1
|
Méndez-García A, Bravo-Vázquez LA, Sahare P, Paul S. Impact of UV-Irradiated Mesoporous Titania Nanoparticles (mTiNPs) on Key Onco- and Tumor Suppressor microRNAs of PC3 Prostate Cancer Cells. Genes (Basel) 2025; 16:148. [PMID: 40004477 PMCID: PMC11855573 DOI: 10.3390/genes16020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Mesoporous titanium dioxide nanoparticles (mTiNPs) are known for their chemical stability, non-toxicity, antimicrobial and anticancer effects, as well as for their photocatalytic properties. When this material is subjected to UV radiation, its electronic structure shifts, and during that process, reactive oxygen species are generated, which in turn exert apoptotic events on the cancer cells. OBJECTIVES We evaluated the cytotoxic effects of UV-irradiated mTiNPs on prostate cancer (PCa) cell line PC3 with the aim of demonstrating that the interaction between UV-light and mTiNPs positively impacts the nanomaterial's cytotoxic efficiency. Moreover, we assessed the differential expression of key oncomiRs and tumor suppressor (TS) miRNAs, as well as their associated target genes, in cells undergoing this treatment. METHODS PBS-suspended mTiNPs exposed to 290 nm UV light were added at different concentrations to PC3 cells. Cell viability was determined after 24 h with a crystal violet assay. Then, the obtained IC50 concentration of UV-nanomaterial was applied to a new PC3 cell culture, and the expression of a set of miRNAs and selected target genes was evaluated via qRT-PCR. RESULTS The cells exposed to photo-activated mTiNPs required 4.38 times less concentration of the nanomaterial than the group exposed to non-irradiated mTiNPs to achieve the half-maximal inhibition, demonstrating an improved cytotoxic performance of the UV-irradiated mTiNPs. Moreover, the expression of miR-18a-5p, miR-21-5p, and miR-221-5p was downregulated after the application of UV-mTiNPs, while TS miR-200a-5p and miR-200b-5p displayed an upregulated expression. Among the miRNA target genes, PTEN was found to be upregulated after the treatment, while BCL-2 and TP53 were underexpressed. CONCLUSIONS Our cytotoxic outcomes coincided with previous reports performed in other cancer cell lines, strongly suggesting UV-irradiated mTiNPs as a promising nano-therapeutic approach against PCa. On the other hand, to the best of our knowledge, this is the first report exploring the impact of UV-irradiated mTiNPs on key onco- and TS microRNAs in PCa cells.
Collapse
Affiliation(s)
- Andrea Méndez-García
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio González No. 500 Fracc. San Pablo, Querétaro 76130, Mexico
| | - Luis Alberto Bravo-Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio González No. 500 Fracc. San Pablo, Querétaro 76130, Mexico
| | - Padmavati Sahare
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Epigmenio González No. 500 Fracc. San Pablo, Querétaro 76130, Mexico
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio González No. 500 Fracc. San Pablo, Querétaro 76130, Mexico
| |
Collapse
|
2
|
Chuang YT, Yen CY, Tang JY, Chang FR, Tsai YH, Wu KC, Chien TM, Chang HW. The modulation of immune cell death in connection to microRNAs and natural products. Front Immunol 2024; 15:1425602. [PMID: 39759512 PMCID: PMC11695430 DOI: 10.3389/fimmu.2024.1425602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/27/2024] [Indexed: 01/07/2025] Open
Abstract
Immunogenic cell death (ICD) spatiotemporally regulates damage-associated molecular patterns (DAMPs) derived from dying cancer cells to signal the immune response. Intriguingly, these DAMPs and cytokines also induce cellular responses in non-immune cells, particularly cancer cells. Several ICD-modulating natural products and miRNAs have been reported to regulate the DAMP, cytokine, and cell death responses, but they lack systemic organization and connection. This review summarizes the impacts of natural products and miRNAs on the DAMP and cytokine responses and cancer cell death responses (apoptosis, autophagy, ferroptosis, necroptosis, and pyroptosis). We establish the rationale that ICD inducers of natural products have modulating effects on miRNAs, targeting DAMPs and cytokines for immune and cancer cell death responses. In conclusion, DAMP, cytokine, and cell death responses are intricately linked in cancer cells, and they are influenced by ICD-modulating natural products and miRNAs.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei, Taiwan
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hong Tsai
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Kuo-Chuan Wu
- Department of Computer Science and Information Engineering, National Pingtung University, Pingtung, Taiwan
| | - Tsu-Ming Chien
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Gangshan Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Jian J, Wang X, Zhang J, Zhou C, Hou X, Huang Y, Hou J, Lin Y, Wei X. Molecular landscape for risk prediction and personalized therapeutics of castration-resistant prostate cancer: at a glance. Front Endocrinol (Lausanne) 2024; 15:1360430. [PMID: 38887275 PMCID: PMC11180744 DOI: 10.3389/fendo.2024.1360430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Prostate cancer (PCa) is commonly occurred with high incidence in men worldwide, and many patients will be eventually suffered from the dilemma of castration-resistance with the time of disease progression. Castration-resistant PCa (CRPC) is an advanced subtype of PCa with heterogeneous carcinogenesis, resulting in poor prognosis and difficulties in therapy. Currently, disorders in androgen receptor (AR)-related signaling are widely acknowledged as the leading cause of CRPC development, and some non-AR-based strategies are also proposed for CRPC clinical analyses. The initiation of CRPC is a consequence of abnormal interaction and regulation among molecules and pathways at multi-biological levels. In this study, CRPC-associated genes, RNAs, proteins, and metabolites were manually collected and integrated by a comprehensive literature review, and they were functionally classified and compared based on the role during CRPC evolution, i.e., drivers, suppressors, and biomarkers, etc. Finally, translational perspectives for data-driven and artificial intelligence-powered CRPC systems biology analysis were discussed to highlight the significance of novel molecule-based approaches for CRPC precision medicine and holistic healthcare.
Collapse
Affiliation(s)
- Jingang Jian
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin’an Wang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jun Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chenchao Zhou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaorui Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuhua Huang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuxin Lin
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xuedong Wei
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
4
|
Luo L, Li P, Xie Q, Wu Y, Qin F, Liao D, Zeng K, Wang K. n6-methyladenosine-modified circular RNA family with sequence similarity 126, member A affects cholesterol synthesis and malignant progression of prostate cancer cells by targeting microRNA-505-3p to mediate calnexin. J Cancer 2024; 15:966-980. [PMID: 38230215 PMCID: PMC10788727 DOI: 10.7150/jca.89135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/08/2023] [Indexed: 01/18/2024] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed malignancy in men. In tumor biology, n6-methyladenosine (m6A) can mediate the production of circular RNAs (circRNAs). This study focused on the mechanism of m6A-modified circRNA family with sequence similarity 126, member A (FAM126A) in PCa. Cell counting kit-8 assay, colony formation assay, 5-ethynyl-2'-deoxyuridine assay, transwell assay, and xenograft mouse models were applied to study the role of circFAM126A in PCa cell growth and tumor metastasis, and cellular triglyceride and cholesterol levels were measured to assess cholesterol synthesis. RNA immunoprecipitation, RNA pull-down, luciferase reporter gene assay, and western blot were adopted to explore the underlying molecular mechanism. Data showed that circFAM126A was upregulated in PCa and promoted PCa progression in vitro. m6A modification of circFAM126A enhanced transcriptional stability. CircFAM126A targeted microRNA (miR)-505-3p to mediate calnexin (CANX). Up-regulating miR-505-3p or inhibiting CANX suppressed cholesterol synthesis and malignant progression in PCa cells. Overexpressing CANX suppressed the inhibitory effect of circFAM126A silencing or miR-505-3p upregulation on PCa cells. Our current findings provide a new therapeutic strategy for the treatment of PCa.
Collapse
Affiliation(s)
- Lin Luo
- Department of Urology Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang City, Hunan Province, 422000, China
| | - Ping Li
- Department of Urology Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang City, Hunan Province, 422000, China
| | - QingZhi Xie
- Department of Urology Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang City, Hunan Province, 422000, China
| | - YunChou Wu
- Department of Urology Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang City, Hunan Province, 422000, China
| | - FuQiang Qin
- Department of Urology Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang City, Hunan Province, 422000, China
| | - DunMing Liao
- Department of Urology Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang City, Hunan Province, 422000, China
| | - Ke Zeng
- Department of Urology Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang City, Hunan Province, 422000, China
| | - KangNing Wang
- Department of Urology Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang City, Hunan Province, 422000, China
- Department of Urology Surgery, Xiangya Hospital Central South University, Changsha City, Hunan Province, 410083, China
| |
Collapse
|
5
|
Chou CK, Chi SY, Hung YY, Yang YC, Fu HC, Wang JH, Chen CC, Kang HY. Clinical Impact of Androgen Receptor-Suppressing miR-146b Expression in Papillary Thyroid Cancer Aggressiveness. J Clin Endocrinol Metab 2023; 108:2852-2861. [PMID: 37220080 DOI: 10.1210/clinem/dgad279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/30/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023]
Abstract
CONTEXT Papillary thyroid carcinoma (PTC) is the most common thyroid malignancy. Dysregulated expression of miR-146b and androgen receptor (AR) has been shown to play critical roles in tumorigenesis in PTC. However, the mechanistic and clinical association between AR and miR-146b is not fully understood. OBJECTIVE The purpose was to investigate miR-146b as the potential AR target miRNA and its involvement in advanced tumor characteristics of PTC. METHODS Expression of AR and miR-146b were assessed in frozen and formalin-fixed paraffin-embedded tissue samples from PTC and adjacent normal thyroid specimens by quantitative real-time polymerase chain reaction, and their correlation was examined. Human thyroid cancer cell lines BCPAP and TPC-1 were used to evaluate the effect of AR on miR-146b signaling. Chromatin immunoprecipitation (ChIP) assays were performed to determine whether AR binds to the miR-146b promoter region. RESULTS Pearson correlation analysis confirmed significant inverse correlation between miR-146b and AR expression. Overexpressing AR BCPAP and TPC-1 cells showed relatively lower miR-146b expression. ChIP assay revealed that AR might bind to the androgen receptor element located on the promoter region of miRNA-146b gene, and overexpression of AR suppresses miR-146b-mediated tumor aggressiveness. The low AR/high miR-146b PTC patient group was associated with advanced tumor characteristics, including higher tumor stage, lymph node metastasis, and worse treatment response. CONCLUSION To sum up, miR-146b is a molecular target of AR transcriptional repression; therefore, AR suppresses miR-146b expression to reduce PTC tumor aggressiveness.
Collapse
Affiliation(s)
- Chen-Kai Chou
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Shun-Yu Chi
- Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Yi-Yung Hung
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Yi-Chien Yang
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Hung-Chun Fu
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Jia-He Wang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Chueh-Chen Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Hong-Yo Kang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Taoyuan City 83301, Taiwan
- Department of Biological Science, National Sun Yat-sen University, 804959 Kaohsiung, Taiwan
- Center for Hormone and Reproductive Medicine Research, Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan
| |
Collapse
|
6
|
Azani A, Omran SP, Ghasrsaz H, Idani A, Eliaderani MK, Peirovi N, Dokhani N, Lotfalizadeh MH, Rezaei MM, Ghahfarokhi MS, KarkonShayan S, Hanjani PN, Kardaan Z, Navashenagh JG, Yousefi M, Abdolahi M, Salmaninejad A. MicroRNAs as biomarkers for early diagnosis, targeting and prognosis of prostate cancer. Pathol Res Pract 2023; 248:154618. [PMID: 37331185 DOI: 10.1016/j.prp.2023.154618] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023]
Abstract
Globally, prostate cancer (PC) is leading cause of cancer-related mortality in men worldwide. Despite significant advances in the treatment and management of this disease, the cure rates for PC remains low, largely due to late detection. PC detection is mostly reliant on prostate-specific antigen (PSA) and digital rectal examination (DRE); however, due to the low positive predictive value of current diagnostics, there is an urgent need to identify new accurate biomarkers. Recent studies support the biological role of microRNAs (miRNAs) in the initiation and progression of PC, as well as their potential as novel biomarkers for patients' diagnosis, prognosis, and disease relapse. In the advanced stages, cancer-cell-derived small extracellular vesicles (SEVs) may constitute a significant part of circulating vesicles and cause detectable changes in the plasma vesicular miRNA profile. Recent computational model for the identification of miRNA biomarkers discussed. In addition, accumulating evidence indicates that miRNAs can be utilized to target PC cells. In this article, the current understanding of the role of microRNAs and exosomes in the pathogenesis and their significance in PC prognosis, early diagnosis, chemoresistance, and treatment are reviewed.
Collapse
Affiliation(s)
- Alireza Azani
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Parvizi Omran
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haniyeh Ghasrsaz
- Faculty of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Asra Idani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Niloufar Peirovi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Dokhani
- Student Research Committee, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | | | | | - Sepideh KarkonShayan
- Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Parisa Najari Hanjani
- Department of Genetics, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Science, Gorgan, Iran
| | - Zahra Kardaan
- Department of Cellular Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | | - Meysam Yousefi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mitra Abdolahi
- Department of Pathology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arash Salmaninejad
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Regenerative Medicine, Organ Procurement and Transplantation Multi-Disciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
7
|
Wang Y, Zhou J, Zhang N, Zhu Y, Zhong Y, Wang Z, Jin H, Wang X. A Novel Defined PANoptosis-Related miRNA Signature for Predicting the Prognosis and Immune Characteristics in Clear Cell Renal Cell Carcinoma: A miRNA Signature for the Prognosis of ccRCC. Int J Mol Sci 2023; 24:ijms24119392. [PMID: 37298343 DOI: 10.3390/ijms24119392] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most prevalent cancers, and PANoptosis is a distinct, inflammatory-programmed cell death regulated by the PANoptosome. The essential regulators of cancer occurrence and progression are microRNAs (miRNAs). However, the potential function of PANoptosis-related microRNAs (PRMs) in ccRCC remains obscure. This study retrieved ccRCC samples from The Cancer Genome Atlas database and three Gene Expression Omnibus datasets. PRMs were recognized based on previous reports in the scientific literature. Regression analyses were used to identify the prognosis PRMs and construct a PANoptosis-related miRNA prognostic signature based on the risk score. We discovered that high-risk patients had poorer survival prognoses and were significantly linked to high-grade and advanced-stage tumors, using a variety of R software packages and web analysis tools. Furthermore, we demonstrated that the low-risk group had significant changes in their metabolic pathways. In contrast, the high-risk group was characterized by high immune cell infiltration, immune checkpoint expression, and low half-maximum inhibition concentration (IC50) values of chemotherapeutic agents. This suggests that high-risk patients may benefit more from immunotherapy and chemotherapy. In conclusion, we constructed a PANoptosis-related microRNA signature and revealed its potential significance in clinicopathological features and tumor immunity, thereby providing new precise treatment strategies.
Collapse
Affiliation(s)
- Yanmei Wang
- School of Medicine, Zhejiang University, Hangzhou 310030, China
| | - Jia Zhou
- School of Medicine, Zhejiang University, Hangzhou 310030, China
| | - Nan Zhang
- School of Medicine, Zhejiang University, Hangzhou 310030, China
| | - Yiran Zhu
- School of Medicine, Zhejiang University, Hangzhou 310030, China
| | - Yiming Zhong
- School of Medicine, Zhejiang University, Hangzhou 310030, China
| | - Zhuo Wang
- School of Medicine, Zhejiang University, Hangzhou 310030, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang Province, Cancer Center of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Xian Wang
- School of Medicine, Zhejiang University, Hangzhou 310030, China
| |
Collapse
|
8
|
Gupta J, Abdulsahib WK, Turki Jalil A, Saadi Kareem D, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Farhood B. Prostate Cancer and microRNAs: New insights into Apoptosis. Pathol Res Pract 2023; 245:154436. [PMID: 37062208 DOI: 10.1016/j.prp.2023.154436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
Prostate cancer (PCa) is known as one of the most prevalent malignancies globally and is not yet curable owing to its progressive nature. It has been well documented that Genetic and epigenetic alterations maintain mandatory roles in PCa development. Apoptosis, a form of programmed cell death, has been shown to be involved in a number of physiological processes. Apoptosis disruption is considered as one of the main mechanism involved in lots of pathological conditions, especially malignancy. There is ample of evidence in support of the fact that microRNAs (miRNAs) have crucial roles in several cellular biological processes, including apoptosis. Escaping from apoptosis is a common event in malignancy progression. Emerging evidence revealed miRNAs capabilities to act as apoptotic or anti-apoptotic factors by altering the expression levels of tumor inhibitor or oncogene genes. In the present narrative review, we described in detail how apoptosis dysfunction could be involved in PCa processes and additionally, the mechanisms behind miRNAs affect the apoptosis pathways in PCa. Identifying the mechanisms behind the effects of miRNAs and their targets on apoptosis can provide scientists new targets for PCa treatment.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U. P., India
| | - Waleed K Abdulsahib
- Department of Pharmacology and Toxicology, College of Pharmacy, Al Farahidi University, Baghdad, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan; Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | | | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
9
|
Guo J, Zheng Q, Peng Y. BET proteins: Biological functions and therapeutic interventions. Pharmacol Ther 2023; 243:108354. [PMID: 36739915 DOI: 10.1016/j.pharmthera.2023.108354] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Bromodomain and extra-terminal (BET) family member proteins (BRD2, BRD3, BRD4 and BRDT) play a pivotal role in interpreting the epigenetic information of histone Kac modification, thus controlling gene expression, remodeling chromatin structures and avoid replicative stress-induced DNA damages. Abnormal activation of BET proteins is tightly correlated to various human diseases, including cancer. Therefore, BET bromodomain inhibitors (BBIs) were considered as promising therapeutics to treat BET-related diseases, raising >70 clinical trials in the past decades. Despite preliminary effects achieved, drug resistance and adverse events represent two major challenges for current BBIs development. In this review, we will introduce the biological functions of BET proteins in both physiological and pathological conditions; and summarize the progress in current BBI drug development. Moreover, we will also discuss the major challenges in the front of BET inhibitor development and provide rational strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Jiawei Guo
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qingquan Zheng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
10
|
Jindal R, Nanda A, Pillai M, Ware KE, Singh D, Sehgal M, Armstrong AJ, Somarelli JA, Jolly MK. Emergent dynamics of underlying regulatory network links EMT and androgen receptor-dependent resistance in prostate cancer. Comput Struct Biotechnol J 2023; 21:1498-1509. [PMID: 36851919 PMCID: PMC9957767 DOI: 10.1016/j.csbj.2023.01.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Advanced prostate cancer patients initially respond to hormone therapy, be it in the form of androgen deprivation therapy or second-generation hormone therapies, such as abiraterone acetate or enzalutamide. However, most men with prostate cancer eventually develop hormone therapy resistance. This resistance can arise through multiple mechanisms, such as through genetic mutations, epigenetic mechanisms, or through non-genetic pathways, such as lineage plasticity along epithelial-mesenchymal or neuroendocrine-like axes. These mechanisms of hormone therapy resistance often co-exist within a single patient's tumor and can overlap within a single cell. There exists a growing need to better understand how phenotypic heterogeneity and plasticity results from emergent dynamics of the regulatory networks governing androgen independence. Here, we investigated the dynamics of a regulatory network connecting the drivers of androgen receptor (AR) splice variant-mediated androgen independence and those of epithelial-mesenchymal transition. Model simulations for this network revealed four possible phenotypes: epithelial-sensitive (ES), epithelial-resistant (ER), mesenchymal-resistant (MR) and mesenchymal-sensitive (MS), with the latter phenotype occurring rarely. We observed that well-coordinated "teams" of regulators working antagonistically within the network enable these phenotypes. These model predictions are supported by multiple transcriptomic datasets both at single-cell and bulk levels, including in vitro EMT induction models and clinical samples. Further, our simulations reveal spontaneous stochastic switching between the ES and MR states. Addition of the immune checkpoint molecule, PD-L1, to the network was able to capture the interactions between AR, PD-L1, and the mesenchymal marker SNAIL, which was also confirmed through quantitative experiments. This systems-level understanding of the driver of androgen independence and EMT could aid in understanding non-genetic transitions and progression of such cancers and help in identifying novel therapeutic strategies or targets.
Collapse
Affiliation(s)
- Rashi Jindal
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
- Undergraduate Programme, Indian Institute of Science, Bangalore 560012, India
| | - Abheepsa Nanda
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
- Undergraduate Programme, Indian Institute of Science, Bangalore 560012, India
| | - Maalavika Pillai
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
- Undergraduate Programme, Indian Institute of Science, Bangalore 560012, India
| | - Kathryn E. Ware
- Department of Medicine, Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC 27710, USA
| | - Divyoj Singh
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
- Undergraduate Programme, Indian Institute of Science, Bangalore 560012, India
| | - Manas Sehgal
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Andrew J. Armstrong
- Department of Medicine, Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC 27710, USA
- Department of Surgery, Duke University, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Jason A. Somarelli
- Department of Medicine, Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC 27710, USA
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
11
|
Nantajit D, Presta L, Sauter T, Tavassoli M. EGFR-induced suppression of HPV E6/E7 is mediated by microRNA-9-5p silencing of BRD4 protein in HPV-positive head and neck squamous cell carcinoma. Cell Death Dis 2022; 13:921. [PMID: 36333293 PMCID: PMC9636399 DOI: 10.1038/s41419-022-05269-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022]
Abstract
EGFR upregulation is an established biomarker of treatment resistance and aggressiveness in head and neck cancers (HNSCC). EGFR-targeted therapies have shown benefits for HPV-negative HNSCC; surprisingly, inhibiting EGFR in HPV-associated HNSCC led to inferior therapeutic outcomes suggesting opposing roles for EGFR in the two HNSCC subtypes. The current study aimed to understand the link between EGFR and HPV-infected HNSCC particularly the regulation of HPV oncoproteins E6 and E7. We demonstrate that EGFR overexpression suppresses cellular proliferation and increases radiosensitivity of HPV-positive HNSCC cell lines. EGFR overexpression inhibited protein expression of BRD4, a known cellular transcriptional regulator of HPV E6/E7 expression and DNA damage repair facilitator. Inhibition of EGFR by cetuximab restored the expression of BRD4 leading to increased HPV E6 and E7 transcription. Concordantly, pharmacological inhibition of BRD4 led to suppression of HPV E6 and E7 transcription, delayed cellular proliferation and sensitised HPV-positive HNSCC cells to ionising radiation. This effect was shown to be mediated through EGFR-induced upregulation of microRNA-9-5p and consequent silencing of its target BRD4 at protein translational level, repressing HPV E6 and E7 transcription and restoring p53 tumour suppressor functions. These results suggest a novel mechanism for EGFR inhibition of HPV E6/E7 oncoprotein expression through an epigenetic pathway, independent of MAPK, but mediated through microRNA-9-5p/BRD4 regulation. Therefore, targeting EGFR may not be the best course of therapy for certain cancer types including HPV-positive HNSCC, while targeting specific signalling pathways such as BRD4 could provide a better and potentially new treatment to improve HNSCC therapeutic outcome.
Collapse
Affiliation(s)
- Danupon Nantajit
- grid.13097.3c0000 0001 2322 6764Centre for Host-Microbiome Interactions, King’s College London, London, United Kingdom ,grid.512982.50000 0004 7598 2416Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Luana Presta
- grid.16008.3f0000 0001 2295 9843Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Thomas Sauter
- grid.16008.3f0000 0001 2295 9843Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Mahvash Tavassoli
- grid.13097.3c0000 0001 2322 6764Centre for Host-Microbiome Interactions, King’s College London, London, United Kingdom
| |
Collapse
|
12
|
Ghafouri-Fard S, Bahroudi Z, Shoorei H, Hussen BM, Talebi SF, Baig SG, Taheri M, Ayatollahi SA. Disease-associated regulation of gene expression by resveratrol: Special focus on the PI3K/AKT signaling pathway. Cancer Cell Int 2022; 22:298. [PMID: 36180892 PMCID: PMC9524725 DOI: 10.1186/s12935-022-02719-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a natural phenol that is present in the skin of the grape, blueberry, raspberry, mulberry, and peanut. This substance is synthesized in these plants following injury or exposure to pathogens. Resveratrol is used as a dietary supplement for a long time and its effects have been assessed in animal models of human disorders. It has potential beneficial effects in diverse pathological conditions such as diabetes mellitus, obesity, hypertension, neoplastic conditions, Alzheimer's disease, and cardiovascular disorders. Notably, resveratrol has been found to affect the expression of several genes including cytokine coding genes, caspases, matrix metalloproteinases, adhesion molecules, and growth factors. Moreover, it can modulate the activity of several signaling pathways such as PI3K/AKT, Wnt, NF-κB, and Notch pathways. In the current review, we summarize the results of studies that reported modulatory effects of resveratrol on the expression of genes and the activity of signaling pathways. We explain these results in two distinct sections of non-neoplastic and neoplastic conditions.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Bahroudi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Seyedeh Fahimeh Talebi
- Department of Pharmacology, College of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Sadia Ghousia Baig
- Department of Pharmacology, Faculty of Pharmacy, University of Karachi, Karachi, Pakistan
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany. .,Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
13
|
Klicka K, Grzywa TM, Mielniczuk A, Klinke A, Włodarski PK. The role of miR-200 family in the regulation of hallmarks of cancer. Front Oncol 2022; 12:965231. [PMID: 36158660 PMCID: PMC9492973 DOI: 10.3389/fonc.2022.965231] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
MiRNAs are short non-coding RNAs that regulate gene expression post-transcriptionally contributing to the development of different diseases including cancer. The miR-200 family consists of five members, miR-200a, miR-200b, miR-200c, miR-141, and miR-429. Their expression is dysregulated in cancer tissue and their level is altered in the body fluids of cancer patients. Moreover, the levels of miR-200 family members correlate with clinical parameters such as cancer patients' survival which makes them potentially useful as diagnostic and prognostic biomarkers. MiRNAs can act as either oncomiRs or tumor suppressor miRNAs depending on the target genes and their role in the regulation of key oncogenic signaling pathways. In most types of cancer, the miR-200 family acts as tumor suppressor miRNA and regulates all features of cancer. In this review, we summarized the expression pattern of the miR-200 family in different types of cancer and their potential utility as biomarkers. Moreover, we comprehensively described the role of miR-200 family members in the regulation of all hallmarks of cancer proposed by Hanahan and Weinberg with the focus on the epithelial-mesenchymal transition, invasiveness, and metastasis of tumor cells.
Collapse
Affiliation(s)
- Klaudia Klicka
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz M. Grzywa
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Alicja Klinke
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
14
|
Bozgeyik E, Arslan A, Temiz E, Batar B, Koyuncu I, Tozkir H. miR-320a promotes p53-dependent apoptosis of prostate cancer cells by negatively regulating TP73-AS1 invitro. Biochem Biophys Res Commun 2022; 619:130-136. [PMID: 35760009 DOI: 10.1016/j.bbrc.2022.06.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/09/2022] [Indexed: 11/02/2022]
Abstract
TP73 antisense RNA 1 (TP73-AS1) is an oncogenic long non-coding RNA that is activated in several types of cancers. It has been shown that the activity of TP73-AS1 is controlled by several miRNAs, but post-transcriptional mechanisms that regulate TP73-AS1 activity in prostate cancer remain highly elusive. Accordingly, in the present study, we aimed to determine the miRNAs that are involved in the regulation of TP73-AS1 in prostate cancer and to show the effects of these molecules on the malignant proliferation of prostate cancer cells. Remarkably, colony formation and cell migration were suppressed while cell cycle arrest and apoptosis were induced in prostate cancer cells overexpressing miR-200a and miR-320a. miR-200a and miR-320a were found to be upregulated in TP73-AS1 suppressed prostate cancer cells. Also, TP73-AS1 was shown to be downregulated following miR-200a and miR-320a overexpression. However, overexpression of miR-320a had no significant effect on the expression of TP73. Further analysis revealed that miR-320a induces p53-dependent apoptosis. Consequently, our findings indicate that miR-320a induces p53-dependent apoptosis by negatively regulating TP73-AS1 long non-coding RNA.
Collapse
Affiliation(s)
- Esra Bozgeyik
- Department of Medical Services and Techniques, Vocational School of Health Services, Adiyaman University, Adiyaman, Turkey.
| | - Ahmet Arslan
- Department of Medical Genetics, Faculty of Medicine, Tekirdag Namik Kemal University, Tekirdag, Turkey
| | - Ebru Temiz
- Program of Medical Promotion and Marketing, Vocational School of Health Services, Harran University, Sanliurfa, Turkey
| | - Bahadir Batar
- Department of Medical Biology, Faculty of Medicine, Tekirdag Namik Kemal University, Tekirdag, Turkey
| | - Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Hilmi Tozkir
- Department of Medical Genetics, Faculty of Medicine, Tekirdag Namik Kemal University, Tekirdag, Turkey
| |
Collapse
|
15
|
Li Y, He J, Yu L, Yang Q, Du J, Chen Y, Tang W. Hsa‐miR‐1290 is associated with stemness and invasiveness in prostate cancer cell lines by targeting RORA. Andrologia 2022; 54:e14396. [PMID: 35220610 DOI: 10.1111/and.14396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Yuehua Li
- Department of Nephrology and Urology University‐Town Hospital of Chongqing Medical University Chongqing China
| | - Jiang He
- Department of Nephrology and Urology University‐Town Hospital of Chongqing Medical University Chongqing China
| | - Lu Yu
- Department of Nephrology and Urology University‐Town Hospital of Chongqing Medical University Chongqing China
| | - Qixin Yang
- Department of Nephrology and Urology University‐Town Hospital of Chongqing Medical University Chongqing China
| | - Jing Du
- Department of Anesthesiology University‐Town Hospital of Chongqing Medical University Chongqing China
| | - Yirong Chen
- Department of Nephrology and Urology University‐Town Hospital of Chongqing Medical University Chongqing China
| | - Wei Tang
- Department of Urology The First Affiliated Hospital of Chongqing Medical University Chongqing China
| |
Collapse
|
16
|
Zhong S, Peng S, Chen Z, Chen Z, Luo JL. Choosing Kinase Inhibitors for Androgen Deprivation Therapy-Resistant Prostate Cancer. Pharmaceutics 2022; 14:498. [PMID: 35335873 PMCID: PMC8950316 DOI: 10.3390/pharmaceutics14030498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 11/25/2022] Open
Abstract
Androgen deprivation therapy (ADT) is a systemic therapy for advanced prostate cancer (PCa). Although most patients initially respond to ADT, almost all cancers eventually develop castration resistance. Castration-resistant PCa (CRPC) is associated with a very poor prognosis, and the treatment of which is a serious clinical challenge. Accumulating evidence suggests that abnormal expression and activation of various kinases are associated with the emergence and maintenance of CRPC. Many efforts have been made to develop small molecule inhibitors to target the key kinases in CRPC. These inhibitors are designed to suppress the kinase activity or interrupt kinase-mediated signal pathways that are associated with PCa androgen-independent (AI) growth and CRPC development. In this review, we briefly summarize the roles of the kinases that are abnormally expressed and/or activated in CRPC and the recent advances in the development of small molecule inhibitors that target kinases for the treatment of CRPC.
Collapse
Affiliation(s)
- Shangwei Zhong
- Department of General Surgery, Xiangya Hospital, Central South University, Hunan 410008, China; (S.Z.); (S.P.); (Z.C.)
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33459, USA
| | - Shoujiao Peng
- Department of General Surgery, Xiangya Hospital, Central South University, Hunan 410008, China; (S.Z.); (S.P.); (Z.C.)
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33459, USA
| | - Zihua Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Hunan 410008, China; (S.Z.); (S.P.); (Z.C.)
| | - Zhikang Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Hunan 410008, China; (S.Z.); (S.P.); (Z.C.)
| | - Jun-Li Luo
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33459, USA
| |
Collapse
|
17
|
Wang K, Wang X, Fu X, Sun J, Zhao L, He H, Fan Y. Lung cancer metastasis-related protein 1 promotes the transferring from advanced metastatic prostate cancer to castration-resistant prostate cancer by activating the glucocorticoid receptor α signal pathway. Bioengineered 2022; 13:5373-5385. [PMID: 35184651 PMCID: PMC8974197 DOI: 10.1080/21655979.2021.2020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Androgen deprivation therapy is currently the main therapeutic strategy for the treatment of advanced metastatic prostate cancer (ADPC). However, the tumor type in ADPC patients transforms into castration-resistant prostate cancer (CRPC) after 18–24 months of treatments, the underlying mechanism of which remains unclear. The present study aimed to investigate the potential pathological mechanism of the conversion from ADPC to CRPC by exploring the function of lung cancer metastasis-related protein 1 (LCMR1). We found that LCMR1 and glucocorticoid receptor α (GRα) were highly expressed in CRPC tissues, compared to ADPC tissues, and were accompanied by high concentrations of inflammatory factors. Knocking down LCMR1 or GRα in CRPC cells led to inhibition of metastasis and proliferation and induction of apoptosis. The expression of HSP90 and IL-6 was upregulated and that of androgen receptor was downregulated by knocking down LCMR1 or GRα in CRPC cells. Luciferase assay results indicated that the transcription of GRα was promoted by the LCMR1 promoter. The growth rate of CRPC cells in vivo was greatly decreased by knocking down LCMR1 or GRα. Lastly, CRPC cell sensitivity to enzalutamide treatment was found significantly enhanced by the knockdown of LCMR1. Taken together, LCMR1 might regulate the conversion of ADPC to CRPC by activating the GRα signaling pathway.
Collapse
Affiliation(s)
- Kai Wang
- Department of Urology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Department of Urology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Xuliang Wang
- Department of Urology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xian Fu
- Department of Urology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Ji Sun
- Department of Urology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Liwei Zhao
- Department of Urology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Huadong He
- Department of Urology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yi Fan
- Department of Urology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
18
|
Taheri M, Khoshbakht T, Jamali E, Kallenbach J, Ghafouri-Fard S, Baniahmad A. Interaction between Non-Coding RNAs and Androgen Receptor with an Especial Focus on Prostate Cancer. Cells 2021; 10:3198. [PMID: 34831421 PMCID: PMC8619311 DOI: 10.3390/cells10113198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022] Open
Abstract
The androgen receptor (AR) is a member of the nuclear receptor superfamily and has three functional domains, namely the N-terminal, DNA binding, and C-terminal domain. The N-terminal domain harbors potent transactivation functions, whereas the C-terminal domain binds to androgens and antiandrogens used to treat prostate cancer. AR has genomic activity being DNA binding-dependent or through interaction with other DNA-bound transcription factors, as well as a number of non-genomic, non-canonical functions, such as the activation of the ERK, AKT, and MAPK pathways. A bulk of evidence indicates that non-coding RNAs have functional interactions with AR. This type of interaction is implicated in the pathogenesis of human malignancies, particularly prostate cancer. In the current review, we summarize the available data on the role of microRNAs, long non-coding RNAs, and circular RNAs on the expression of AR and modulation of AR signaling, as well as the effects of AR on their expression. Recognition of the complicated interaction between non-coding RNAs and AR has practical importance in the design of novel treatment options, as well as modulation of response to conventional therapeutics.
Collapse
Affiliation(s)
- Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran;
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany;
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran;
| | - Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran;
| | - Julia Kallenbach
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany;
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany;
| |
Collapse
|
19
|
Oh-Hohenhorst SJ, Lange T. Role of Metastasis-Related microRNAs in Prostate Cancer Progression and Treatment. Cancers (Basel) 2021; 13:cancers13174492. [PMID: 34503302 PMCID: PMC8431208 DOI: 10.3390/cancers13174492] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary In this review article we summarize the current literature on the pro- and anti-metastatic roles of distinct microRNAs in prostate cancer with a particular focus on their impact on invasion, migration and epithelial-to-mesenchymal transition. Moreover, we give a brief overview on how this knowledge developed so far into novel therapeutic approaches to target metastatic prostate cancer. Abstract Prostate cancer (PCa) is one of the most prevalent cancer types in males and the consequences of its distant metastatic deposits are the leading cause of PCa mortality. Therefore, identifying the causes and molecular mechanisms of hematogenous metastasis formation is of considerable clinical importance for the future development of improved therapeutic approaches. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level by targeting messenger RNAs. Numerous studies have identified miRNAs as promotors or inhibitors of metastasis and revealed, in part, their targeting pathways in PCa. Because miRNAs are remarkably stable and can be detected in both tissue and body fluid, its potential as specific biomarkers for metastasis and therapeutic response is also currently under preclinical evaluation. In the present review, we focus on miRNAs that are supposed to initiate or suppress metastasis by targeting several key mRNAs in PCa. Metastasis-suppressing miRNAs include miR-33a-5p, miR-34, miR-132 and miR-212, miR-145, the miR-200 family (incl. miR-141-3p), miR-204-5p, miR-532-3p, miR-335, miR-543, miR-505-3p, miR 19a 3p, miR-802, miR-940, and miR-3622a. Metastasis-promoting RNAs, such as miR-9, miR-181a, miR-210-3, miR-454, miR-671-5p, have been shown to increase the metastatic potential of PCa cells. Other metastasis-related miRNAs with conflicting reports in the literature are also discussed (miR-21 and miR-186). Finally, we summarize the recent developments of miRNA-based therapeutic approaches, as well as current limitations in PCa. Taken together, the metastasis-controlling miRNAs provide the potential to be integrated in the strategy of diagnosis, prognosis, and treatment of metastatic PCa. Nevertheless, there is still a lack of consistency between certain miRNA signatures and reproducibility, which impedes clinical implementation.
Collapse
Affiliation(s)
- Su Jung Oh-Hohenhorst
- Martini-Klinik, Prostate Cancer Centre, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal (ICM), Montreal, QC H2X 0A9, Canada
| | - Tobias Lange
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Correspondence:
| |
Collapse
|
20
|
Wan W, Long Y, Jin X, Li Q, Wan W, Liu H, Zhu Y. Protective Role of microRNA-200a in Diabetic Retinopathy Through Downregulation of PDLIM1. J Inflamm Res 2021; 14:2411-2424. [PMID: 34113148 PMCID: PMC8187036 DOI: 10.2147/jir.s303540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/04/2021] [Indexed: 12/26/2022] Open
Abstract
Background Diabetic retinopathy (DR) is a most common microvascular complication and regarded as the leading cause of blindness in the working age population. The involvement of miR-200a in various disorders has become recognized, and the objective of this study was to identify the protective effect of miR-200a in the development of DR. Methods The contents of miR-200a and its potential target gene, PDZ and LIM domain protein 1 (PDLIM1), were detected in both in-vivo and in-vitro DR models. Retinal leakage and inflammatory factor concentrations were detected after vitreous injections of miR-200a/PDLIM1 vectors in mice. The cellular viability, apoptosis and cellular migration were investigated using trypan blue staining, flow cytometry and transwell assay with human retinal microvascular endothelial cells (HRMECs). Besides, the prediction and confirmation of miR-200a targeting PDLIM1 were conducted with bioinformation analyses and dual-luciferase reporter assay. Results Lower miR-200a and higher PDLIM1 levels were detected in both in-vivo and in-vitro DR models. Besides, it was found that miR-200a treatment would significantly inhibit retinal permeability and inflammatory factors. Through targeting PDLIM1, it was found that miR-200a could improve cellular viability, remit apoptotic status and reduce cellular migration significantly in high glucose-treated HRMECs. Conclusion Our results demonstrated that miR-200a could be used as a potential therapy target through down-regulating PDLIM1 in DR.
Collapse
Affiliation(s)
- Wencui Wan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yang Long
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xuemin Jin
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Qiuming Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Weiwei Wan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Hongzhuo Liu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yu Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
21
|
Zhang S, Amahong K, Sun X, Lian X, Liu J, Sun H, Lou Y, Zhu F, Qiu Y. The miRNA: a small but powerful RNA for COVID-19. Brief Bioinform 2021; 22:1137-1149. [PMID: 33675361 PMCID: PMC7989616 DOI: 10.1093/bib/bbab062] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a severe and rapidly evolving epidemic. Now, although a few drugs and vaccines have been proved for its treatment and prevention, little systematic comments are made to explain its susceptibility to humans. A few scattered studies used bioinformatics methods to explore the role of microRNA (miRNA) in COVID-19 infection. Combining these timely reports and previous studies about virus and miRNA, we comb through the available clues and seemingly make the perspective reasonable that the COVID-19 cleverly exploits the interplay between the small miRNA and other biomolecules to avoid being effectively recognized and attacked from host immune protection as well to deactivate functional genes that are crucial for immune system. In detail, SARS-CoV-2 can be regarded as a sponge to adsorb host immune-related miRNA, which forces host fall into dysfunction status of immune system. Besides, SARS-CoV-2 encodes its own miRNAs, which can enter host cell and are not perceived by the host's immune system, subsequently targeting host function genes to cause illnesses. Therefore, this article presents a reasonable viewpoint that the miRNA-based interplays between the host and SARS-CoV-2 may be the primary cause that SARS-CoV-2 accesses and attacks the host cells.
Collapse
Affiliation(s)
- Song Zhang
- College of Pharmaceutical Sciences in Zhejiang University and the First Affiliated Hospital of Zhejiang University School of Medicine, China
| | | | - Xiuna Sun
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Xichen Lian
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Jin Liu
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Huaicheng Sun
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Yan Lou
- Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, the First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Feng Zhu
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, the First Affiliated Hospital, Zhejiang University School of Medicine, China
| |
Collapse
|
22
|
Wang J, Jin Y, Li S, Song Q, Tang P. Identification of microRNAs associated with the survival of patients with gallbladder carcinoma. J Int Med Res 2021; 48:300060520918061. [PMID: 32406793 PMCID: PMC7238852 DOI: 10.1177/0300060520918061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objective This study investigated micro (mi)RNAs associated with the survival of patients with gallbladder carcinoma (GBC). Methods miRNA expression profiling was carried out of 40 cancerous tissues from GBC patients with long-term (n = 20) and short-term (n = 20) survival and eight healthy gallbladder tissues from the Gene Expression Omnibus database. miRNAs dysregulated in GBC patients with long-term or short-term survival were identified using GEO2R and VennDiagram packages, and analyzed by miRNA target prediction tools and the clusterProfiler package. Results Compared with healthy gallbladder tissues, 104 and 124 miRNAs were dysregulated in cancerous tissues of GBC patients with long-term survival and short-term survival, respectively. Two miRNAs (hsa-miR-142-5p and hsa-miR-146b-5p) and 22 miRNAs (such as hsa-miR-30a-3p, hsa-miR-660-5p, and hsa-miR-338-3p) were exclusively dysregulated in GBC patients with long-term and short-term survival, respectively. Enrichment analysis revealed that miRNAs exclusively dysregulated in GBC patients with short-term survival were involved in 46 biological processes, 10 cellular components, 11 molecular functions, and 44 pathways such as morphogenesis of an epithelium, response to transforming growth factor beta, heterochromatin, and phosphatase binding. Conclusion This study not only identified some promising biomarkers for predicting survival in GBC patients, but also contributed to our understanding of the pathogenesis and prognosis of GBC.
Collapse
Affiliation(s)
- Jianguo Wang
- Department of Prenatal Diagnostic, Jiaxing Maternity and Children Health Care Hospital, Jiaxing University, Jiaxing, Zhejiang, China
| | - Yuxia Jin
- Department of Prenatal Diagnostic, Jiaxing Maternity and Children Health Care Hospital, Jiaxing University, Jiaxing, Zhejiang, China
| | - Suping Li
- Department of Prenatal Diagnostic, Jiaxing Maternity and Children Health Care Hospital, Jiaxing University, Jiaxing, Zhejiang, China
| | - Qinhao Song
- Department of Prenatal Diagnostic, Jiaxing Maternity and Children Health Care Hospital, Jiaxing University, Jiaxing, Zhejiang, China
| | - Ping Tang
- Department of Prenatal Diagnostic, Jiaxing Maternity and Children Health Care Hospital, Jiaxing University, Jiaxing, Zhejiang, China
| |
Collapse
|
23
|
Lu K, Yu M, Chen Y. Non-coding RNAs regulating androgen receptor signaling pathways in prostate cancer. Clin Chim Acta 2020; 513:57-63. [PMID: 33309734 DOI: 10.1016/j.cca.2020.11.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PCa) is one of the most common malignancies for men worldwide, and abnormal activation of the androgen receptor (AR) signaling plays an important role in the progression of PCa. However, in the androgen deprivation therapy (ADT), AR signaling inevitably recovered, as a result, exploring novel regulating mechanisms is of great importance. Recently, non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs, circular RNAs, could be involved in the progression of PCa, and participate in the regulatory network of AR signaling in a variety of ways. This will help to identify novel molecular mechanisms to promote the development of PCa and find new potential therapeutic targets. In this review, we provide a synopsis of the latest research relating to ncRNAs and associated AR signaling in PCa.
Collapse
Affiliation(s)
- Ke Lu
- Department of Urology, Changshu Second People's Hospital, Yangzhou University Fifth Clinical Medical College, Changshu, China
| | - Muyuan Yu
- Department of Urology, Changshu Second People's Hospital, Yangzhou University Fifth Clinical Medical College, Changshu, China
| | - Yongchang Chen
- Department of Urology, Changshu Second People's Hospital, Yangzhou University Fifth Clinical Medical College, Changshu, China.
| |
Collapse
|
24
|
Gurbuz V, Kiliccioglu I, Dikmen AU, Bilen CY, Sozen S, Konac E. Comparative analysis of epi-miRNA expression levels in local/locally advanced and metastatic prostate cancer patients. Gene 2020; 758:144963. [PMID: 32683077 DOI: 10.1016/j.gene.2020.144963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/10/2020] [Accepted: 07/13/2020] [Indexed: 12/24/2022]
Abstract
Abnormal expression of enzymes involved in epigenetic mechanisms, such as DNA methyl transferases, can trigger large chaos in cellular gene expression networks and eventually lead to cancer progression. In our study, which is a pioneer in the literature that clinicopathologically evaluates the expression of 30 epi-miRNAs in prostate cancer (PCa), we investigated which of the new miRNA class epi-miRNAs could be an effective biomarker in the diagnosis and progression of PCa. In this study, the expression levels of 30 epi-miRNAs in whole blood samples from 25 control, 25 PCa and 40 metastatic PCa patients were investigated by the Quantitative Real-Time PCR method. Then, promoter methylation levels of 11 epi-miRNAs, whose expression levels were found to be significantly higher, were examined by methylation-specific qPCR method. The correlations between miRNA expression levels and clinicopathological parameters (Gleason Score (GS), PSA levels, TNM Staging) in different stages of PCa groups as well as disease-specific expression levels were examined. We found a hypomethylation in the promoter regions of miRNAs that showed a direct proportional increase with PSA levels (miR-34b/c, miR-148a, miR-152), GS's (miR-34a-5p, miR-34b/c, miR-101-2, miR-126, miR-148a, miR- 152, miR-185-5p) and T staging (miR-34a-5p, miR-34b/c, miR-101-2, miR-126, miR-140, miR-148a, miR-152, miR-185-5p) (p < 0.05). When miR-200a/b was evaluated according to clinicopathological parameters, it acted as an onco-miR in local/local advanced PCa and as a tumor-suppressor-miR in metastatic stage. This study is novel in the sense that our findings draw attention to the important role of miRNAs as diagnostic and prognostic biomarkers in PCa.
Collapse
Affiliation(s)
- Venhar Gurbuz
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler 06510, Ankara, Turkey
| | - Ilker Kiliccioglu
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler 06510, Ankara, Turkey; Department of Medical Biology, Faculty of Medicine, Duzce University, 81620 Duzce, Turkey
| | - Asiye Ugras Dikmen
- Department of Public Health, Faculty of Medicine, Gazi University, Besevler 06510, Ankara, Turkey
| | - Cenk Y Bilen
- Department of Urology, Faculty of Medicine, Hacettepe University, Sıhhiye 06100, Ankara, Turkey
| | - Sinan Sozen
- Department of Urology, Faculty of Medicine, Gazi University, Besevler 06510, Ankara, Turkey
| | - Ece Konac
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler 06510, Ankara, Turkey.
| |
Collapse
|
25
|
Guan H, Peng R, Fang F, Mao L, Chen Z, Yang S, Dai C, Wu H, Wang C, Feng N, Xu B, Chen M. Tumor-associated macrophages promote prostate cancer progression via exosome-mediated miR-95 transfer. J Cell Physiol 2020; 235:9729-9742. [PMID: 32406953 DOI: 10.1002/jcp.29784] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 04/25/2020] [Accepted: 05/02/2020] [Indexed: 12/24/2022]
Abstract
Tumor-associated macrophages (TAMs) are vital constituents in mediating cell-to-cell communication within the tumor microenvironment. However, the molecular mechanisms underlying the interplay between TAMs and tumor cells that guide cell fate are largely undetermined. Extracellular vesicles, also known as exosomes, which are derived from TAMs, are the components exerting regulatory effects. Thus, understanding the underlying mechanism of "onco-vesicles" is of crucial importance for prostate cancer (PCa) therapy. In this study, we analyzed micro RNA sequences in exosomes released by THP-1 and M2 macrophages and found a significant increase in miR-95 levels in TAM-derived exosomes, demonstrating the direct uptake of miR-95 by recipient PCa cells. In vitro and in vivo loss-of-function assays suggested that miR-95 could function as a tumor promoter by directly binding to its downstream target gene, JunB, to promote PCa cell proliferation, invasion, and epithelial-mesenchymal transition. The clinical data analyses further revealed that higher miR-95 expression results in worse clinicopathological features. Collectively, our results demonstrated that TAM-mediated PCa progression is partially attributed to the aberrant expression of miR-95 in TAM-derived exosomes, and the miR-95/JunB axis provides the groundwork for research on TAMs to further develop more-personalized therapeutic approaches for patients with PCa.
Collapse
Affiliation(s)
- Han Guan
- Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Rui Peng
- Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Fang Fang
- Department of Immunology, School of Laboratory Medicine, Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China
| | - Likai Mao
- Department of Urology, Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhijun Chen
- Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shuai Yang
- Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Changyuan Dai
- Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Hongliang Wu
- Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Chengyong Wang
- Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Ninghan Feng
- Department of Urology, Affiliated Wuxi No.2 Hospital of Nanjing Medical University, Wuxi, China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| |
Collapse
|
26
|
Wu H, Dai Y, Zhang D, Zhang X, He Z, Xie X, Cai C. LINC00961 inhibits the migration and invasion of colon cancer cells by sponging miR-223-3p and targeting SOX11. Cancer Med 2020; 9:2514-2523. [PMID: 32045135 PMCID: PMC7131851 DOI: 10.1002/cam4.2850] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/17/2019] [Accepted: 12/10/2019] [Indexed: 02/05/2023] Open
Abstract
Long noncoding RNAs play essential roles in colon cancer tumorigenesis. This study aimed to explore the potential function and molecular mechanisms of LINC00961 in colon cancer. qPCR results showed that LINC00961 was downregulated in colon cancer cells and tissues. Functional assays demonstrated that LINC00961 suppressed the migration and invasion of colon cancer cells in vitro. LINC00961 functioned as an endogenous sponge for miR-223-3p in colon cancer cells. SOX11 was confirmed as a target gene of miR-223-3p. The effect of miR-223-3p on colon cancer cells was then investigated. MiR-223-3p inhibition enhanced their migration and invasion. The effect of SOX11 on colon cancer cells was studied. SOX11 overexpression inhibited the invasion of colon cancer cells. LINC00961 acted as an anti-oncogene and upregulated SOX11 expression by functioning as a miR-223-3p sponge. This research revealed the molecular mechanism of LINC00961 in colon cancer. LINC00961 might act as a potential diagnostic biomarker and therapeutic target for further clinical treatments.
Collapse
Affiliation(s)
- Haixia Wu
- Department of Medical OncologyCancer Hospital of Fudan UniversityMinhang Branch, ShanghaiChina
| | - Yuedi Dai
- Department of Medical OncologyCancer Hospital of Fudan UniversityMinhang Branch, ShanghaiChina
| | - Dexiang Zhang
- General Surgery DepartmentZhongshan‐Xuhui Hospital Affiliated to Fudan UniversityShanghaiChina
| | - Xiaoyu Zhang
- Department of General SurgeryDivision of Gastrointestinal SurgeryHuai'an Second People's HospitalThe Affiliated Huai'an Hospital of Xuzhou Medical UniversityHuai'anChina
| | - Zhiyun He
- Colorectal Surgical DepartmentLanzhou University Second HospitalLanzhouChina
| | - Xiaojun Xie
- Department of General SurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Chudong Cai
- Department of General SurgeryShantou Central HospitalThe Affiliated Shantou Hospital of Sun Yat‐Sen UniversityShantouChina
| |
Collapse
|
27
|
He X, Liu Z, Pang Y, Xu W, Zhao L, Li H. Downregulation of transcription factor TCTP elevates microRNA-200a expression to restrain Myt1L expression, thereby improving neurobehavior and oxidative stress injury in cerebral palsy rats. Cell Cycle 2020; 19:855-869. [PMID: 32174219 DOI: 10.1080/15384101.2020.1717044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Transcription factors have already been proposed to work on some human diseases. Yet the role of translationally controlled tumor protein (TCTP) in cerebral palsy (CP) remains elusive. This study intends to examine the mechanism of TCTP on CP by regulating microRNA-200a (miR-200a).CP models of rats were established referring to the internationally recognized improved hypoxic ischemic encephalopathy modeling method. The neuroethology of rats, ultrastructure and pathological condition in brain tissues of rats were observed through several assays. The expression of TCTP, miR-200a, myelin transcription factor 1-like (Myt1L), tyrosine hydroxylase (TH) and inducible nitric oxide synthase (iNOS) along with apoptosis in brain tissues of rats was detected. The levels of reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in brain tissues of rats were determined. The binding site between miR-200a and Myt1L was analyzed.TCTP and Myt1L were overexpressed and miR-200a was under-expressed in CP rats. Elevated miR-200a ameliorated neurobehavior of CP rats and pathological injury in brain tissues. Elevated miR-200a up-regulated TH, GSH, GSH-Px, and SOD levels, down-regulated iNOS, ROS, MDA, TNF-α, and IL-6 levels, and attenuated neuronal apoptosis in brain tissues of CP rats. Myt1L was a target gene of miR-200a.Altogether, our study suggested that diminution of transcription factor TCTP up-regulates miR-200a to limit Myt1L expression, thereby improving neurobehavior and oxidative stress injury in CP rats.
Collapse
Affiliation(s)
- Xiaoxia He
- The Second Department of Rehabilitation, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zibo Liu
- The Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yatao Pang
- The Second Department of Rehabilitation, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei Xu
- The Second Department of Rehabilitation, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Long Zhao
- The Second Department of Rehabilitation, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongling Li
- The Second Department of Rehabilitation, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
28
|
Zheng J, Zhang Y, Cai S, Dong L, Hu X, Chen MB, Zhu YH. MicroRNA-4651 targets bromodomain-containing protein 4 to inhibit non-small cell lung cancer cell progression. Cancer Lett 2020; 476:129-139. [PMID: 32081805 DOI: 10.1016/j.canlet.2020.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022]
Abstract
Bromodomain-containing protein 4 (BRD4) overexpression in non-small cell lung cancer (NSCLC) promotes cancer progression. Here, we show that miR-4651 selectively targets and negatively regulates BRD4 in A549 and primary human NSCLC cells. RNA pull-down experiments confirmed that miR-4651 directly binds to BRD4 mRNA. Further, ectopic overexpression of miR-4651 in A549 cells and primary NSCLC cells decreased BRD4 3'-UTR luciferase reporter activity and its expression, whereas miR-4651 inhibition elevated both. Functional studies demonstrated that NSCLC cell growth, proliferation, and migration were suppressed with ectopic miR-4651 overexpression but enhanced with miR-4651 inhibition. BRD4 re-expression using a 3'-UTR mutant BRD4 reversed A549 cell inhibition induced by miR-4651 overexpression. Further, miR-4651 overexpression or inhibition failed to alter the functions of BRD4-KO A549 cells. In vivo, miR-4651-overexpressing A549 xenografts grew slowly than control A549 xenografts in severe combined immunodeficient mice. Finally, miR-4651 was downregulated in human NSCLC tissues, correlating with BRD4 elevation. Together, miR-4651 targets BRD4 to inhibit NSCLC cell growth in vitro and in vivo.
Collapse
Affiliation(s)
- Jiangnan Zheng
- Department of Respiratory Medicine, Affiliated Wujiang Hospital of Nantong University, Suzhou, China; Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yan Zhang
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, China
| | - Shang Cai
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Lingyun Dong
- Department of Respiratory Medicine, Affiliated Wujiang Hospital of Nantong University, Suzhou, China
| | - Xiaoyun Hu
- Department of Respiratory Medicine, Affiliated Wujiang Hospital of Nantong University, Suzhou, China
| | - Min-Bin Chen
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, China.
| | - Ye-Han Zhu
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
29
|
Pham TT, Ban J, Hong Y, Lee J, Vu TH, Truong AD, Lillehoj HS, Hong YH. MicroRNA gga-miR-200a-3p modulates immune response via MAPK signaling pathway in chicken afflicted with necrotic enteritis. Vet Res 2020; 51:8. [PMID: 32014061 PMCID: PMC6998359 DOI: 10.1186/s13567-020-0736-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that contribute to host immune response as post-transcriptional regulation. The current study investigated the biological role of the chicken (Gallus gallus) microRNA-200a-3p (gga-miR-200a-3p), using 2 necrotic enteritis (NE) afflicted genetically disparate chicken lines, 6.3 and 7.2, as well as the mechanisms underlying the fundamental signaling pathways in chicken. The expression of gga-miR-200a-3p in the intestinal mucosal layer of NE-induced chickens, was found to be upregulated during NE infection in the disease-susceptible chicken line 7.2. To validate the target genes, we performed an overexpression analysis of gga-miR-200a-3p using chemically synthesized oligonucleotides identical to gga-miR-200a-3p, reporter gene analysis including luciferase reporter assay, and a dual fluorescence reporter assay in cultured HD11 chicken macrophage cell lines. Gga-miR-200a-3p was observed to be a direct transcriptional repressor of ZAK, MAP2K4, and TGFβ2 that are involved in mitogen-activated protein kinase (MAPK) pathway by targeting the 3′-UTR of their transcripts. Besides, gga-miR-200a-3p may indirectly affect the expression of protein kinases including p38 and ERK1/2 at both transcriptional and translational levels, suggesting that this miRNA may function as an important regulator of the MAPK signaling pathway. Proinflammatory cytokines consisting of IL-1β, IFN-γ, IL-12p40, IL-17A, and LITAF belonging to Th1 and Th17-type cytokines, were upregulated upon gga-miR-200a-3p overexpression. These findings have enhanced our knowledge of the immune function of gga-miR-200a-3p mediating the chicken immune response via regulation of the MAPK signaling pathway and indicate that this miRNA may serve as an important biomarker of diseases in domestic animals.
Collapse
Affiliation(s)
- Thu Thao Pham
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.,Key Laboratory of Animal Cell Biotechnology, National Institute of Animal Science, 9 Tan Phong, Thuy Phuong, Bac Tu Liem, Hanoi, 100000, Viet Nam
| | - Jihye Ban
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Yeojin Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Jiae Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Thi Hao Vu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Anh Duc Truong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.,Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Viet Nam
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD, 20705, USA
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
30
|
Tang F, Lu Z, Wang J, Li Z, Wu W, Duan H, He Z. Competitive endogenous RNA (ceRNA) regulation network of lncRNAs, miRNAs, and mRNAs in Wilms tumour. BMC Med Genomics 2019; 12:194. [PMID: 31842887 PMCID: PMC6915924 DOI: 10.1186/s12920-019-0644-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/08/2019] [Indexed: 12/19/2022] Open
Abstract
Background Competitive endogenous RNAs (ceRNAs) have revealed a new mechanism of interaction between RNAs. However, an understanding of the ceRNA regulatory network in Wilms tumour (WT) remains limited. Methods The expression profiles of mRNAs, miRNAs and lncRNAs in Wilms tumour samples and normal samples were obtained from the Therapeutically Applicable Research to Generate Effective Treatment (TARGET) database. The EdgeR package was employed to identify differentially expressed lncRNAs, miRNAs and mRNAs. Functional enrichment analyses via the ClusterProfile R package were performed, and the lncRNA–miRNA–mRNA interaction ceRNA network was established in Cytoscape. Subsequently, the correlation between the ceRNA network and overall survival was analysed. Results A total of 2037 lncRNAs, 154 miRNAs and 3609 mRNAs were identified as differentially expressed RNAs in Wilms tumour. Of those, 205 lncRNAs, 26 miRNAs and 143 mRNAs were included in the ceRNA regulatory network. The results of Gene Ontology (GO) analysis revealed that the differentially expressed genes (DEGs) were mainly enriched in terms related to response to mechanical stimuli, transcription factor complexes, and transcription factor activity (related to RNA polymerase II proximal promoter sequence-specific DNA binding). The results of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the DEGs were mainly enriched in pathways related to the cell cycle. The survival analysis results showed that 16 out of the 205 lncRNAs, 1 out of 26 miRNAs and 5 out of 143 mRNAs were associated with overall survival in Wilms tumour patients (P < 0.05). Conclusions CeRNA networks play an important role in Wilms tumour. This finding might provide effective, novel insights for further understanding the mechanisms underlying Wilms tumour.
Collapse
Affiliation(s)
- Fucai Tang
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Zechao Lu
- First Clinical College of Guangzhou Medical University, Guangzhou, 510230, China
| | - Jiamin Wang
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China
| | - Zhibiao Li
- Three Clinical College of Guangzhou Medical University, Guangzhou, 510230, China
| | - Weijia Wu
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Haifeng Duan
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China
| | - Zhaohui He
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China.
| |
Collapse
|
31
|
Morgado-Pascual JL, Rayego-Mateos S, Tejedor L, Suarez-Alvarez B, Ruiz-Ortega M. Bromodomain and Extraterminal Proteins as Novel Epigenetic Targets for Renal Diseases. Front Pharmacol 2019; 10:1315. [PMID: 31780938 PMCID: PMC6857099 DOI: 10.3389/fphar.2019.01315] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
Epigenetic mechanisms, especially DNA methylation and histone modifications, are dynamic processes that regulate the gene expression transcriptional program in normal and diseased states. The bromodomain and extraterminal (BET) protein family (BRD2, BRD3, BRD4, and BRDT) are epigenetic readers that, via bromodomains, regulate gene transcription by binding to acetylated lysine residues on histones and master transcriptional factors. Experimental data have demonstrated the involvement of some BET proteins in many pathological conditions, including tumor development, infections, autoimmunity, and inflammation. Selective bromodomain inhibitors are epigenetic drugs that block the interaction between BET proteins and acetylated proteins, thus exerting beneficial effects. Recent data have described the beneficial effect of BET inhibition on experimental renal diseases. Emerging evidence underscores the importance of environmental modifications in the origin of pathological features in chronic kidney diseases (CKD). Several cellular processes such as oxidation, metabolic disorders, cytokines, inflammation, or accumulated uremic toxins may induce epigenetic modifications that regulate key processes involved in renal damage and in other pathological conditions observed in CKD patients. Here, we review how targeting bromodomains in BET proteins may regulate essential processes involved in renal diseases and in associated complications found in CKD patients, such as cardiovascular damage, highlighting the potential of epigenetic therapeutic strategies against BET proteins for CKD treatment and associated risks.
Collapse
Affiliation(s)
- Jose Luis Morgado-Pascual
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Sandra Rayego-Mateos
- Red de Investigación Renal (REDinREN), Madrid, Spain.,Vascular and Renal Translational Research Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Lucia Tejedor
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Beatriz Suarez-Alvarez
- Red de Investigación Renal (REDinREN), Madrid, Spain.,Translational Immunology Laboratory, Health Research Institute of the Principality of Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| |
Collapse
|
32
|
Ji L, Jiang X, Mao F, Tang Z, Zhong B. miR‑589‑5p is downregulated in prostate cancer and regulates tumor cell viability and metastasis by targeting CCL‑5. Mol Med Rep 2019; 20:1373-1382. [PMID: 31173214 DOI: 10.3892/mmr.2019.10334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 03/13/2019] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer is one of the most common human malignancies, which represents a serious threat to health, and microRNAs (miRNAs/miRs) have been reported to be closely associated with the progression and development of prostate cancer. The present study aimed to investigate the expression patterns, functions and underlying mechanisms of miR‑589‑5p in prostate cancer. The results demonstrated that the expression levels of miR‑589‑5p were downregulated in prostate cancer tissues and cell lines. Overexpression of miR‑589‑5p inhibited cell viability, migration and invasion in prostate cancer cells. Subsequently, chemokine (C‑C motif) ligand 5 (CCL‑5) was identified as a direct target gene of miR‑589‑5p, which was highly expressed at the mRNA and protein levels in prostate cancer tissues and cells. Furthermore, CCL‑5 mRNA was negatively correlated with miR‑589‑5p expression in prostate cancer tissues. Silencing CCL‑5 promoted the apoptosis, and inhibited the migration and invasion of prostate cancer cells. Taken together, these results indicated that miR‑589‑5p may act as a tumor suppressor in prostate cancer by targeting CCL‑5, thus suggesting that miR‑589‑5p may be a novel and reliable molecular marker for the diagnosis and prognosis of prostate cancer.
Collapse
Affiliation(s)
- Lu Ji
- Department of Urology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xi Jiang
- Department of Urology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Fei Mao
- Department of Urology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Zhiwang Tang
- Department of Urology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Bing Zhong
- Department of Urology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
33
|
Guan H, You Z, Wang C, Fang F, Peng R, Mao L, Xu B, Chen M. MicroRNA-200a suppresses prostate cancer progression through BRD4/AR signaling pathway. Cancer Med 2019; 8:1474-1485. [PMID: 30784214 PMCID: PMC6488151 DOI: 10.1002/cam4.2029] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/06/2019] [Accepted: 01/23/2019] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer is still considered a significant health care challenge worldwide due in part to the distinct transformation of androgen‐dependent prostate cancer (ADPC) into treatment‐refractory castration‐resistant prostate cancer (CRPC). Consequently, there is an urgent need to explore novel molecular mechanisms underlying treatment resistance in ADPC. Although numerous studies have alluded to the role of miR‐200a in several cancers, the biological significance of miR‐200a in prostate cancer remains unknown. After performing microarray analysis and reanalysis of the publicly available Memorial Sloan Kettering Cancer Center dataset, miR‐200a expression was found higher in ADPC tissues and its expression was positively associated with survival of CRPC patients. In vitro studies showed that miR‐200a overexpression in CRPC cells markedly suppressed cellular proliferation and facilitated apoptosis. In vivo studies indicated that overexpression of miR‐200a inhibited growth and metastasis of prostate cancer. The luciferase reporter assay demonstrated that BRD4 is a direct target gene of miR‐200a and it could reverse miR‐200a‐mediated biological effects in prostate cancer cells. Most importantly, our findings indicated that miR‐200a suppresses the progression of CRPC by inhibiting the activation of BRD4‐mediated AR signaling. This finding provides the foundation for the development of more personalized therapeutic approaches for CRPC patients.
Collapse
Affiliation(s)
- Han Guan
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zonghao You
- Department of Urology, Affliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Can Wang
- Department of Urology, Affliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Fang Fang
- Department of Immunology, Bengbu Medical College, Bengbu, China
| | - Rui Peng
- Department of Graduate School, Bengbu Medical College, Bengbu, China
| | - Likai Mao
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Bin Xu
- Department of Urology, Affliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Ming Chen
- Department of Urology, Affliated Zhongda Hospital of Southeast University, Nanjing, China
| |
Collapse
|