNA aneuploidy and poor prognosis in the CIN gastric cancer subtype.
Collapse
Affiliation(s)
- Sho Nishimura
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Ando
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Makoto Iimori
- Department of Molecular Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yu Nakaji
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichiro Nakashima
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Saeki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|