1
|
Saha A, Gavert N, Brabletz T, Ben-Ze’ev A. A Necessary Role for Cyclin D2 Induction During Colon Cancer Progression Mediated by L1. Cells 2024; 13:1810. [PMID: 39513917 PMCID: PMC11544798 DOI: 10.3390/cells13211810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The cell adhesion molecule L1CAM (L1), mainly known for its function in brain cells, is a Wnt/β-catenin signaling target gene in colorectal cancer (CRC) cells, where it promotes invasion and liver metastasis. We interrogated which genes are expressed at increased levels in human CRC tissue and induced in CRC cell lines overexpressing L1. We found increased cyclin D2 levels in CRC tissue and LS 174T and HCT 116 human CRC cells overexpressing L1. Increased cyclin D2 in CRC cells was associated with higher proliferation rates, faster motility, tumorigenesis, and liver metastasis. The suppression of cyclin D2 expression by shRNA to cyclin D2 blocked the increase in these cellular properties of L1-expressing cells. The overexpression of cyclin D2 in the absence of L1 also conferred tumorigenic properties similar to L1 expression. The pathways involved in the elevation of cyclin D2 by L1 include NF-κB, Akt, and β-catenin signaling but not the Erk pathway. We found that in a significant percentage of human CRC tissue samples, cyclin D2 is expressed at high levels in the nuclei of cancer cells. At the same time, the adjacent normal mucosa was negative for cyclin D2 staining. The results suggest that the increased cyclin D2 expression by L1 is required to induce proliferative, motile tumor development in CRC tissue and can serve as a diagnostic marker and a target for CRC therapy.
Collapse
Affiliation(s)
- Arka Saha
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.S.); (N.G.)
| | - Nancy Gavert
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.S.); (N.G.)
| | - Thomas Brabletz
- Department of Experimental Medicine I, Nikolaus-Feibiger-Center for Molecular Medicine, University of Erlangen-Nuernberg, 91054 Erlangen, Germany;
| | - Avri Ben-Ze’ev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.S.); (N.G.)
| |
Collapse
|
2
|
Li Y, Yang J, Wang X, Luoreng Z. Transcriptome analysis reveals the regulation of miR-19b on inflammation in bovine mammary epithelial cells. Microb Pathog 2024; 197:107082. [PMID: 39461446 DOI: 10.1016/j.micpath.2024.107082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/10/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
MicroRNAs (miRNAs) are involved in various biological processes where they regulate the expression of mRNAs. Bovine mammary epithelial cells (bMECs) are functional cells that mediate mammary inflammatory immunity. Although numerous miRNAs regulate the function of bMECs, the role of miR-19b in bMECs has not been reported. In this study, the transcriptome of miR-19b overexpressed bMECs was analyzed by RNA-seq. Additionally, the differentially expressed genes (DEGs) were analyzed to establish the role of miR-19b in bMECs. The results revealed 269 DEGs between the miR-19b overexpression group and the negative control, including 199 up-regulated and 70 down-regulated genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that the DEGs regulated immune and inflammatory responses through Staphylococcus aureus (S. aureus) infection and phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway. In addition, the expression of miR-19b was significantly upregulated in lipophosphoric acid (LTA)-induced bMECs, and overexpression of miR-19b negatively regulated the expression of inflammatory cytokines IL-1β and IL-6, thereby alleviating the inflammatory response of LTA-induced bMECs. Based on the above results, we speculate that miR-19b may inhibit in dairy cow mammary inflammation caused by S. aureus, and this process may be mediated through the regulation of relevant gene expression and signaling pathways. The findings from this study provide a new reference for analyzing the molecular regulation of miR-19b in bMECs.
Collapse
Affiliation(s)
- Yuhang Li
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Jian Yang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Xingping Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China.
| | - Zhuoma Luoreng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China.
| |
Collapse
|
3
|
Babaeenezhad E, Abdolvahabi Z, Asgharzadeh S, Abdollahi M, Shakeri S, Moradi Sarabi M, Yarahmadi S. Potential function of microRNA miRNA-206 in breast cancer pathogenesis: Mechanistic aspects and clinical implications. Pathol Res Pract 2024; 260:155454. [PMID: 39002434 DOI: 10.1016/j.prp.2024.155454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Breast cancer (BC) is a major public health problem that affects women worldwide. Growing evidence has highlighted the role of miRNA-206 in BC pathogenesis. Changes in its expression have diagnostic and prognostic potential as they are associated with clinicopathological parameters, including lymph node metastasis, overall survival, tumor size, metastatic stage, resistance to chemotherapy, and recurrence. In the present study, we summarized, assessed, and discussed the most recent understanding of the functions of miRNA-206 in BC. Unexpectedly, miRNA-206 was found to control both oncogenic and tumor-suppressive pathways. We also considered corresponding downstream effects and upstream regulators. Finally, we addressed the diagnostic and prognostic value of miRNA-206 and its potential for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Esmaeel Babaeenezhad
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Zohreh Abdolvahabi
- Cellular and Molecular Research Centre, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sahar Asgharzadeh
- Cellular and Molecular Research Centre, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Masume Abdollahi
- Cellular and Molecular Research Centre, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sara Shakeri
- Cellular and Molecular Research Centre, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mostafa Moradi Sarabi
- Hepatities Research Center, Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sahar Yarahmadi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
4
|
Thomas ME, Qi W, Walsh MP, Ma J, Westover T, Abdelhamed S, Ezzell LJ, Rolle C, Xiong E, Rosikiewicz W, Xu B, Loughran AJ, Pruett-Miller SM, Janke LJ, Klco JM. Functional characterization of cooperating MGA mutations in RUNX1::RUNX1T1 acute myeloid leukemia. Leukemia 2024; 38:991-1002. [PMID: 38454121 PMCID: PMC11073986 DOI: 10.1038/s41375-024-02193-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
MGA (Max-gene associated) is a dual-specificity transcription factor that negatively regulates MYC-target genes to inhibit proliferation and promote differentiation. Loss-of-function mutations in MGA have been commonly identified in several hematological neoplasms, including acute myeloid leukemia (AML) with RUNX1::RUNX1T1, however, very little is known about the impact of these MGA alterations on normal hematopoiesis or disease progression. We show that representative MGA mutations identified in patient samples abolish protein-protein interactions and transcriptional activity. Using a series of human and mouse model systems, including a newly developed conditional knock-out mouse strain, we demonstrate that loss of MGA results in upregulation of MYC and E2F targets, cell cycle genes, mTOR signaling, and oxidative phosphorylation in normal hematopoietic cells, leading to enhanced proliferation. The loss of MGA induces an open chromatin state at promoters of genes involved in cell cycle and proliferation. RUNX1::RUNX1T1 expression in Mga-deficient murine hematopoietic cells leads to a more aggressive AML with a significantly shortened latency. These data show that MGA regulates multiple pro-proliferative pathways in hematopoietic cells and cooperates with the RUNX1::RUNX1T1 fusion oncoprotein to enhance leukemogenesis.
Collapse
Affiliation(s)
- Melvin E Thomas
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, TN, 38105, USA
| | - Wenqing Qi
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, TN, 38105, USA
| | - Michael P Walsh
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, TN, 38105, USA
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, TN, 38105, USA
| | - Tamara Westover
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, TN, 38105, USA
| | - Sherif Abdelhamed
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, TN, 38105, USA
| | - Lauren J Ezzell
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chandra Rolle
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, TN, 38105, USA
| | - Emily Xiong
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, TN, 38105, USA
| | - Wojciech Rosikiewicz
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Allister J Loughran
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Laura J Janke
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, TN, 38105, USA
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, TN, 38105, USA.
| |
Collapse
|
5
|
Iori S, D'Onofrio C, Laham-Karam N, Mushimiyimana I, Lucatello L, Lopparelli RM, Gelain ME, Capolongo F, Pauletto M, Dacasto M, Giantin M. Establishment and characterization of cytochrome P450 1A1 CRISPR/Cas9 Knockout Bovine Foetal Hepatocyte Cell Line (BFH12). Cell Biol Toxicol 2024; 40:18. [PMID: 38528259 DOI: 10.1007/s10565-024-09856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
The cytochrome P450 1A (CYP1A) subfamily of xenobiotic metabolizing enzymes (XMEs) consists of two different isoforms, namely CYP1A1 and CYP1A2, which are highly conserved among species. These two isoenzymes are involved in the biotransformation of many endogenous compounds as well as in the bioactivation of several xenobiotics into carcinogenic derivatives, thereby increasing the risk of tumour development. Cattle (Bos taurus) are one of the most important food-producing animal species, being a significant source of nutrition worldwide. Despite daily exposure to xenobiotics, data on the contribution of CYP1A to bovine hepatic metabolism are still scarce. The CRISPR/Cas9-mediated knockout (KO) is a useful method for generating in vivo and in vitro models for studying xenobiotic biotransformations. In this study, we applied the ribonucleoprotein (RNP)-complex approach to successfully obtain the KO of CYP1A1 in a bovine foetal hepatocyte cell line (BFH12). After clonal expansion and selection, CYP1A1 excision was confirmed at the DNA, mRNA and protein level. Therefore, RNA-seq analysis revealed significant transcriptomic changes associated with cell cycle regulation, proliferation, and detoxification processes as well as on iron, lipid and mitochondrial homeostasis. Altogether, this study successfully generates a new bovine CYP1A1 KO in vitro model, representing a valuable resource for xenobiotic metabolism studies in this important farm animal species.
Collapse
Affiliation(s)
- Silvia Iori
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Caterina D'Onofrio
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Nihay Laham-Karam
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Neulaniementie 2, 70211, Kuopio, Finland
| | - Isidore Mushimiyimana
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Neulaniementie 2, 70211, Kuopio, Finland
| | - Lorena Lucatello
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Rosa Maria Lopparelli
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Maria Elena Gelain
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Francesca Capolongo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy.
| |
Collapse
|
6
|
Cardona-Benavides IJ, Misiewicz-Krzeminska I, Rojas EA, De Ramón C, Sanz-Solas A, Isidro I, Quwaider D, López-Guerrero AM, Cuadrado M, Calasanz MJ, Rosiñol L, Martínez-López J, San Miguel JF, Mateos MV, Corchete LA, Gutiérrez NC. Quantification of cyclin D1 and D2 proteins in multiple myeloma identifies different expression patterns from those revealed by gene expression profiling. Haematologica 2024; 109:877-887. [PMID: 37646661 PMCID: PMC10905080 DOI: 10.3324/haematol.2023.283445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
Upregulation of a cyclin D gene determined by expression microarrays is an almost universal event in multiple myeloma (MM), but this finding has not been properly confirmed at the protein level. For this reason, we carried out a quantitative analysis of cyclin D proteins using a capillary electrophoresis nanoimmunoassay in newly diagnosed MM patients. Exclusive expression of cyclin D1 and D2 proteins was detected in 54 of 165 (33%) and 30 of 165 (18%) of the MM patients, respectively. Of note, cyclin D1 or D2 proteins were undetectable in 41% of the samples. High levels of cyclin D1 protein were strongly associated with the presence of t(11;14) or 11q gains. Cyclin D2 protein was detected in all the cases bearing t(14;16), but in only 24% of patients with t(4;14). The presence of cyclin D2 was associated with shorter overall survival (hazard ratio =2.14; P=0.017), although patients expressing cyclin D2 protein, but without 1q gains, had a favorable prognosis. In conclusion, although one of the cyclins D is overexpressed at the mRNA level in almost all MM patients, in approximately half of the patients this does not translate into detectable protein. This suggests that cyclins D could not play an oncogenic role in a proportion of patients with MM (clinicaltrials gov. identifier: NCT01916252).
Collapse
Affiliation(s)
- Ignacio J Cardona-Benavides
- Hematology Department, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), Spain; Cancer Research Center-IBMCC (USAL-CSIC), Salamanca
| | | | - Elizabeta A Rojas
- Hematology Department, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), Spain; Cancer Research Center-IBMCC (USAL-CSIC), Salamanca
| | - Cristina De Ramón
- Hematology Department, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), Spain; Cancer Research Center-IBMCC (USAL-CSIC), Salamanca
| | - Antonio Sanz-Solas
- Hematology Department, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), Spain; Cancer Research Center-IBMCC (USAL-CSIC), Salamanca
| | - Isabel Isidro
- Hematology Department, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), Spain; Cancer Research Center-IBMCC (USAL-CSIC), Salamanca
| | - Dalia Quwaider
- Hematology Department, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), Spain; Cancer Research Center-IBMCC (USAL-CSIC), Salamanca
| | - Aida M López-Guerrero
- Hematology Department, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), Spain; Cancer Research Center-IBMCC (USAL-CSIC), Salamanca
| | - Myriam Cuadrado
- Hematology Department, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), Spain; Cancer Research Center-IBMCC (USAL-CSIC), Salamanca
| | - María-José Calasanz
- Clínica Universidad de Navarra, Centro de Investigaciones Biomédicas Aplicadas (CIMA), Instituto de Investigación Sanitaria de Navarra, (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)
| | - Laura Rosiñol
- Hospital Clinic of Barcelona, Instituto de Investigaciones Biomédicas August Pi I Sunyer (IDIBAPS), Barcelona
| | - Joaquín Martínez-López
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain; Spanish National Cancer Research Center (CNIO), Madrid, Spain; Hematology Department, Hospital 12 de Octubre, Medicine Department, Complutense University Madrid
| | - Jesús F San Miguel
- Clínica Universidad de Navarra, Centro de Investigaciones Biomédicas Aplicadas (CIMA), Instituto de Investigación Sanitaria de Navarra, (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)
| | - María-Victoria Mateos
- Hematology Department, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), Spain; Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)
| | - Luis A Corchete
- Hematology Department, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), Spain; Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)
| | - Norma C Gutiérrez
- Hematology Department, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), Spain; Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC).
| |
Collapse
|
7
|
O'Brien E, Tse C, Tracy I, Reddin I, Selfe J, Gibson J, Tapper W, Pengelly RJ, Gao J, Aladowicz E, Petts G, Thway K, Popov S, Kelsey A, Underwood TJ, Shipley J, Walters ZS. Pharmacological EZH2 inhibition combined with retinoic acid treatment promotes differentiation and apoptosis in rhabdomyosarcoma cells. Clin Epigenetics 2023; 15:167. [PMID: 37858275 PMCID: PMC10588044 DOI: 10.1186/s13148-023-01583-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Rhabdomyosarcomas (RMS) are predominantly paediatric sarcomas thought to originate from muscle precursor cells due to impaired myogenic differentiation. Despite intensive treatment, 5-year survival for patients with advanced disease remains low (< 30%), highlighting a need for novel therapies to improve outcomes. Differentiation therapeutics are agents that induce differentiation of cancer cells from malignant to benign. The histone methyltransferase, Enhancer of Zeste Homolog 2 (EZH2) suppresses normal skeletal muscle differentiation and is highly expressed in RMS tumours. RESULTS We demonstrate combining inhibition of the epigenetic modulator EZH2 with the differentiating agent retinoic acid (RA) is more effective at reducing cell proliferation in RMS cell lines than single agents alone. In PAX3-FOXO1 positive RMS cells this is due to an RA-driven induction of the interferon pathway resulting in apoptosis. In fusion negative RMS, combination therapy led to an EZH2i-driven upregulation of myogenic signalling resulting in differentiation. In both subtypes, EZH2 is significantly associated with enrichment of trimethylated lysine 27 on histone 3 (H3K27me3) in genes that are downregulated in untreated RMS cells and upregulated with EZH2 inhibitor treatment. These results provide insight into the mechanism that drives the anti-cancer effect of the EZH2/RA single agent and combination treatment and indicate that the reduction of EZH2 activity combined with the induction of RA signalling represents a potential novel therapeutic strategy to treat both subtypes of RMS. CONCLUSIONS The results of this study demonstrate the potential utility of combining EZH2 inhibitors with differentiation agents for the treatment of paediatric rhabdomyosarcomas. As EZH2 inhibitors are currently undergoing clinical trials for adult and paediatric solid tumours and retinoic acid differentiation agents are already in clinical use this presents a readily translatable potential therapeutic strategy. Moreover, as inhibition of EZH2 in the poor prognosis FPRMS subtype results in an inflammatory response, it is conceivable that this strategy may also synergise with immunotherapies for a more effective treatment in these patients.
Collapse
Affiliation(s)
- Eleanor O'Brien
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Carmen Tse
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ian Tracy
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ian Reddin
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Joanna Selfe
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Jane Gibson
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - William Tapper
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Reuben J Pengelly
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jinhui Gao
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ewa Aladowicz
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Gemma Petts
- Department of Paediatric Pathology, University of Manchester Foundation Trust, Manchester, UK
| | - Khin Thway
- Pathology Department, Royal Marsden NHS Foundation Trust, London, UK
| | - Sergey Popov
- Cellular Pathology Department, Cardiff and Vale UHB, Cardiff, UK
| | - Anna Kelsey
- Department of Paediatric Pathology, University of Manchester Foundation Trust, Manchester, UK
| | - Timothy J Underwood
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Janet Shipley
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Zoë S Walters
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK.
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| |
Collapse
|
8
|
Klco J, Thomas M, Qi W, Walsh M, Ma J, Westover T, Abdelhamed S, Ezzell L, Rolle C, Xiong E, Rosikiewicz W, Xu B, Pruett-Miller S, Loughran A, Janke L. Functional Characterization of Cooperating MGA Mutations in RUNX1::RUNX1T1 Acute Myeloid Leukemia. RESEARCH SQUARE 2023:rs.3.rs-3315059. [PMID: 37790524 PMCID: PMC10543392 DOI: 10.21203/rs.3.rs-3315059/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
MGA (Max-gene associated) is a dual-specificity transcription factor that negatively regulates MYC-target genes to inhibit proliferation and promote differentiation. Loss-of-function mutations in MGA have been commonly identified in several hematological neoplasms, including acute myeloid leukemia (AML) with RUNX1::RUNX1T1, however, very little is known about the impact of these MGA alterations on normal hematopoiesis or disease progression. We show that representative MGA mutations identified in patient samples abolish protein-protein interactions and transcriptional activity. Using a series of human and mouse model systems, including a newly developed conditional knock-out mouse strain, we demonstrate that loss of MGA results in upregulation of MYC and E2F targets, cell cycle genes, mTOR signaling, and oxidative phosphorylation in normal hematopoietic cells, leading to enhanced proliferation. The loss of MGA induces an open chromatin state at promotors of genes involved in cell cycle and proliferation. RUNX1::RUNX1T1 expression in Mga-deficient murine hematopoietic cells leads to a more aggressive AML with a significantly shortened latency. These data show that MGA regulates multiple pro-proliferative pathways in hematopoietic cells and cooperates with the RUNX1::RUNX1 T1 fusion oncoprotein to enhance leukemogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Jing Ma
- St. Jude Children's Research Hospital
| | | | | | | | | | | | | | - Beisi Xu
- St Jude Children's Research Hospital
| | | | | | | |
Collapse
|
9
|
Zhou H, Yang L, Lin X, Chan TF, Lee NPY, Tse WKF, Zhang X, Li R, Lai KP. Integrated network findings reveal ubiquitin-specific protease 44 overexpression suppresses tumorigenicity of liver cancer. Aging (Albany NY) 2023; 15:204733. [PMID: 37204480 DOI: 10.18632/aging.204733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer and third leading cause of cancer-related deaths worldwide. HCC is a multistep disease marked by various signaling alterations. A better understanding of the new molecular drivers of HCC could therefore provide an opportunity to develop effective diagnostic and therapeutic targets. Ubiquitin-specific protease 44 (USP44), a member of the cysteine protease family, has been reported to play a role in many cancer types. However, its contribution to HCC development remains unknown. In the present study, we observed suppression of USP44 expression in HCC tissue. Clinicopathologic analysis further showed that low USP44 expression correlated with poorer survival and a later tumor stage in HCC, suggesting that USP44 could be a predictor of poor prognosis in patients with HCC. Gain-of-function analysis in vitro demonstrated the importance of USP44 in HCC cell growth and G0/G1 cell cycle arrest. To investigate the downstream targets of USP44 and the molecular mechanisms underlying its regulation of cell proliferation in HCC, we conducted a comparative transcriptomic analysis and identified a cluster of proliferation-related genes, including CCND2, CCNG2, and SMC3. Ingenuity Pathway Analysis further delineated the gene networks controlled by USP44 through the regulation of membrane proteins and receptors, enzymes, transcriptional factors, and cyclins involved in the control of cell proliferation, metastasis, and apoptosis in HCC. To summarize, our results highlight, for the first time, the tumor-suppression role of USP44 in HCC and suggest a new prognostic biomarker in this disease.
Collapse
Affiliation(s)
- Huanhuan Zhou
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, Guangxi, PR China
| | - Lu Yang
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, Guangxi, PR China
| | - Xiao Lin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ting Fung Chan
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Nikki Pui-Yue Lee
- Department of Surgery, University of Hong Kong, Hong Kong SAR, China
| | - William Ka Fai Tse
- Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Xing Zhang
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, Guangxi, PR China
- Department of Oncology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, PR China
| | - Rong Li
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, Guangxi, PR China
- Department of Oncology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, PR China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, Guangxi, PR China
- Department of Oncology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, PR China
| |
Collapse
|
10
|
Burlibasa L, Nicu AT, Chifiriuc MC, Medar C, Petrescu A, Jinga V, Stoica I. H3 histone methylation landscape in male urogenital cancers: from molecular mechanisms to epigenetic biomarkers and therapeutic targets. Front Cell Dev Biol 2023; 11:1181764. [PMID: 37228649 PMCID: PMC10203431 DOI: 10.3389/fcell.2023.1181764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
During the last decades, male urogenital cancers (including prostate, renal, bladder and testicular cancers) have become one of the most frequently encountered malignancies affecting all ages. While their great variety has promoted the development of various diagnosis, treatment and monitoring strategies, some aspects such as the common involvement of epigenetic mechanisms are still not elucidated. Epigenetic processes have come into the spotlight in the past years as important players in the initiation and progression of tumors, leading to a plethora of studies highlighting their potential as biomarkers for diagnosis, staging, prognosis, and even as therapeutic targets. Thus, fostering research on the various epigenetic mechanisms and their roles in cancer remains a priority for the scientific community. This review focuses on one of the main epigenetic mechanisms, namely, the methylation of the histone H3 at various sites and its involvement in male urogenital cancers. This histone modification presents a great interest due to its modulatory effect on gene expression, leading either to activation (e.g., H3K4me3, H3K36me3) or repression (e.g., H3K27me3, H3K9me3). In the last few years, growing evidence has demonstrated the aberrant expression of enzymes that methylate/demethylate histone H3 in cancer and inflammatory diseases, that might contribute to the initiation and progression of such disorders. We highlight how these particular epigenetic modifications are emerging as potential diagnostic and prognostic biomarkers or targets for the treatment of urogenital cancers.
Collapse
Affiliation(s)
| | | | - Mariana Carmen Chifiriuc
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- Romanian Academy, Bucharest, Romania
| | - Cosmin Medar
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Clinical Hospital “Prof. dr Theodor Burghele”, Bucharest, Romania
| | - Amelia Petrescu
- Clinical Hospital “Prof. dr Theodor Burghele”, Bucharest, Romania
| | - Viorel Jinga
- Academy of Romanian Scientists, Bucharest, Romania
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Clinical Hospital “Prof. dr Theodor Burghele”, Bucharest, Romania
| | - Ileana Stoica
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
11
|
Mugiyanto E, Adikusuma W, Irham LM, Huang WC, Chang WC, Kuo CN. Integrated genomic analysis to identify druggable targets for pancreatic cancer. Front Oncol 2022; 12:989077. [PMID: 36531045 PMCID: PMC9752886 DOI: 10.3389/fonc.2022.989077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/19/2022] [Indexed: 03/31/2024] Open
Abstract
According to the National Comprehensive Cancer Network and the American Society of Clinical Oncology, the standard treatment for pancreatic cancer (PC) is gemcitabine and fluorouracil. Other chemotherapeutic agents have been widely combined. However, drug resistance remains a huge challenge, leading to the ineffectiveness of cancer therapy. Therefore, we are trying to discover new treatments for PC by utilizing genomic information to identify PC-associated genes as well as drug target genes for drug repurposing. Genomic information from a public database, the cBio Cancer Genomics Portal, was employed to retrieve the somatic mutation genes of PC. Five functional annotations were applied to prioritize the PC risk genes: Kyoto Encyclopedia of Genes and Genomes; biological process; knockout mouse; Gene List Automatically Derived For You; and Gene Expression Omnibus Dataset. DrugBank database was utilized to extract PC drug targets. To narrow down the most promising drugs for PC, CMap Touchstone analysis was applied. Finally, ClinicalTrials.gov and a literature review were used to screen the potential drugs under clinical and preclinical investigation. Here, we extracted 895 PC-associated genes according to the cBioPortal database and prioritized them by using five functional annotations; 318 genes were assigned as biological PC risk genes. Further, 216 genes were druggable according to the DrugBank database. CMap Touchstone analysis indicated 13 candidate drugs for PC. Among those 13 drugs, 8 drugs are in the clinical trials, 2 drugs were supported by the preclinical studies, and 3 drugs are with no evidence status for PC. Importantly, we found that midostaurin (targeted PRKA) and fulvestrant (targeted ESR1) are promising candidate drugs for PC treatment based on the genomic-driven drug repurposing pipelines. In short, integrated analysis using a genomic information database demonstrated the viability for drug repurposing. We proposed two drugs (midostaurin and fulvestrant) as promising drugs for PC.
Collapse
Affiliation(s)
- Eko Mugiyanto
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacy, Faculty of Health Science, University of Muhammadiyah Pekajangan Pekalongan, Pekalongan, Indonesia
| | - Wirawan Adikusuma
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacy, Faculty of Health Science, University of Muhammadiyah Mataram, Mataram, Indonesia
| | | | - Wan-Chen Huang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Wei-Chiao Chang
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacy, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Integrative Research Center for Critical Care, Department of Pharmacy, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chun-Nan Kuo
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacy, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
12
|
Identification of Potential Biomarkers of Platelet RNA in Glioblastoma by Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2488139. [PMID: 35996545 PMCID: PMC9391609 DOI: 10.1155/2022/2488139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022]
Abstract
Objective Glioblastoma is one of the most common and fatal malignancies in adults. Current treatment is still not optimistic. Glioblastoma (GBM) transports RNA to platelets in the blood system via microvesicles, suggesting that platelet RNA can be a potential diagnostic and therapeutic target. The roles of specific platelet RNAs in treatment of GBM are not well understood. Methods Platelet RNA profiling of 8 GBM and 12 normal samples were downloaded from the GEO database. Differentially expressed genes (DEGs) were identified between tumors and normal samples. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to elucidate the functions of up- and downregulated genes. miRNA was predicted by miRTarBase, TargetScan, and miRDB databases. circBase and circBank were used for circRNA prediction. ceRNA (circRNA-mRNA-miRNA) network was constructed to investigate the potential interactions. Results 22 genes were upregulated and 9 genes were downregulated. There are only two genes (CCR7 and FAM102A) that connect to miRNAs (hsa-let-7a-5p, hsa-miR-1-3p). We assessed the overall survival rates by Kaplan-Meier plotter, and relative expression of GBM and subtypes for overlapped mRNA (CCR7 and FAM102A) were evaluated, and further, we obtained circRNAs (has-circ-0015164, hsa-circ-0003243) by circBank and circBase and bind sites through the CSCD database. Finally, a ceRNA network (circRNA-mRNA-miRNA) was constructed based on 2 miRNAs, 2 mRNAs, and 2 circRNAs by Cytoscape. This study focused on potential mRNA and ceRNA biomarkers to targeted treatment of GBM and provided ideas for clinical treatment through the combination of hematology and oncology. Conclusion The findings of this study contribute to better understand the relationship between GBM and the blood system (platelets) and might lay a solid foundation for improving GBM molecule and gene diagnosis and prognosis.
Collapse
|
13
|
Zhang LQ, Zhou SL, Li JK, Chen PN, Zhao XK, Wang LD, Li XL, Zhou FY. Identification of a seven-cell cycle signature predicting overall survival for gastric cancer. Aging (Albany NY) 2022; 14:3989-3999. [PMID: 35537781 PMCID: PMC9134949 DOI: 10.18632/aging.204060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/25/2022] [Indexed: 11/25/2022]
Abstract
While genetic alterations in several regulators of the cell cycle have a significant impact on the gastric carcinogenesis process, the prognostic role of them remains to be further elucidated. The TCGA-STAD training set were downloaded and the mRNA expression matrix of cell cycle genes was extracted and corrected for further analysis after taking the intersection with GSE84437 dataset. Differentially expressed mRNAs were identified between tumor and normal tissue samples in TCGA-STAD. Univariate Cox regression analysis and lasso Cox regression model established a novel seven-gene cell cycle signature (including GADD45B, TFDP1, CDC6, CDC25A, CDC7, SMC1A and MCM3) for GC prognosis prediction. Patients in the high-risk group shown significantly poorer survival than patients in the low-risk group. The signature was found to be an independent prognostic factor for GC survival. Nomogram including the signature shown some clinical net benefit for overall survival prediction. The signature was further validated in the GSE84437 dataset. In tissue microarray, CDC6 and MCM3 protein expression were significant differences by the immunohistochemistry-based H-score between tumor tissues and adjacent tissues, and CDC6 is an independent prognostic factor for GC. Interestingly, our GSEA revealed that low-risk patients were more related to cell cycle pathways and might benefit more from therapies targeting cell cycle. Our study identified a novel robust seven-gene cell cycle signature for GC prognosis prediction that may serve as a beneficial complement to clinicopathological staging. The signature might provide potential biomarkers for the application of cell cycle regulators to therapies and treatment response prediction.
Collapse
Affiliation(s)
- Lian-Qun Zhang
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou 450003, Henan, China
| | - Sheng-Li Zhou
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou 450003, Henan, China
| | - Jun-Kuo Li
- Department of Thoracic Surgery, Anyang Tumor Hospital, Anyang 455000, Henan, China
| | - Pei-Nan Chen
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, Henan, China
| | - Xue-Ke Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Li-Dong Wang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Xiu-Ling Li
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou 450003, Henan, China
| | - Fu-You Zhou
- Department of Thoracic Surgery, Anyang Tumor Hospital, Anyang 455000, Henan, China
| |
Collapse
|
14
|
Nicu AT, Medar C, Chifiriuc MC, Gradisteanu Pircalabioru G, Burlibasa L. Epigenetics and Testicular Cancer: Bridging the Gap Between Fundamental Biology and Patient Care. Front Cell Dev Biol 2022; 10:861995. [PMID: 35465311 PMCID: PMC9023878 DOI: 10.3389/fcell.2022.861995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/22/2022] [Indexed: 11/15/2022] Open
Abstract
Testicular cancer is the most common solid tumor affecting young males. Most testicular cancers are testicular germ cell tumors (TGCTs), which are divided into seminomas (SGCTs) and non-seminomatous testicular germ cell tumors (NSGCTs). During their development, primordial germ cells (PGCs) undergo epigenetic modifications and any disturbances in their pattern might lead to cancer development. The present study provides a comprehensive review of the epigenetic mechanisms–DNA methylation, histone post-translational modifications, bivalent marks, non-coding RNA–associated with TGCT susceptibility, initiation, progression and response to chemotherapy. Another important purpose of this review is to highlight the recent investigations regarding the identification and development of epigenetic biomarkers as powerful tools for the diagnostic, prognostic and especially for epigenetic-based therapy.
Collapse
Affiliation(s)
- Alina-Teodora Nicu
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Department of Genetics, University of Bucharest, Bucharest, Romania
| | - Cosmin Medar
- University of Medicine and Pharmacy “Carol Davila”, Clinical Hospital “Prof. dr Theodor Burghele”, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of University of Bucharest (ICUB), Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- Romanian Academy, Bucharest, Romania
| | | | - Liliana Burlibasa
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Department of Genetics, University of Bucharest, Bucharest, Romania
| |
Collapse
|
15
|
Park SJ, Kang YE, Kim JH, Park JL, Kim SK, Baek SW, Chu IS, Yi S, Lee SE, Park YJ, Jung EJ, Kim JM, Ko HM, Kim JR, Jung SN, Won HR, Chang JW, Koo BS, Kim SY. Transcriptomic analysis of papillary thyroid cancer focused on immune-subtyping, oncogenic fusion, and recurrence. Clin Exp Otorhinolaryngol 2022; 15:183-193. [PMID: 35255661 PMCID: PMC9149236 DOI: 10.21053/ceo.2021.02215] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/08/2022] [Indexed: 11/22/2022] Open
Abstract
Objectives Thyroid cancer is the most common endocrine tumor, with rapidly increasing incidence worldwide. However, its transcriptomic characteristics associated with immunological signatures, driver fusions, and recurrence markers remain unclear. We aimed to investigate the transcriptomic characteristics of advanced papillary thyroid cancer. Methods This study included 282 papillary thyroid cancer tumor samples and 155 normal samples from Chungnam National University Hospital and Seoul National University Hospital. Transcriptomic quantification was determined by high-throughput RNA sequencing. We investigated the associations of clinical parameters and molecular signatures using RNA sequencing. We validated predictive biomarkers using the Cancer Genome Atlas database. Results Through a comparison of differentially expressed genes, gene sets, and pathways in papillary thyroid cancer compared to normal tumor-adjacent tissue, we found increased immune signaling associated with cytokines or T cells and decreased thyroid hormone synthetic pathways. In addition, patients with recurrence presented increased CD8+ T-cell and Th1-cell signatures. Interestingly, we found differentially overexpressed genes related to immune-escape signaling such as CTLA4, IDO1, LAG3, and PDCD1 in advanced papillary thyroid cancer with a low thyroid differentiation score. Fusion analysis showed that the PI3K and mitogen-activated protein kinase (MAPK) signaling pathways were regulated differently according to the RET fusion partner genes (CCDC6 or NCOA4). Finally, we identified HOXD9 as a novel molecular biomarker that predicts the recurrence of thyroid cancer in addition to known risk factors (tumor size, lymph node metastasis, and extrathyroidal extension). Conclusion We identified a high association with immune-escape signaling in the immune-hot group with aggressive clinical characteristics among Korean thyroid cancer patients. Moreover, RET fusion differentially regulated PI3K and MAPK signaling depending on the partner gene of RET, and HOXD9 was found to be a recurrence marker for advanced papillary thyroid cancer.
Collapse
|
16
|
Li XY, Ma WN, Su LX, Shen Y, Zhang L, Shao Y, Wang D, Wang Z, Wen MZ, Yang XT. Association of Angiogenesis Gene Expression With Cancer Prognosis and Immunotherapy Efficacy. Front Cell Dev Biol 2022; 10:805507. [PMID: 35155426 PMCID: PMC8826089 DOI: 10.3389/fcell.2022.805507] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Several new blood vessels are formed during the process of tumor development. These new blood vessels provide nutrients and water for tumour growth, while spreading tumour cells to distant areas and forming new metastases in different parts of the body. The available evidence suggests that tumour angiogenesis is closely associated with the tumour microenvironment and is regulated by a variety of pro-angiogenic factors and/or angiogenic inhibitors.Methods: In the present study, a comprehensive characterization of angiogenesis genes expression was performed in a pan-cancer analysis across the 33 human cancer types. Further, genetic data from several public databases were also used in the current study. An angiogenesis score was assigned to The Cancer Genome Atlas (TCGA) pan-cancer data, with one angiogenesis score as per sample for each tumour.Results: It was found that angiogenesis genes vary across cancer types, and are associated with a number of genomic and immunological features. Further, it was noted that macrophages and iTreg infiltration were generally higher in tumours with high angiogenesis scores, whereas lymphocytes and B cells showed the opposite trend. Notably, NK cells showed significantly different correlations among cancer types. Furthermore, results of the present study showed that a high angiogenesis score was associated with poor survival and aggressive types of cancer in most of the cancer types.Conclusion: In conclusion, the current study evidently showed that the expression of angiogenesis genes is a key feature of tumour biology that has a major impact on prognosis of patient with cancers.
Collapse
Affiliation(s)
- Xin-yu Li
- Department of Interventional Therapy, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Ning Ma
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-xin Su
- Department of Interventional Therapy, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuchen Shen
- Department of Interventional Therapy, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liming Zhang
- Department of Interventional Therapy, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhao Shao
- Department of Interventional Therapy, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Deming Wang
- Department of Interventional Therapy, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenfeng Wang
- Department of Interventional Therapy, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Zhe Wen
- Department of Interventional Therapy, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi-tao Yang
- Department of Interventional Therapy, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xi-tao Yang,
| |
Collapse
|
17
|
Hassan G, Ohara T, Afify SM, Kumon K, Zahra MH, Fu X, Al Kadi M, Seno A, Salomon DS, Seno M. Different pancreatic cancer microenvironments convert iPSCs into cancer stem cells exhibiting distinct plasticity with altered gene expression of metabolic pathways. J Exp Clin Cancer Res 2022; 41:29. [PMID: 35063003 PMCID: PMC8781112 DOI: 10.1186/s13046-021-02167-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/01/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are generated under irregular microenvironment in vivo, of which mimic is quite difficult due to the lack of enough information of the factors responsible for cancer initiation. Here, we demonstrated that mouse induced pluripotent cells (miPSCs) reprogrammed from normal embryonic fibroblasts were susceptible to the microenvironment affected by cancer cells to convert into CSCs in vivo. METHODS Three different pancreatic cancer line cells, BxPC3, PANC1, and PK8 cells were mixed with miPSCs and subcutaneously injected into immunodeficient mice. Tumors were evaluated by histological analysis and cells derived from iPSCs were isolated and selected from tumors. The isolated cells were characterized for cancer stem cell characters in vitro and in vivo as well as their responses to anticancer drugs. The impact of co-injection of iPSCs with cancer cells on transcriptome and signaling pathways of iPSCs was investigated. RESULTS The injection of miPSCs mixed with human pancreatic cancer cells into immunodeficient mice maintained the stemness of miPSCs and changed their phenotype. The miPSCs acquired CSC characteristics of tumorigenicity and self-renewal. The drug responses and the metastatic ability of CSCs converted from miPSCs varied depending on the microenvironment of cancer cells. Interestingly, transcriptome profiles of these cells indicated that the pathways related with aggressiveness and energy production were upregulated from the levels of miPSCs. CONCLUSIONS Our result suggests that cancer-inducing microenvironment in vivo could rewire the cell signaling and metabolic pathways to convert normal stem cells into CSCs.
Collapse
Affiliation(s)
- Ghmkin Hassan
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3.1.1 Tsushima-Naka, Kita, Okayama, 700-8530, Japan
- Department of Genomic Oncology and Oral Medicine, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Toshiaki Ohara
- Department of Pathology and Experimental Medicine, Medical School, Okayama University, Okayama, 700-8558, Japan
| | - Said M Afify
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3.1.1 Tsushima-Naka, Kita, Okayama, 700-8530, Japan
- Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia University, Shebin El Koum-Menoufia, 32511, Egypt
| | - Kazuki Kumon
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3.1.1 Tsushima-Naka, Kita, Okayama, 700-8530, Japan
| | - Maram H Zahra
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3.1.1 Tsushima-Naka, Kita, Okayama, 700-8530, Japan
| | - Xiaoying Fu
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3.1.1 Tsushima-Naka, Kita, Okayama, 700-8530, Japan
- Department of Pathology, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Mohamad Al Kadi
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Akimasa Seno
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3.1.1 Tsushima-Naka, Kita, Okayama, 700-8530, Japan
- The Laboratory of Natural Food and Medicine, Co., Ltd., Okayama, 700-8530, Japan
| | - David S Salomon
- Mouse genetics program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702-1201, USA
| | - Masaharu Seno
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3.1.1 Tsushima-Naka, Kita, Okayama, 700-8530, Japan.
| |
Collapse
|
18
|
Agahozo MC, Smid M, van Marion R, Hammerl D, van den Bosch TPP, Timmermans MAM, Heijerman CJ, Westenend PJ, Debets R, Martens JWM, van Deurzen CHM. Transcriptomic Properties of HER2+ Ductal Carcinoma In Situ of the Breast Associate with Absence of Immune Cells. BIOLOGY 2021; 10:768. [PMID: 34440000 PMCID: PMC8389698 DOI: 10.3390/biology10080768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022]
Abstract
The identification of transcriptomic alterations of HER2+ ductal carcinoma in situ (DCIS) that are associated with the density of tumor-infiltrating lymphocytes (TILs) could contribute to optimizing choices regarding the potential benefit of immune therapy. We compared the gene expression profile of TIL-poor HER2+ DCIS to that of TIL-rich HER2+ DCIS. Tumor cells from 11 TIL-rich and 12 TIL-poor DCIS cases were micro-dissected for RNA isolation. The Ion AmpliSeq Transcriptome Human Gene Expression Kit was used for RNA sequencing. After normalization, a Mann-Whitney rank sum test was used to analyze differentially expressed genes between TIL-poor and TIL-rich HER2+ DCIS. Whole tissue sections were immunostained for validation of protein expression. We identified a 29-gene expression profile that differentiated TIL-rich from TIL-poor HER2+ DCIS. These genes included CCND3, DUSP10 and RAP1GAP, which were previously described in breast cancer and cancer immunity and were more highly expressed in TIL-rich DCIS. Using immunohistochemistry, we found lower protein expression in TIL-rich DCIS. This suggests regulation of protein expression at the posttranslational level. We identified a gene expression profile of HER2+ DCIS cells that was associated with the density of TILs. This classifier may guide towards more rationalized choices regarding immune-mediated therapy in HER2+ DCIS, such as targeted vaccine therapy.
Collapse
Affiliation(s)
- Marie Colombe Agahozo
- Department of Pathology, Erasmus MC Cancer Institute, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (M.C.A.); (R.v.M.); (T.P.P.v.d.B.)
| | - Marcel Smid
- Department of Medical Oncology, Erasmus MC Cancer Institute, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (M.S.); (D.H.); (M.A.M.T.); (C.J.H.); (R.D.); (J.W.M.M.)
| | - Ronald van Marion
- Department of Pathology, Erasmus MC Cancer Institute, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (M.C.A.); (R.v.M.); (T.P.P.v.d.B.)
| | - Dora Hammerl
- Department of Medical Oncology, Erasmus MC Cancer Institute, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (M.S.); (D.H.); (M.A.M.T.); (C.J.H.); (R.D.); (J.W.M.M.)
| | - Thierry P. P. van den Bosch
- Department of Pathology, Erasmus MC Cancer Institute, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (M.C.A.); (R.v.M.); (T.P.P.v.d.B.)
| | - Mieke A. M. Timmermans
- Department of Medical Oncology, Erasmus MC Cancer Institute, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (M.S.); (D.H.); (M.A.M.T.); (C.J.H.); (R.D.); (J.W.M.M.)
| | - Chayenne J. Heijerman
- Department of Medical Oncology, Erasmus MC Cancer Institute, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (M.S.); (D.H.); (M.A.M.T.); (C.J.H.); (R.D.); (J.W.M.M.)
| | | | - Reno Debets
- Department of Medical Oncology, Erasmus MC Cancer Institute, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (M.S.); (D.H.); (M.A.M.T.); (C.J.H.); (R.D.); (J.W.M.M.)
| | - John W. M. Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (M.S.); (D.H.); (M.A.M.T.); (C.J.H.); (R.D.); (J.W.M.M.)
| | - Carolien H. M. van Deurzen
- Department of Pathology, Erasmus MC Cancer Institute, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (M.C.A.); (R.v.M.); (T.P.P.v.d.B.)
| |
Collapse
|
19
|
Padam KSR, Basavarajappa DS, Shenoy US, Chakrabarty S, Kabekkodu SP, Hunter KD, Radhakrishnan R. In silico interaction of HOX cluster-embedded microRNAs and long non-coding RNAs in oral cancer. J Oral Pathol Med 2021; 51:18-29. [PMID: 34358375 DOI: 10.1111/jop.13225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/07/2021] [Accepted: 07/27/2021] [Indexed: 12/31/2022]
Abstract
The essential role HOX-associated non-coding RNAs play in chromatin dynamics and gene regulation has been well documented. The potential roles of these microRNAs and long non-coding RNAs in oral cancer development, with their attendant involvement in various cellular processes including proliferation, invasion, migration, epithelial-mesenchymal transition and metastasis is gaining credence. An interaction network of HOX-embedded non-coding RNAs was constructed to identify the RNA interaction landscape using the arena-Idb platform and visualized using Cytoscape. The miR-10a was shown to interact with HOXA1, miR-10b with HOXD10, miR-196a1 with HOXA5, HOXA7, HOXB8, HOXC8, HOXD8, and miR-196a2 with HOXA5. The lncRNAs, HOTAIR interacted with HOXC11, HOTAIRM1 with HOXA1 and HOXA4, HOTTIP with HOXA13, HOXA-AS2 with HOXA3, HOXA11-AS with HOXA11 and HOXD-AS1 with HOXB8. Changes in the HOX cluster-embedded non-coding RNAs have implications for prognosis and overall disease survival. Our review aims to analyze the functional significance and clinical relevance of non-coding RNAs within the HOX cluster in the context of oral carcinogenesis. Elucidating these interactions between the non-coding RNAs and HOX genes in oral cancer development and progression could pave the way for the identification of reliable biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Kanaka Sai Ram Padam
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Dhanraj Salur Basavarajappa
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - U Sangeetha Shenoy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Keith D Hunter
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
20
|
The Impact of Spaceflight and Microgravity on the Human Islet-1+ Cardiovascular Progenitor Cell Transcriptome. Int J Mol Sci 2021; 22:ijms22073577. [PMID: 33808224 PMCID: PMC8036947 DOI: 10.3390/ijms22073577] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/27/2021] [Accepted: 03/27/2021] [Indexed: 12/11/2022] Open
Abstract
Understanding the transcriptomic impact of microgravity and the spaceflight environment is relevant for future missions in space and microgravity-based applications designed to benefit life on Earth. Here, we investigated the transcriptome of adult and neonatal cardiovascular progenitors following culture aboard the International Space Station for 30 days and compared it to the transcriptome of clonally identical cells cultured on Earth. Cardiovascular progenitors acquire a gene expression profile representative of an early-stage, dedifferentiated, stem-like state, regardless of age. Signaling pathways that support cell proliferation and survival were induced by spaceflight along with transcripts related to cell cycle re-entry, cardiovascular development, and oxidative stress. These findings contribute new insight into the multifaceted influence of reduced gravitational environments.
Collapse
|
21
|
Balc-Okcanoğlu T, Yilma-Susluer S, Kayabasi C, Ozme-Yelken B, Biray-Avci C, Gunduz C. The effect of caffeic acid phenethyl ester on cell cycle control gene expressions in breast cancer cells. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2021; 10:39-43. [PMID: 33681396 PMCID: PMC7936384 DOI: 10.22099/mbrc.2020.38811.1563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We aimed to find the effect of caffeic acid phenethyl ester (CAPE) on the expression profiles of cell cycle control genes in breast cancer cell line (MCF-7). The cytotoxic effect of CAPE on MCF-7 cell line was found with an XTT analysis. Total RNA was isolated from the cells exposed to IC50 dose and untreated control cells. Expressions of genes related to cell cycle control (CCND2, RB1, ATM, CDC34, CDK5RAP1) were evaluated by qRT-PCR by the LightCycler 480 System (Roche). GAPDH and ACTB housekeeping genes were used for the normalization of gene expressions. IC50 value of CAPE in MCF-7 cells was calculated as 75µM. It was shown that IC50 dose of CAPE induced significant upregulation in expressions of cell cycle control genes, compared to control cells. CAPE increases the expression of genes that are important in cell cycle control, suggesting that this component can be used as an effective chemopreventive agent in breast cancer cells.
Collapse
Affiliation(s)
- Tuğçe Balc-Okcanoğlu
- Vocational School of Health Sciences, Near East University, Nicosia, TRNC, Cyprus
| | - Sunde Yilma-Susluer
- Faculty of Medicine, Department of Medical Biology, Ege University, Bornova, Izmir, Turkey
| | - Cagla Kayabasi
- Faculty of Medicine, Department of Medical Biology, Ege University, Bornova, Izmir, Turkey
| | - Besra Ozme-Yelken
- Faculty of Medicine, Department of Medical Biology, Ege University, Bornova, Izmir, Turkey
| | - Cigir Biray-Avci
- Faculty of Medicine, Department of Medical Biology, Ege University, Bornova, Izmir, Turkey
| | - Cumhur Gunduz
- Faculty of Medicine, Department of Medical Biology, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
22
|
Cassinat B, Verger E, Maslah N, Gauthier N, Vainchenker W, Giraudier S, Kiladjian JJ. CCND2 mutations are infrequent events in BCR-ABL1 negative myeloproliferative neoplasm patients. Haematologica 2021; 106:863-864. [PMID: 32414847 PMCID: PMC7927990 DOI: 10.3324/haematol.2020.252643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Indexed: 12/27/2022] Open
Affiliation(s)
- Bruno Cassinat
- AP-HP, Laboratoire de Biologie Cellulaire, Hôpital Saint-Louis, Paris,Université de Paris, U1131 INSERM, Paris,Laboratoire d’Excellence GR-Ex, Université de Paris, Paris
| | - Emmanuelle Verger
- AP-HP, Laboratoire de Biologie Cellulaire, Hôpital Saint-Louis, Paris,Université de Paris, U1131 INSERM, Paris
| | - Nabih Maslah
- AP-HP, Laboratoire de Biologie Cellulaire, Hôpital Saint-Louis, Paris,Université de Paris, U1131 INSERM, Paris
| | | | - William Vainchenker
- Laboratoire d’Excellence GR-Ex, Université de Paris, Paris,Université de Paris-Saclay, INSERM UMR1287, Institut Gustave Roussy, Villejuif, France
| | - Stéphane Giraudier
- AP-HP, Laboratoire de Biologie Cellulaire, Hôpital Saint-Louis, Paris,Université de Paris, U1131 INSERM, Paris,Laboratoire d’Excellence GR-Ex, Université de Paris, Paris
| | - Jean-Jacques Kiladjian
- Université de Paris, U1131 INSERM, Paris,Laboratoire d’Excellence GR-Ex, Université de Paris, Paris,Centre d’Investigations Cliniques, Hôpital Saint-Louis, Paris
| |
Collapse
|
23
|
Mehmood R, Jibiki K, Shibazaki N, Yasuhara N. Molecular profiling of nucleocytoplasmic transport factor genes in breast cancer. Heliyon 2021; 7:e06039. [PMID: 33553736 PMCID: PMC7851789 DOI: 10.1016/j.heliyon.2021.e06039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/14/2020] [Accepted: 01/14/2021] [Indexed: 11/24/2022] Open
Abstract
Transport of functional molecules across the nuclear membrane of a eukaryotic cell is regulated by a dedicated set of transporter proteins that carry molecules into the nucleus or out of the nucleus to the cytoplasm for homeostasis of the cell. One of the categories of cargo molecules these transporters carry are the molecules for cell cycle regulation. Therefore, their role is critical in terms of cancer development. Any misregulation of the transport factors would means aberrant abundance of cell cycle regulators and might have consequences in cell cycle progression. While earlier studies have focussed on individual transport related molecules, a collective overview of how these molecules may be dysregulated in breast cancer is lacking. Using genomic and transcriptomic datasets from TCGA (The Cancer Genome Atlas) and microarray platforms, we carried out bioinformatic analysis and provide a genetic and molecular profile of all the molecules directly related to nucleocytoplasmic shuttling of proteins and RNAs. Interestingly, we identified that many of these molecules are either mutated or have dysregulated expression in breast cancer. Strikingly, some of the molecules, namely, KPNA2, KPNA3, KPNA5, IPO8, TNPO1, XPOT, XPO7 and CSE1L were correlated with poor patient survival. This study provides a comprehensive genetic and molecular landscape of nucleocytoplasmic factors in breast cancer and points to the important roles of various nucleocytoplasmic factors in cancer progression. This data might have implications in prognosis and therapeutic targeting in breast cancer.
Collapse
Affiliation(s)
- Rashid Mehmood
- Department of Life Sciences, College of Science and General Studies, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Kazuya Jibiki
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo, Japan
| | - Noriko Shibazaki
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo, Japan
| | - Noriko Yasuhara
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
24
|
ADAM10 is involved in the oncogenic process and chemo-resistance of triple-negative breast cancer via regulating Notch1 signaling pathway, CD44 and PrPc. Cancer Cell Int 2021; 21:32. [PMID: 33413403 PMCID: PMC7791678 DOI: 10.1186/s12935-020-01727-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/21/2020] [Indexed: 01/15/2023] Open
Abstract
Background Triple-negative breast cancer (TNBC) is the most challenging breast cancer subtype to treat, because it is so aggressive with shorter survival. Chemotherapy remains the standard treatment due to the lack of specific and effective molecular targets. The aim of the present study is to investigate the potential roles of A Disintegrin and Metalloproteinase 10 (ADAM10) on TNBC cells and the effects of combining ADAM10 expression and neoadjuvant chemotherapy treatment (NACT) to improve the overall survival in breast cancer patients. Methods Using a series of breast cancer cell lines, we measured the expression of ADAM10 and its substrates by quantitative real-time PCR assay (qRT-PCR) and western blot analysis. Cell migration and invasion, cell proliferation, drug sensitivity assay, cell cycle and apoptosis were conducted in MDA-MB-231 cells cultured with ADAM10 siRNA. The effect of ADAM10 down-regulation by siRNA on its substrates was assessed by western blot analysis. We performed immunohistochemical staining for ADAM10 in clinical breast cancer tissues in 94 patients receiving NACT. Results The active form of ADAM10 was highly expressed in TNBC cell lines. Knockdown of ADAM10 in MDA-MB-231 cells led to a significant decrease in cell proliferation, migration, invasion and the IC50 value of paclitaxel and adriamycin, while induced cell cycle arrest and apoptosis. And these changes were correlated with down-regulation of Notch signaling, CD44 and cellular prion protein (PrPc). In clinical breast cancer cases, a high ADAM10 expression in pre-NACT samples was strongly associated with poorer response to NACT and shorter overall survival. Conclusions These data suggest the previously unrecognized roles of ADAM10 in contributing to the progression and chemo-resistance of TNBC.
Collapse
|
25
|
Monosomy 3 Influences Epithelial-Mesenchymal Transition Gene Expression in Uveal Melanoma Patients; Consequences for Liquid Biopsy. Int J Mol Sci 2020; 21:ijms21249651. [PMID: 33348918 PMCID: PMC7767066 DOI: 10.3390/ijms21249651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Despite outstanding advances in diagnosis and the treatment of primary uveal melanoma (UM), nearly 50% of UM patients develop metastases via hematogenous dissemination, driven by the epithelial-mesenchymal transition (EMT). Despite the failure in UM to date, a liquid biopsy may offer a feasible non-invasive approach for monitoring metastatic disease progression and addressing protracted dormancy. To detect circulating tumor cells (CTCs) in UM patients, we evaluated the mRNA expression of EMT-associated transcription factors in CD45-depleted blood fraction, using qRT-PCR. ddPCR was employed to assess UM-specific GNA11, GNAQ, PLCβ4, and CYSLTR2 mutations in plasma DNA. Moreover, microarray analysis was performed on total RNA isolated from tumor tissues to estimate the prognostic value of EMT-associated gene expression. In total, 42 primary UM and 11 metastatic patients were enrolled. All CD45-depleted samples were negative for CTC when compared to the peripheral blood fraction of 60 healthy controls. Tumor-specific mutations were detected in the plasma of 21.4% patients, merely, in 9.4% of primary UM, while 54.5% in metastatic patients. Unsupervised hierarchical clustering of differentially expressed EMT genes showed significant differences between monosomy 3 and disomy 3 tumors. Newly identified genes can serve as non-invasive prognostic biomarkers that can support therapeutic decisions.
Collapse
|
26
|
Liu G, Xie W, Jin M, Li P, Liu L, Liu L, Huang G. Transcriptomic analysis reveals a WNT signaling pathway-based gene signature prognostic for non-small cell carcinoma. Aging (Albany NY) 2020; 12:19159-19172. [PMID: 33027769 PMCID: PMC7732286 DOI: 10.18632/aging.103724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/03/2020] [Indexed: 01/24/2023]
Abstract
The value of combining multiple candidate genes into a panel to improve biomarker performance is increasingly emphasized. Genes associated with WNT signaling are widely-reported to provide prognostic signatures in non-small cell carcinoma (NSCLC). Screening of genes involved in this signaling pathway facilitated selection of an optimal candidate biomarker gene combination and development of an NSCLC prognostic model based on expression of these genes. Risk scores derived from the model performed well in predicting survival; in the training dataset, samples achieving a high risk score exhibit a shorter survival interval (median survival time 34.8 months, 95% CI 31.1-41.0) than did samples achieving a low risk score (median survival time 72.0 months, 95% CI 59.3-87.5, p=2e-11), and exhibited higher oncogene and lower tumor suppressor gene expression. Receiver-operator characteristic curves based on three-year survival demonstrate that the model outperformed clinical prognostic indicators. In addition, the model was validated in four independent cohorts, demonstrating robust NSCLC prognostic value. Correlation analyses reveal that the model offers efficacy independent of other clinical indicators. Gene Set Enrichment Analysis (GSEA) reveals that the model reflects variable tissue functional states relevant to NSCLC biology. In summary, the signature model shows potential as a valuable and robust NSCLC prognostic indicator.
Collapse
Affiliation(s)
- Gang Liu
- Institute of Biological Sciences, Fudan University, Shanghai, P.R. China,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, P.R. China
| | - Wenhui Xie
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, P.R. China
| | - Ping Li
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, P.R. China
| | - Liu Liu
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Lei Liu
- Institute of Biological Sciences, Fudan University, Shanghai, P.R. China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, P.R. China
| |
Collapse
|
27
|
Lin L, Chou H, Chang S, Liao E, Tsai Y, Wei Y, Chen H, Lin M, Wang Y, Chien Y, Yu X, Chan H. Targeting UDP-glucose dehydrogenase inhibits ovarian cancer growth and metastasis. J Cell Mol Med 2020; 24:11883-11902. [PMID: 32893977 PMCID: PMC7578908 DOI: 10.1111/jcmm.15808] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
More than 70% of patients with ovarian cancer are diagnosed in advanced stages. Therefore, it is urgent to identify a promising prognostic marker and understand the mechanism of ovarian cancer metastasis development. By using proteomics approaches, we found that UDP-glucose dehydrogenase (UGDH) was up-regulated in highly metastatic ovarian cancer TOV21G cells, characterized by high invasiveness (TOV21GHI ), in comparison to its parental control. Previous reports demonstrated that UGDH is involved in cell migration, but its specific role in cancer metastasis remains unclear. By performing immunohistochemical staining with tissue microarray, we found overexpression of UGDH in ovarian cancer tissue, but not in normal adjacent tissue. Silencing using RNA interference (RNAi) was utilized to knockdown UGDH, which resulted in a significant decrease in metastatic ability in transwell migration, transwell invasion and wound healing assays. The knockdown of UGDH caused cell cycle arrest in the G0 /G1 phase and induced a massive decrease of tumour formation rate in vivo. Our data showed that UGDH-depletion led to the down-regulation of epithelial-mesenchymal transition (EMT)-related markers as well as MMP2, and inactivation of the ERK/MAPK pathway. In conclusion, we found that the up-regulation of UGDH is related to ovarian cancer metastasis and the deficiency of UGDH leads to the decrease of cell migration, cell invasion, wound healing and cell proliferation ability. Our findings reveal that UGDH can serve as a prognostic marker and that the inhibition of UGDH is a promising strategy for ovarian cancer treatment.
Collapse
Affiliation(s)
- Li‐Hsun Lin
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
| | - Hsiu‐Chuan Chou
- Institute of Analytical and Environmental SciencesNational Tsing Hua UniversityHsinchuTaiwan
| | - Shing‐Jyh Chang
- Department of Obstetrics and GynecologyHsinchu MacKay Memorial HospitalHsinchuTaiwan
| | - En‐Chi Liao
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
| | - Yi‐Ting Tsai
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
| | - Yu‐Shan Wei
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
| | - Hsin‐Yi Chen
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
| | - Meng‐Wei Lin
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
| | - Yi‐Shiuan Wang
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
| | - Yu‐An Chien
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
| | - Xin‐Ru Yu
- Institute of Analytical and Environmental SciencesNational Tsing Hua UniversityHsinchuTaiwan
| | - Hong‐Lin Chan
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
- Department of Medical SciencesNational Tsing Hua UniversityHsinchuTaiwan
| |
Collapse
|
28
|
Cyclin D degradation by E3 ligases in cancer progression and treatment. Semin Cancer Biol 2020; 67:159-170. [PMID: 32006569 DOI: 10.1016/j.semcancer.2020.01.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/20/2020] [Accepted: 01/27/2020] [Indexed: 12/15/2022]
Abstract
D cyclins include three isoforms: D1, D2, and D3. D cyclins heterodimerize with cyclin-dependent kinase 4/6 (CDK4/6) to form kinase complexes that can phosphorylate and inactivate Rb. Inactivation of Rb triggers the activation of E2F transcription factors, which in turn regulate the expression of genes whose products drive cell cycle progression. Because D-type cyclins function as mitogenic sensors that link growth factor signaling directly with G1 phase progression, it is not surprising that D cyclin accumulation is dysregulated in a variety of human tumors. Elevated expression of D cyclins results from gene amplification, increased gene transcription and protein translation, decreased microRNA levels, and inefficiency or loss of ubiquitylation-mediated protein degradation. This review focuses on the clinicopathological importance of D cyclins, how dysregulation of Ubiquitin-Proteasome System (UPS) contributes to the overexpression of D cyclins, and the therapeutic potential through targeting D cyclin-related machinery in human tumors.
Collapse
|
29
|
Ding ZY, Li R, Zhang QJ, Wang Y, Jiang Y, Meng QY, Xi QL, Wu GH. Prognostic role of cyclin D2/D3 in multiple human malignant neoplasms: A systematic review and meta-analysis. Cancer Med 2019; 8:2717-2729. [PMID: 30950241 PMCID: PMC6558476 DOI: 10.1002/cam4.2152] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/03/2019] [Accepted: 03/25/2019] [Indexed: 01/05/2023] Open
Abstract
Cyclin D2/D3 (CCND2/3) are core components of the machinery that drives cell cycle progression and therefore, are associated with tumorigenesis. Currently, there are contradictory evidences on the function of CCND2/3 in tumorigenesis. Thus, we conducted a comprehensive meta‐analysis to derive a precise predictive value of CCND2/3 in various tumors. We searched PubMed, EMBASE, Web of Science for eligible studies up to October 8, 2018. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) of OS or DFS/PFS/RFS were calculated using Forest plot analysis to demonstrate their associations. A total of 14 studies were ultimately included in this meta‐analysis. Our results indicated CCND2/3 played an oncogenic role in all of the cancer patients (CCND2: pooled HR = 2.21, 95% CI: 1.67‐2.93; CCND3: pooled HR = 2.29, 95% CI: 1.05‐5.03). In tumor subgroup, CCND2 was associated with shorter OS in patients with gastric cancer (HR = 2.20, 95% CI: 1.66‐2.92), whereas it might be a tumor suppressor in NSCLC (HR = 0.28, 95% CI: 0.12‐0.64). In addition, CCND3 was correlated to reduced OS in breast cancer patients (HR = 1.64, 95% CI: 1.07‐2.52) and shorter DFS/PFS/RFS in bladder cancer patients (HR = 4.60, 95% CI: 1.89‐12.57). Taken together, CCND2/3 could be the promising biomarkers for predicting the prognosis of patients with malignant neoplasms.
Collapse
Affiliation(s)
- Zuo-You Ding
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ran Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi-Jie Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Jiang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qing-Yang Meng
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiu-Lei Xi
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guo-Hao Wu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|