1
|
Benítez-García C, Martínez-García D, Kotev M, Pérez-Hernández M, Westermaier Y, Díaz L, Korrodi-Gregório L, Fontova P, Torres AA, Pérez-Tomás R, García-Valverde M, Quesada R, Soliva R, Soto-Cerrato V. Identification of the atypical antipsychotic Asenapine as a direct survivin inhibitor with anticancer properties and sensitizing effects to conventional therapies. Biomed Pharmacother 2024; 182:117756. [PMID: 39693907 DOI: 10.1016/j.biopha.2024.117756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024] Open
Abstract
Therapy resistance in human cancers is a major limitation in Clinical Oncology. In this regard, overexpression of anti-apoptotic proteins, such as survivin, has been described in several tumors, contributing to this clinical issue. Survivin has a dual role in key cellular functions, inducing cell cycle progression and inhibiting apoptosis; thus, survivin is an attractive target for cancer therapy. Therefore, we focused on identifying and validating a novel specific, directly binding survivin inhibitor for cancer treatment and tumor sensitization to conventional proapoptotic therapies. In this work, we conducted a structure-based high-throughput virtual screening at the survivin homodimerization domain. Asenapine Maleate (AM), an approved drug for central nervous system diseases, was identified as a direct binder of the survivin homodimerization domain and it significantly affected cell viability of lung, colon, and brain cancer cell lines. Direct interaction of AM to survivin protein was corroborated by surface plasmon resonance and a specific survivin protein decrease was observed in cancer cells, compared to other inhibitors of apoptosis proteins. Therapeutic in vivo studies showed an impairment of tumor growth in AM-treated mice. Finally, a synergistic anticancer effect was detected in vitro when combined with different conventional chemotherapies, and in vivo studies showed higher antitumor effects when combined with cisplatin. Altogether, our results identify AM as a specific direct binding inhibitor of survivin, showing anticancer properties in vitro and in vivo and sensitizing effects when combined with cisplatin, opening the possibility of repositioning this approved drug for cancer treatment.
Collapse
Affiliation(s)
- Cristina Benítez-García
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain; Molecular Signaling, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - David Martínez-García
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain; Molecular Signaling, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Martin Kotev
- Nostrum Biodiscovery, Av. de Josep Tarradellas, 8-10, Barcelona E-08029, Spain
| | - Marta Pérez-Hernández
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain; Molecular Signaling, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Yvonne Westermaier
- Nostrum Biodiscovery, Av. de Josep Tarradellas, 8-10, Barcelona E-08029, Spain
| | - Lucía Díaz
- Nostrum Biodiscovery, Av. de Josep Tarradellas, 8-10, Barcelona E-08029, Spain
| | - Luis Korrodi-Gregório
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Pere Fontova
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain; Department of Chemistry, Universidad de Burgos, Burgos, Spain
| | - Ana Aurora Torres
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain; Molecular Signaling, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Ricardo Pérez-Tomás
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | | | - Roberto Quesada
- Department of Chemistry, Universidad de Burgos, Burgos, Spain
| | - Robert Soliva
- Nostrum Biodiscovery, Av. de Josep Tarradellas, 8-10, Barcelona E-08029, Spain
| | - Vanessa Soto-Cerrato
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain; Molecular Signaling, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
2
|
Carlos JAEG, Lima K, Rego EM, Costa-Lotufo LV, Machado-Neto JA. The survivin/XIAP suppressant YM155 impairs clonal growth and induces apoptosis in JAK2 V617F cells. Hematol Transfus Cell Ther 2024; 46 Suppl 6:S217-S227. [PMID: 39261151 DOI: 10.1016/j.htct.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 09/13/2024] Open
Abstract
The central role of the control of apoptosis in the pathophysiology of Philadelphia chromosome-negative myeloproliferative neoplasms has recently been reinforced in genetic and pharmacological studies. The inhibitor of apoptosis protein family has eight members and plays an important role in apoptosis, with the most studied being survivin (BIRC5) and X-linked inhibitor of apoptosis (XIAP). YM155 is a small molecule with antineoplastic potential that has been described as a suppressant of survivin and XIAP. In the present study, BIRC5 expression was significantly increased in primary myelofibrosis patients compared to healthy donors. On the other hand, XIAP expression was reduced in myeloproliferative neoplasms patients. In JAK2V617F cells, YM155 reduces cell viability and autonomous clonal growth and induces apoptosis, cell cycle arrest, and autophagy. HEL cells that show greater malignancy are more sensitive to the drug than SET2 cells. In the molecular scenario, YM155 modulates apoptosis-, cell cycle-, DNA damage- and autophagy-related genes. Protein expression analysis corroborates the observed cellular phenotype and exploratory gene expression findings. In summary, our results indicate that survivin/BIRC5 and XIAP are differently expressed in myeloproliferative neoplasms and YM155 has multiple antineoplastic effects on JAK2V617F cells suggesting that inhibitor of apoptosis proteins may be a target for pharmacological interventions in the treatment of these diseases.
Collapse
Affiliation(s)
| | - Keli Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Medical School, University of São Paulo, São Paulo, Brazil
| | - Eduardo Magalhães Rego
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Medical School, University of São Paulo, São Paulo, Brazil
| | - Leticia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
3
|
Angulo-Elizari E, Henriquez-Figuereo A, Morán-Serradilla C, Plano D, Sanmartín C. Unlocking the potential of 1,4-naphthoquinones: A comprehensive review of their anticancer properties. Eur J Med Chem 2024; 268:116249. [PMID: 38458106 DOI: 10.1016/j.ejmech.2024.116249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
Cancer encompasses a group of pathologies with common characteristics, high incidence, and prevalence in all countries. Although there are treatments available for this disease, they are not always effective or safe, often failing to achieve the desired results. This is why it is necessary to continue the search for new therapies. One of the strategies for obtaining new antitumor drugs is the use of 1,4-naphthoquinone as a scaffold in synthetic or natural products with antitumor activity. This review focuses on compiling studies related to the antitumor activity of 1,4-naphthoquinone and its natural and synthetic derivatives over the last 10 years. The work describes the main natural naphthoquinones with antitumor activity and classifies the synthetic naphthoquinones based on the structural modifications made to the scaffold. Additionally, the formation of metal complexes using naphthoquinones as a ligand is considered. After a thorough review, 197 synthetic compounds with potent biological activity against cancer have been classified according to their chemical structures and their mechanisms of action have been described.
Collapse
Affiliation(s)
- Eduardo Angulo-Elizari
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Andreina Henriquez-Figuereo
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Cristina Morán-Serradilla
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Daniel Plano
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| | - Carmen Sanmartín
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| |
Collapse
|
4
|
Yuan J, Liu Z, Dong Y, Gao F, Xia X, Wang P, Luo Y, Zhang Z, Yan D, Zhang W. Pioneering 4,11-Dioxo-4,11-dihydro-1 H-anthra[2,3- d]imidazol-3-ium Compounds as Promising Survivin Inhibitors by Targeting ILF3/NF110 for Cancer Therapy. J Med Chem 2023; 66:16843-16868. [PMID: 38079530 DOI: 10.1021/acs.jmedchem.3c01551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Survivin is a novel attractive target for cancer therapy; however, it is considered undruggable because it lacks enzymatic activities. Herein, we describe our efforts toward the discovery of a novel series of 4,11-dioxo-4,11-dihydro-1H-anthra[2,3-d]imidazol-3-ium derivatives as survivin inhibitors by targeting ILF3/NF110. Intensive structural modifications led us to identify a lead compound AQIM-I, which remarkably inhibited nonsmall cell lung cancer cells A549 with an IC50 value of 9 nM and solid tumor cell proliferation with more than 700-fold selectivity against human normal cells. Further biological studies revealed that compound AQIM-I significantly inhibited survivin expression and colony formation and induced ROS production, apoptosis, cell cycle arrest, DNA damage, and autophagy. Furthermore, the promoter-luciferase reporter assay showed that AQIM-I attenuated the survivin promoter activity enhanced by the overexpression of ILF3/NF110 in a concentration-dependent manner, and specific binding (KD = 163 nM) of AQIM-I to ILF3/NF110 was detected by surface plasmon resonance.
Collapse
Affiliation(s)
- Jing Yuan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Zhanxiong Liu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yachun Dong
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Feng Gao
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Xuelin Xia
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Penghui Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yanli Luo
- Department of Pathology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P. R. China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Deyue Yan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
5
|
Dorneburg C, Galiger C, Stadler GL, Westhoff MA, Rasche V, Barth TFE, Debatin KM, Beltinger C. Inhibition of Survivin Homodimerization Decreases Neuroblastoma Cell Growth. Cancers (Basel) 2023; 15:5775. [PMID: 38136322 PMCID: PMC10741502 DOI: 10.3390/cancers15245775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Increased expression of BIRC5/survivin, a crucial regulator of the mitotic spindle checkpoint, is associated with poor prognosis in neuroblastoma (NB), the most common extracranial tumor of childhood. Transcriptional inhibitors of survivin have been tested in adult cancers and inhibitors of survivin homodimerization are emerging. We compared genetic inhibition of survivin transcription with the inhibition of survivin homodimerization by S12 and LQZ-7I, chosen from a larger panel of survivin dimerization inhibitors with activity against NB cells. Mice hemizygous for Birc5 were crossed with NB-prone TH-MYCN mice to generate Birc5+/-/MYCNtg/+ mice. The marked decrease of survivin transcription in these mice did not suffice to attenuate the aggressiveness of NB, even when tumors were transplanted into wild-type mice to assure that immune cell function was not compromised by the lack of survivin. In contrast, viability, clonogenicity and anchorage-independent growth of NB cells were markedly decreased by S12. S12 administered systemically to mice with subcutaneous NB xenotransplants decreased intratumoral hemorrhage, albeit not tumor growth. LQZ-7I, which directly targets the survivin dimerization interface, was efficacious in controlling NB cell growth in vitro at markedly lower concentrations compared to S12. LQZ-7I abrogated viability, clonogenicity and anchorage-independent growth, associated with massively distorted mitotic spindle formation. In vivo, LQZ-7I effectively reduced tumor size and cell proliferation of NB cells in CAM assays without apparent toxicity to the developing chick embryo. Collectively, these findings show that inhibiting survivin homodimerization with LQZ-7I holds promise for the treatment of NB and merits further investigation.
Collapse
Affiliation(s)
- Carmen Dorneburg
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, 89075 Ulm, Germany; (C.D.); (G.L.S.); (M.-A.W.); (K.-M.D.)
| | - Celimene Galiger
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, 89075 Ulm, Germany; (C.D.); (G.L.S.); (M.-A.W.); (K.-M.D.)
| | - Giovanna L. Stadler
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, 89075 Ulm, Germany; (C.D.); (G.L.S.); (M.-A.W.); (K.-M.D.)
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, 89075 Ulm, Germany; (C.D.); (G.L.S.); (M.-A.W.); (K.-M.D.)
| | - Volker Rasche
- Department of Internal Medicine II, University Medical Center Ulm, 89075 Ulm, Germany;
| | - Thomas F. E. Barth
- Department of Pathology, University Medical Center Ulm, 89075 Ulm, Germany;
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, 89075 Ulm, Germany; (C.D.); (G.L.S.); (M.-A.W.); (K.-M.D.)
| | - Christian Beltinger
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, 89075 Ulm, Germany; (C.D.); (G.L.S.); (M.-A.W.); (K.-M.D.)
| |
Collapse
|
6
|
Liang K, Wang Q, Qiu L, Gong X, Chen Z, Zhang H, Ding K, Liu Y, Wei J, Lin S, Fu S, Du H. Combined Inhibition of UBE2C and PLK1 Reduce Cell Proliferation and Arrest Cell Cycle by Affecting ACLY in Pan-Cancer. Int J Mol Sci 2023; 24:15658. [PMID: 37958642 PMCID: PMC10650476 DOI: 10.3390/ijms242115658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Various studies have shown that the cell-cycle-related regulatory proteins UBE2C, PLK1, and BIRC5 promote cell proliferation and migration in different types of cancer. However, there is a lack of in-depth and systematic research on the mechanism of these three as therapeutic targets. In this study, we found a positive correlation between the expression of UBE2C and PLK1/BIRC5 in the Cancer Genome Atlas (TCGA) database, revealing a potential combination therapy candidate for pan-cancer. Quantitative real-time PCR (qRT-PCR), Western blotting (WB), cell phenotype detection, and RNA-seq techniques were used to evidence the effectiveness of the combination candidate. We found that combined interference of UBE2C with PLK1 and UBE2C with BIRC5 affected metabolic pathways by significantly downregulating the mRNA expression of IDH1 and ACLY, which was related to the synthesis of acetyl-CoA. By combining the PLK1 inhibitor volasertib and the ACLY inhibitor bempedoic acid, it showed a higher synergistic inhibition of cell viability and higher synergy scores in seven cell lines, compared with those of other combination treatments. Our study reveals the potential mechanisms through which cell-cycle-related genes regulate metabolism and proposes a potential combined targeted therapy for patients with higher PLK1 and ACLY expression in pan-cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (K.L.); (Q.W.); (L.Q.); (X.G.); (Z.C.); (H.Z.); (K.D.); (Y.L.); (J.W.); (S.L.); (S.F.)
| |
Collapse
|
7
|
Wu M, Jin Q, Xu X, Fan J, Chen W, Miao M, Gu R, Zhang S, Guo Y, Huang S, Zhang Y, Zhang A, Jia Z. TP53RK Drives the Progression of Chronic Kidney Disease by Phosphorylating Birc5. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301753. [PMID: 37382161 PMCID: PMC10477881 DOI: 10.1002/advs.202301753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Indexed: 06/30/2023]
Abstract
Renal fibrosis is a common characteristic of various chronic kidney diseases (CKDs) driving the loss of renal function. During this pathological process, persistent injury to renal tubular epithelial cells and activation of fibroblasts chiefly determine the extent of renal fibrosis. In this study, the role of tumor protein 53 regulating kinase (TP53RK) in the pathogenesis of renal fibrosis and its underlying mechanisms is investigated. TP53RK is upregulated in fibrotic human and animal kidneys with a positive correlation to kidney dysfunction and fibrotic markers. Interestingly, specific deletion of TP53RK either in renal tubule or in fibroblasts in mice can mitigate renal fibrosis in CKD models. Mechanistic investigations reveal that TP53RK phosphorylates baculoviral IAP repeat containing 5 (Birc5) and facilitates its nuclear translocation; enhanced Birc5 displays a profibrotic effect possibly via activating PI3K/Akt and MAPK pathways. Moreover, pharmacologically inhibiting TP53RK and Birc5 using fusidic acid (an FDA-approved antibiotic) and YM-155(currently in clinical phase 2 trials) respectively both ameliorate kidney fibrosis. These findings demonstrate that activated TP53RK/Birc5 signaling in renal tubular cells and fibroblasts alters cellular phenotypes and drives CKD progression. A genetic or pharmacological blockade of this axis serves as a potential strategy for treating CKDs.
Collapse
Affiliation(s)
- Mengqiu Wu
- Department of NephrologyNanjing Key Laboratory of PediatricsJiangsu Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjing210008P. R. China
| | - Qianqian Jin
- Department of NephrologyNanjing Key Laboratory of PediatricsJiangsu Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjing210008P. R. China
| | - Xinyue Xu
- School of MedicineSoutheast UniversityNanjing210009P. R. China
| | - Jiaojiao Fan
- School of MedicineSoutheast UniversityNanjing210009P. R. China
| | - Weiyi Chen
- Department of Emergency MedicineChildren's Hospital of Nanjing Medical UniversityNanjing210008P. R. China
| | - Mengqiu Miao
- Department of NephrologyNanjing Key Laboratory of PediatricsJiangsu Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjing210008P. R. China
| | - Ran Gu
- Department of NephrologyNanjing Key Laboratory of PediatricsJiangsu Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjing210008P. R. China
| | - Shengnan Zhang
- Department of NephrologyNanjing Key Laboratory of PediatricsJiangsu Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjing210008P. R. China
| | - Yan Guo
- Department of NephrologyNanjing Key Laboratory of PediatricsJiangsu Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjing210008P. R. China
| | - Songming Huang
- Department of NephrologyNanjing Key Laboratory of PediatricsJiangsu Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjing210008P. R. China
| | - Yue Zhang
- Department of NephrologyNanjing Key Laboratory of PediatricsJiangsu Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjing210008P. R. China
| | - Aihua Zhang
- Department of NephrologyNanjing Key Laboratory of PediatricsJiangsu Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjing210008P. R. China
| | - Zhanjun Jia
- Department of NephrologyNanjing Key Laboratory of PediatricsJiangsu Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjing210008P. R. China
| |
Collapse
|
8
|
Survivin Small Molecules Inhibitors: Recent Advances and Challenges. Molecules 2023; 28:molecules28031376. [PMID: 36771042 PMCID: PMC9919791 DOI: 10.3390/molecules28031376] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Survivin, as a member of the inhibitor of apoptosis proteins (IAPs) family, acts as a suppressor of apoptosis and plays a central role in cell division. Survivin has been considered as an important cancer drug target because it is highly expressed in many types of human cancers, while it is effectively absent from terminally differentiated normal tissues. Moreover, survivin is involved in tumor cell resistance to chemotherapy and radiation. Preclinically, downregulation of survivin expression or function reduced tumor growth induced apoptosis and sensitized tumor cells to radiation and chemotherapy in different human tumor models. This review highlights the role of survivin in promoting cellular proliferation and inhibiting apoptosis and summarizes the recent advances in and challenges of developing small-molecule survivin inhibitors.
Collapse
|
9
|
Nozaki I, Ishikawa N, Miyanari Y, Ogawa K, Tagawa A, Yoshida S, Munekane M, Mishiro K, Toriba A, Nakayama M, Fuchigami T. Borealin-Derived Peptides as Survivin-Targeting Cancer Imaging and Therapeutic Agents. Bioconjug Chem 2022; 33:2149-2160. [DOI: 10.1021/acs.bioconjchem.2c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Iori Nozaki
- Laboratory of Clinical Analytical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa920-1192, Japan
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki852-8521, Japan
| | - Natsumi Ishikawa
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki852-8521, Japan
| | - Yusuke Miyanari
- Institute of Nano Life Science, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa920-1192, Japan
| | - Kazuma Ogawa
- Laboratory of Clinical Analytical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa920-1192, Japan
| | - Ayako Tagawa
- Institute of Nano Life Science, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa920-1192, Japan
| | - Sakura Yoshida
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki852-8521, Japan
| | - Masayuki Munekane
- Laboratory of Clinical Analytical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa920-1192, Japan
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa920-1192, Japan
| | - Akira Toriba
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki852-8521, Japan
| | - Morio Nakayama
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki852-8521, Japan
| | - Takeshi Fuchigami
- Laboratory of Clinical Analytical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa920-1192, Japan
| |
Collapse
|
10
|
YM155 and chrysin cooperatively suppress survivin expression in SMARCB1/INI1-deficient tumor cells. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:234. [PMID: 36175806 DOI: 10.1007/s12032-022-01843-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022]
Abstract
SMARCB1/INI1 deficiency is seen in several malignant tumors including malignant rhabdoid tumor (MRT), a highly aggressive pediatric malignancy. Loss of SMARCB1/INI1 function alters diverse oncogenic cellular signals, making it difficult to discover effective targeting therapy. By utilizing an in vitro drug screening system, effective therapeutic agents against SMARCB1/INI1-deficient tumors were explored in this study. In the in vitro drug sensitivity test, 80 agents with various actions were screened for their cytotoxicity in a panel of five SMARCB1/INI1-deficient tumor cell lines. The combination effect was screened based on the Bliss independent model. The growth-inhibitory effect was determined in both the conventional two-dimensional culture and the collagen-embedded three-dimensional culture system. Survivin expression after agent exposure was determined by Western blot analysis. All five cell lines were found to be sensitive to YM155, a selective survivin inhibitor. In the drug combination screening, YM155 showed additive to synergistic effects with various agents including chrysin. Chrysin enhanced YM155-induced apoptosis, but not mitochondrial depolarization upon exposure of SMARCB1/INI1-deficient tumor cells to the two agents for 6 h. YM155 and chrysin synergistically suppressed survivin expression, especially in TTN45 cells in which such suppression was observed as early as 6 h after exposure to the two agents. Survivin is suggested to be a therapeutic target in MRT and other SMARCB1/INI1-deficient tumors. Chrysin, a flavone that is widely distributed in plants, cooperatively suppressed survivin expression and enhanced the cytotoxicity of YM155.
Collapse
|
11
|
Krieg S, Roderburg C, Fung S, Luedde T, Knoefel WT, Krieg A. Nuclear survivin is a prognosticator in gastroenteropancreatic neuroendocrine neoplasms: a meta-analysis. J Cancer Res Clin Oncol 2022; 148:2235-2246. [PMID: 35428913 PMCID: PMC9349075 DOI: 10.1007/s00432-022-04013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/03/2022] [Indexed: 11/28/2022]
Abstract
Abstract
Purpose
Gastroenteropancreatic neuroendocrine neosplasms (GEP-NEN) are biologically heterogenous tumors with an increasing incidence over the past decades. Although efforts have been made in the treatment of these tumors, survival rates in metastasized tumor stages remain frustrating. Thus, there is an urgent need to identify novel targets as alternative treatment options. In this regard, the inhibitor of apoptosis protein (IAP) family member survivin could be such an attractive target. Therefore, aim of our meta-analysis was to assess the role of survivin as a biomarker and predictor in GEP-NEN.
Methods
Medline, Web of Science and Scopus were screened for studies that fulfilled our selection criteria. Quality assessement of the studies was based on design, methodology, generalizability and results analysis. Meta-analyses were conducted using a random-effects model and effect size measures were expressed as pooled Hazard Ratio (HR) or Odds Ratio (OR) with 95% Confidence Interval (CI).
Results
Six eligible studies with 649 patients (range 77–132) assessed survivin expression in GEP-NEN by immunohistochemistry. High expression levels of nuclear survivin in GEP-NEN correlated with a shorter overall survival (HR 3.10; 95% CI 2.15–4.47; p < 0.0001). In contrast to cytoplasmic survivin (OR 1.24; CI 0.59–2.57; p = 0.57), nuclear survivin was also associated (OR 15.23; CI 3.61–64.23; p = 0.0002) with G3/poorly differentiated GEP-NEN.
Conclusion
Nuclear Survivin is highly expressed in more aggressive G3 GEP-NEN and correlates with a poor outcome. Survivin is therefore an interesting molecule for a targeted therapy, especially for patients with highly proliferative G3 GEP-NENs.
Collapse
Affiliation(s)
- Sarah Krieg
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Christoph Roderburg
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Stephen Fung
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, Bldg. 12.46, 40225, Duesseldorf, Germany
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Wolfram Trudo Knoefel
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, Bldg. 12.46, 40225, Duesseldorf, Germany
| | - Andreas Krieg
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, Bldg. 12.46, 40225, Duesseldorf, Germany.
| |
Collapse
|
12
|
Shimizu T, Nishio K, Sakai K, Okamoto I, Okamoto K, Takeda M, Morishita M, Nakagawa K. Phase I safety and pharmacokinetic study of YM155, a potent selective survivin inhibitor, in combination with erlotinib in patients with EGFR TKI refractory advanced non-small cell lung cancer. Cancer Chemother Pharmacol 2020; 86:211-219. [PMID: 32638093 DOI: 10.1007/s00280-020-04112-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE This phase I study was conducted to evaluate the safety and pharmacokinetics of YM155, a potent, selective survivin inhibitor, in combination with erlotinib in patients with EGFR TKI refractory advanced non-small cell lung cancer (NSCLC). METHODS The pimary objectives were to evaluate the safety and tolerability of YM155 at escalating doses (3.6, 4.8, 6.0, and 8.0 mg/m2/days) administered every 3 weeks as continuous intravenous infusion over 168 h in combination with erlotinib at a fixed dose (150 mg, once a day). Secondary objectives were to assess the pharmacokinetics of YM155, antitumor activity, and the relationship between biomarkers and efficacy. The changes in survivin expression in biopsied tumor pre- and post-YM155 administration and serum cytokine levels were also analyzed. RESULTS Fifteen patients were treated. The most common YM155-related adverse event was the presence of urine microalbumin, whereas grades 3/4 toxicities were rare. One patient who received 4.8 mg/m2/days YM155 developed a dose-limiting grade 2 serum creatinine elevation. YM155 exposure in plasma showed dose proportionality across all dose ranges tested. No pharmacokinetic interaction occurred between YM155 and erlotinib. The serum cytokines IL-8, G-CSF, and MIP-1b showed decreasing trends in patients who achieved progression-free survival of ≥ 12 weeks. Durable stable disease for ≥ 24 weeks was observed in two patients. CONCLUSION Up to 8.0 mg/m2/days YM155 administered every 3 weeks in combination with erlotinib exhibited a favorable safety profile and moderate clinical efficacy. These results suggest that inhibiting survivin is a potential therapeutic strategy for select patients with EGFR TKI refractory NSCLC. TRIAL REGISTRATION UMIN000031912 at UMIN Clinical Trials Registry (UMIN-CTR).
Collapse
Affiliation(s)
- Toshio Shimizu
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama City, Osaka, 5898511, Japan. .,Department of Experimental Therapeutics (Early Phase 1 Drug Development Service), National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 1040045, Japan.
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, 5898511, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, 5898511, Japan
| | - Isamu Okamoto
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama City, Osaka, 5898511, Japan.,Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 8128582, Japan
| | - Kunio Okamoto
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama City, Osaka, 5898511, Japan.,Department of Medical Oncology, Kagawa Prefectural Central Hospital, Kagawa, 7608557, Japan
| | - Masayuki Takeda
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama City, Osaka, 5898511, Japan
| | - Maiko Morishita
- Division of Clinical Development, Astellas Pharma Inc., 2-5-1 Nihonbashi-Honcho, Chuo-ku, Tokyo, 1038411, Japan
| | - Kazuhiko Nakagawa
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama City, Osaka, 5898511, Japan
| |
Collapse
|
13
|
Meng YQ, Tong H, Li XX, Kuai ZY, Li QW, Xu CD. Synthesis and anti-tumor activity of derivatives of ring A of asiatic acid. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:689-700. [PMID: 31122063 DOI: 10.1080/10286020.2019.1616693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Based on the simulation of the docking of survivin protein with known small molecule inhibitors, the active groups which can bind to target proteins were analyzed by the techniques of computer-aided drug design (CADD). These active groups were introduced into the A-ring of asiatic acid and their C-28 sites were reconstructed simultaneously. Ten asiatic acid derivatives were designed and synthesized, and their structures were confirmed by MS and NMR. The inhibitory activities of the asiatic acid derivatives against HepG2 and SGC7901 cell lines were evaluated and confirmed by the tetrazolium bromidesalt (MTT) assay. The results showed that compounds I6 and II4 exhibited more potent cytotoxicity than the positive control drug gefitinib, which was comparable to that of adriamycin.[Formula: see text].
Collapse
Affiliation(s)
- Yan-Qiu Meng
- Department of Pharmaceutical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - He Tong
- Department of Pharmaceutical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Xiao-Xiao Li
- Department of Pharmaceutical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Zhen-Yu Kuai
- Department of Pharmaceutical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Qian-Wen Li
- Department of Pharmaceutical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Chuan-Dong Xu
- Department of Pharmaceutical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| |
Collapse
|
14
|
Thamm DH, Joseph JK, Rose BJ, Meuten TK, Weishaar KM. Phase-I trial of survivin inhibition with EZN-3042 in dogs with spontaneous lymphoma. BMC Vet Res 2020; 16:97. [PMID: 32209084 PMCID: PMC7092583 DOI: 10.1186/s12917-020-02317-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/16/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Lymphoma is a common cancer in dogs. While most dogs receiving chemotherapy experience remission, very few are cured, and median survival times are generally in the 12-month range. Novel approaches to treatment are unquestionably needed. The Inhibitor of Apoptosis Protein (IAP) family member survivin, which is one of the most commonly overexpressed proteins in human cancer, plays a key role in apoptosis resistance, a major cause of drug-resistant treatment failure. Survivin targeting therapies have shown promise preclinically; however, none have been evaluated in dogs to date. The goal of the current study was to determine the safety and pharmacodynamic effects of systemic administration of the anti-survivin locked nucleic acid antisense oligonucleotide EZN-3042 in dogs with lymphoma. RESULTS We performed a prospective phase-I clinical trial in dogs with biopsy-accessible peripheral nodal lymphoma. Eighteen dogs were treated with EZN-3042 as a 2-h IV infusion at 5 dose levels, from 3.25 to 8.25 mg/kg twice weekly for 3 treatments. No dose-limiting toxicities were encountered. Reduction in tumor survivin mRNA and protein were observed in 3 of 5 evaluable dogs at the 8.25 mg/kg dose cohort. CONCLUSIONS In conclusion, reduced survivin expression was demonstrated in lymphoma tissues in the majority of dogs treated with EZN-3042 at 8.25 mg/kg twice weekly, which was associated with minimal adverse effects. This dose may be used in future studies of EZN-3042/chemotherapy combinations in dogs with spontaneous lymphoma and other cancers.
Collapse
Affiliation(s)
- Douglas H Thamm
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, 80523-1620, USA. .,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, 80523, USA. .,University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Jenette K Joseph
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, 80523-1620, USA.,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, 80523, USA
| | - Barbara J Rose
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, 80523-1620, USA
| | - Travis K Meuten
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, 80523-1620, USA.,Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Kristen M Weishaar
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, 80523-1620, USA
| |
Collapse
|
15
|
Fuchigami T, Ishikawa N, Nozaki I, Miyanari Y, Yoshida S, Yamauchi M, Soejima A, Haratake M, Nakayama M. Discovery of inner centromere protein-derived small peptides for cancer imaging and treatment targeting survivin. Cancer Sci 2020; 111:1357-1366. [PMID: 31991041 PMCID: PMC7156834 DOI: 10.1111/cas.14330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 12/15/2022] Open
Abstract
Survivin belongs to the inhibitor of apoptosis protein family, which is consistently overexpressed in most cancer cells but rarely expressed in normal adult tissues. Therefore, the detection and inhibition of survivin are regarded as attractive strategies for cancer‐specific treatment. In this study, we designed and synthesized 7‐19 residues of inner centromere protein (INCENP)‐derived small peptides (INC peptides) as novel survivin‐targeting agents. The INC peptides showed binding affinity for the human survivin protein (Kd = 91.4‐255 nmol L−1); INC16‐22, which contains residues 16‐22 of INCENP, showed the highest affinity (91.4 nmol L−1). Confocal fluorescence imaging showed consistent colocalization of FITC‐INC16‐22 and survivin in cell lines. Nona‐arginine‐linked INC16‐22 (r9‐INC16‐22) rendered INC16‐22 cells penetrable and strongly inhibited cell growth of MIA PaCa‐2 cells (52% inhibition at 1.0 µmol L−1) and MDA‐MB‐231 cells (60% inhibition at 10 µmol L−1) as determined by MTT assays. The exposure of MIA PaCa‐2 cells to 40 µmol L−1 r9‐INC16‐22 apparently reduced the intracellular protein expression levels of survivin. However, cleaved caspase‐3 was significantly increased in cells treated with r9‐INC16‐22, even at 10 µmol L−1, compared to untreated cells. Flow cytometry revealed that r9‐INC16‐22 strongly induced apoptosis in MIA PaCa‐2 cells. These results indicate that the cytotoxic effects of r9‐INC16‐22 could be mediated mainly through the disruption of survivin‐dependent antiapoptotic functions and partly because of the direct degradation of the survivin protein. Our findings suggest that INC peptides can act as useful scaffolds for novel cancer imaging and anticancer agents.
Collapse
Affiliation(s)
- Takeshi Fuchigami
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Natsumi Ishikawa
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Iori Nozaki
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yusuke Miyanari
- Okazaki Institute for Integrative Bioscience, Okazaki, Japan
| | - Sakura Yoshida
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Motohiro Yamauchi
- Department of Radiation Biology and Protection, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Ayumi Soejima
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mamoru Haratake
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Morio Nakayama
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
16
|
Neophytou CM, Mesaritis A, Gregoriou G, Constantinou AI. d-a-Tocopheryl Polyethylene Glycol 1000 Succinate and a small-molecule Survivin suppressant synergistically induce apoptosis in SKBR3 breast cancer cells. Sci Rep 2019; 9:14375. [PMID: 31591437 PMCID: PMC6779903 DOI: 10.1038/s41598-019-50884-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 09/10/2019] [Indexed: 01/18/2023] Open
Abstract
Breast cancer is the second in mortality rate malignancy among women. Despite the many advances in breast cancer treatment, there is still a need to improve drug efficacy and reduce non-specific effects. D-alpha-tocopheryl polyethylene glycol succinate (TPGS) is frequently used in the development of drug delivery systems to improve the pharmacokinetics of anti-cancer drugs and reduce multi-drug resistance. We have previously shown that TPGS not only acts as a carrier molecule but also exerts anti-cancer effects. As part of this study, we investigated the effect of TPGS with YM155, a small molecule suppressant of Survivin, in various breast cancer cell lines representing different subtypes of the disease. We aimed to evaluate the presumed synergistic effect of the TPGS-YM155 combination and reveal its mechanism of action. Our results show that the TPGS-YM155 combination acts synergistically to reduce specifically the viability of SKBR3 cells. The combination of these agents reduced activation of the AKT pathway, decreased Survivin and Bcl-2 levels, and induced caspase-dependent and independent apoptosis via the mitochondrial pathway. Importantly, the TPGS-YM155 combination did not significantly affect the viability of MCF-10A normal immortalized cells. In conclusion, the combination of YM155 and TPGS could be a promising approach against SKBR3-type breast cancer.
Collapse
Affiliation(s)
- Christiana M Neophytou
- Department of Biological Sciences, Faculty of Pure and Applied Sciences, University of Cyprus, 1678, Nicosia, Cyprus
- European University Research Center, Nicosia, Cyprus
| | - Avgoustinos Mesaritis
- Department of Biological Sciences, Faculty of Pure and Applied Sciences, University of Cyprus, 1678, Nicosia, Cyprus
| | - Gregoria Gregoriou
- Department of Biological Sciences, Faculty of Pure and Applied Sciences, University of Cyprus, 1678, Nicosia, Cyprus
| | - Andreas I Constantinou
- Department of Biological Sciences, Faculty of Pure and Applied Sciences, University of Cyprus, 1678, Nicosia, Cyprus.
- University of Nicosia Medical School, Nicosia, Cyprus.
| |
Collapse
|
17
|
Li F, Aljahdali I, Ling X. Cancer therapeutics using survivin BIRC5 as a target: what can we do after over two decades of study? JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:368. [PMID: 31439015 PMCID: PMC6704566 DOI: 10.1186/s13046-019-1362-1] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
Abstract
Survivin (also named BIRC5) is a well-known cancer therapeutic target. Since its discovery more than two decades ago, the use of survivin as a target for cancer therapeutics has remained a central goal of survivin studies in the cancer field. Many studies have provided intriguing insight into survivin's functional role in cancers, thus providing promise for survivin as a cancer therapeutic target. Despite this, moving survivin-targeting agents into and through the clinic remains a challenge. In order to address this challenge, we may need to rethink current strategies in order to develop a new mindset for targeting survivin. In this Review, we will first summarize the current survivin mechanistic studies, and then review the status of survivin cancer therapeutics, which is classified into five categories: (i) survivin-partner protein interaction inhibitors, (ii) survivin homodimerization inhibitors, (iii) survivin gene transcription inhibitors, (iv) survivin mRNA inhibitors and (v) survivin immunotherapy. We will then provide our opinions on cancer therapeutics using survivin as a target, with the goal of stimulating discussion that might facilitate translational research for discovering improved strategies and/or more effective anticancer agents that target survivin for cancer therapy.
Collapse
Affiliation(s)
- Fengzhi Li
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York, 14263, USA. .,Developmental Therapeutics Program, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York, 14263, USA.
| | - Ieman Aljahdali
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York, 14263, USA.,Department of Cellular & Molecular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York, 14263, USA
| | - Xiang Ling
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York, 14263, USA.,Canget BioTekpharma LLC, Buffalo, New York, USA
| |
Collapse
|
18
|
Brexpiprazole, a Serotonin-Dopamine Activity Modulator, Can Sensitize Glioma Stem Cells to Osimertinib, a Third-Generation EGFR-TKI, via Survivin Reduction. Cancers (Basel) 2019; 11:cancers11070947. [PMID: 31284441 PMCID: PMC6679129 DOI: 10.3390/cancers11070947] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/26/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma is a primary brain tumor associated with a poor prognosis due to its high chemoresistance capacity. Cancer stem cells (CSCs) are one of the mechanisms of chemoresistance. Although therapy targeting CSCs is promising, strategies targeting CSCs remain unsuccessful. Abnormal activation of epidermal growth factor receptors (EGFRs) due to amplification, mutation, or both of the EGFR gene is common in glioblastomas. However, glioblastomas are resistant to EGFR tyrosine kinase inhibitors (EGFR-TKIs), and overcoming resistance is essential. Brexpiprazole is a new, safe serotonin-dopamine activity modulator used for schizophrenia and depression that was recently reported to have anti-CSC activity and function as a chemosensitizer. Here, we examined its chemosensitization effects on osimertinib, a third-generation EGFR-TKI with an excellent safety profile, in glioma stem cells (GSCs), which are CSCs of glioblastoma. Brexpiprazole treatment sensitized GSCs to osimertinib and reduced the expression of survivin, an antiapoptotic factor, and the pharmacological and genetic inhibition of survivin mimicked the effects of brexpiprazole. Moreover, co-treatment of brexpiprazole and osimertinib suppressed tumor growth more efficiently than either drug alone without notable toxicity in vivo. This suggests that the combination of brexpiprazole and osimertinib is a potential therapeutic strategy for glioblastoma by chemosensitizing GSCs through the downregulation of survivin expression.
Collapse
|
19
|
Meng YQ, Kuai ZY, Zhan SW, Li CL, Chen HR. Design, synthesis, and antitumor activity of oleanolic acid derivatives. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2019; 21:633-651. [PMID: 29733221 DOI: 10.1080/10286020.2018.1464560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Using the techniques of computer-aided drug design, the docking of survivin and known active small molecules was simulated and then the key amino acid residue fragments of the target protein were analyzed. It led to the discovery of active groups capable of binding to the critical sites. Through the use of the natural product, oleanolic acid, as a lead compound, the introduction of the active groups onto the A-ring, and the modification of the carboxyl group at the C-28 position using esterification or amidation, 20 new oleanolic acid derivatives had been designed and synthesized. HepG2 and SGC-7901 cells were used to screen the antitumor activity through the standard MTT method. The compounds, II3, III5 and IV4, exhibited more potent cytotoxicity than positive drugs. Western blot experiment demonstrated that compound II3 can effectively inhibit the proliferation of HepG2 cells.
Collapse
Affiliation(s)
- Yan-Qiu Meng
- a Department of Pharmaceutical Engineering , Shenyang University of Chemical Technology , Shenyang 110142 , China
| | - Zhen-Yu Kuai
- a Department of Pharmaceutical Engineering , Shenyang University of Chemical Technology , Shenyang 110142 , China
| | - Shen-Wen Zhan
- a Department of Pharmaceutical Engineering , Shenyang University of Chemical Technology , Shenyang 110142 , China
| | - Chun-Lin Li
- a Department of Pharmaceutical Engineering , Shenyang University of Chemical Technology , Shenyang 110142 , China
| | - Hong-Rong Chen
- a Department of Pharmaceutical Engineering , Shenyang University of Chemical Technology , Shenyang 110142 , China
| |
Collapse
|
20
|
Abstract
Survivin (also known as BIRC5) is an evolutionarily conserved eukaryotic protein that is essential for cell division and can inhibit cell death. Normally it is only expressed in actively proliferating cells, but is upregulated in most, if not all cancers; consequently, it has received significant attention as a potential oncotherapeutic target. In this Cell Science at a Glance article and accompanying poster, we summarise our knowledge of survivin 21 years on from its initial discovery. We describe the structure, expression and function of survivin, highlight its interactome and conclude by describing anti-survivin strategies being trialled.
Collapse
Affiliation(s)
- Sally P Wheatley
- Department of Biochemistry, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Dario C Altieri
- The Wistar Institute Cancer Center, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Wani TH, Surendran S, Mishra VS, Chaturvedi J, Chowdhury G, Chakrabarty A. Adaptation to chronic exposure to sepantronium bromide (YM155), a prototypical survivin suppressant is due to persistent DNA damage-response in breast cancer cells. Oncotarget 2018; 9:33589-33600. [PMID: 30323901 PMCID: PMC6173358 DOI: 10.18632/oncotarget.26096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/23/2018] [Indexed: 12/12/2022] Open
Abstract
Sepantronium bromide (YM155), originally developed against the anti-apoptotic protein survivin, performed exceptionally well in pre-clinical and phase I clinical trials. However, in phase II trials of several cancer types including breast cancer it performed poorly. Additionally, no definitive correlation between survivin level and response to therapy was found. In an attempt to understand the true reason of the late-stage failure of this promising drug, we developed YM155-resistant MCF-7 breast cancer cell line and characterized side-by-side with the drug-naïve parental cell line. Chronic YM155 treatment resulted in downregulation of survivin expression yet triggered cellular responses typical of adaptation to persistent DNA damage. Lowering endogenous antioxidant glutathione level and activity of cell cycle check-point kinase restored YM155 activity. Thus, contrary to its development as a survivin suppressant, YM155 primarily acts as a chemotherapeutic drug causing oxidative stress-mediated DNA damage. Adaptation to long-term exposure to YM155 can be prevented and/or overcome by interfering with detoxification and DNA damage-response pathways. Finally, proteins associated with DNA damage-response pathway will be more appropriate as predictive biomarkers of YM155 in breast tumor cells.
Collapse
Affiliation(s)
- Tasaduq H Wani
- Department of Life Sciences, Shiv Nadar University, Greater Noida, UP 201314, India
| | - Sreeraj Surendran
- Department of Life Sciences, Shiv Nadar University, Greater Noida, UP 201314, India
| | - Vishnu S Mishra
- Department of Life Sciences, Shiv Nadar University, Greater Noida, UP 201314, India
| | - Jaya Chaturvedi
- Department of Life Sciences, Shiv Nadar University, Greater Noida, UP 201314, India
| | - Goutam Chowdhury
- Department of Chemistry, Shiv Nadar University, Greater Noida, UP 201314, India
| | - Anindita Chakrabarty
- Department of Life Sciences, Shiv Nadar University, Greater Noida, UP 201314, India
| |
Collapse
|
22
|
Abstract
Inhibitor of apoptosis (IAP) family comprises a group of endogenous proteins that function as main regulators of caspase activity and cell death. They are considered the main culprits in evasion of apoptosis, which is a fundamental hallmark of carcinogenesis. Overexpression of IAP proteins has been documented in various solid and hematological malignancies, rendering them resistant to standard chemotherapeutics and radiation therapy and conferring poor prognosis. This observation has urged their exploitation as therapeutic targets in cancer with promising pre-clinical outcomes. This review describes the structural and functional features of IAP proteins to elucidate the mechanism of their anti-apoptotic activity. We also provide an update on patterns of IAP expression in different tumors, their impact on treatment response and prognosis, as well as the emerging investigational drugs targeting them. This aims at shedding the light on the advances in IAP targeting achieved to date, and encourage further development of clinically applicable therapeutic approaches.
Collapse
Affiliation(s)
- Mervat S Mohamed
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia.
- Department of Chemistry, Biochemistry Speciality, Faculty of Science, Cairo University, Giza, Egypt.
- , Tabuk, Kingdom of Saudi Arabia.
| | - Mai K Bishr
- Department of Radiotherapy, Children's Cancer Hospital Egypt (CCHE), Cairo, Egypt
| | - Fahad M Almutairi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Ayat G Ali
- Department of Biochemistry, El Sahel Teaching Hospital, Cairo, Egypt
| |
Collapse
|
23
|
Mazzio EA, Lewis CA, Elhag R, Soliman KF. Effects of Sepantronium Bromide (YM-155) on the Whole Transcriptome of MDA-MB-231 Cells: Highlight on Impaired ATR/ATM Fanconi Anemia DNA Damage Response. Cancer Genomics Proteomics 2018; 15:249-264. [PMID: 29976630 PMCID: PMC6070710 DOI: 10.21873/cgp.20083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/16/2018] [Accepted: 05/25/2018] [Indexed: 12/18/2022] Open
Abstract
Sepantronium bromide (YM-155) is believed to elicit apoptosis and mitotic arrest in tumor cells by reducing (BIRC5, survivin) mRNA. In this study, we monitored changes in survivin mRNA and protein after treating MDA-MB-231 cells with YM-155 concurrent with evaluation of whole transcriptomic (WT) mRNA and long intergenic non-coding RNA at 2 time points: 8 h sub-lethal (83 ng/mL) and 20 h at the LC50 (14.6 ng/mL). The data show a tight association between cell death and the precipitating loss of survivin protein and mRNA (-2.67 fold-change (FC), p<0.001) at 20 h, questioning if the decline in survivin is attributed to cell death or drug impact. The meager loss of survivin mRNA was overshadowed by enormous differential change to the WT in both magnitude and significance for over 2000 differentially up/down-regulated transcripts: (+22 FC to -12 FC, p<0.001). The data show YM-155 to up-regulate transcripts in control of circadian rhythm (NOCT, PER, BHLHe40, NFIL3), tumor suppression (SIK1, FOSB), histone methylation (KDM6B) and negative feedback of NF-kappa B signaling (TNFAIP3). Down-regulated transcripts by YM-155 include glucuronidase (GUSBP3), numerous micro-RNAs, DNA damage repair elements (CENPI, POLQ, RAD54B) and the most affected system was the ataxia-telangiectasia mutated (ATM)/Fanconi anemia E3 monoubiquitin ligase core complexes (FANC transcripts - A/B/E/F/G/M), FANC2, FANCI, BRCA1, BRCA2, RAD51, PALB2 gene and ATR (ATM- and Rad3-Related) pathway. In conclusion, these findings suggest that a primary target of YM-155 is the loss of replicative DNA repair systems.
Collapse
Affiliation(s)
- Elizabeth A Mazzio
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A
| | - Charles A Lewis
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A
| | - Rashid Elhag
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A
| | - Karam F Soliman
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A.
| |
Collapse
|
24
|
Liu X, Zhao Y, Zhang W, Gao Y, Huo M, Liu M, Xiao Z, Liang S, Xu N, Zhu H. Inhibition of survivin enhances radiosensitivity of esophageal cancer cells by switching radiation-induced senescence to apoptosis. Onco Targets Ther 2018; 11:3087-3100. [PMID: 29872320 PMCID: PMC5975611 DOI: 10.2147/ott.s166798] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Purpose Strategies to increase radiosensitivity are urgently needed. Combining radiosensitizing reagents with radiotherapy could improve the outcome of cancer treatment. Some preclinical studies showed that sepantronium bromide (YM155) could sensitize cancer cells to radiation by inhibiting the survivin protein. In this study, we try to investigate the function of YM155 on radiosensitivity of esophageal squamous cell carcinoma (ESCC) cells. Materials and methods ESCC cell lines were treated with radiation and YM155, and the radiation efficacy was evaluated by cell counting kit-8 assay and clonogenic survival assay. Cell senescence was measured by senescence-associated β-galactosidase staining. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay, fluorescein isothiocyanate-labeled Annexin V/propidium iodide assay, and poly ADP-ribose polymerase cleavage were used to detect apoptosis. KYSE150 xenografts model was used to test the efficacy of radiation combined with YM155. Results YM155 could inhibit the upregulation of survivin induced by radiation in all ESCC cell lines, but the efficacy of radiosensitization varied in different cell lines. Radiation-induced senescence in KYSE150 and KYSE410 cells, and the combination with YM155 inhibited senescence and promoted apoptosis of ESCC cells, thereby enhancing radiosensitivity. Combination with YM155 and radiation delayed the growth of KYSE150 xenografts in nude mice by switching radiation-induced senescence to apoptosis. When p21 was inhibited in KYSE150 cells, radiation did not induce senescence, and the radiosensitization of YM155 was also attenuated. In KYSE510 and KYSE180 cells, radiation did not induce senescence, and YM155 could not enhance the radiosensitivity. Conclusion Our results suggest a new mechanism that YM155 might sensitize ESCC cells to radiation by switching radiation-induced senescence to apoptosis. The major determinant of radiosensitization by YM155 might be the induction of senescence by radiation.
Collapse
Affiliation(s)
- Xianghe Liu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yahui Zhao
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weina Zhang
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Gao
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Miaomiao Huo
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zefen Xiao
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
Hou LJ, Huang XX, Xu LN, Zhang YY, Zhao N, Ou RY, Li WF, Zhang WJ, Jiang QW, Yang Y, Wei MN, Huang JR, Wang K, Yuan ML, Xing ZH, Shi Z, Yan XJ. YM155 enhances docetaxel efficacy in ovarian cancer. Am J Transl Res 2018; 10:696-708. [PMID: 29636860 PMCID: PMC5883111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/24/2017] [Indexed: 06/08/2023]
Abstract
YM155 (Sepantronium bromide) is a potent small molecule inhibitor of survivin by suppression of survivin expression and shows the promising anticancer activity in many types of cancers. Docetaxel (Taxotere®) is a member of the taxane drugs used in the treatment of a number of cancers in clinic. Despite the therapeutic efficacy of docetaxel is encouraging, the emergent resistance is an urgent issue. In this study, we investigate the effect of YM155 on docetaxel efficacy in ovarian cancer cells. Our data showed that YM155 actively induced cell growth inhibition, cell cycle arrest and apoptosis with downregualtion of survivin in ovarian cancer cells. Moreover, YM155 increased the intracellular ROS levels, and pretreatment with either NAC or GSH partially reversed the YM155-induced ROS accumulation and apoptosis only in the parental A2780 cells, but not in the resistant A2780/Taxol cells. Furthermore, YM155 enhanced docetaxel efficacy to inhibit the growth and induce apoptosis in ovarian cancer cells. Take together, our results suggested that combination of YM155 and docetaxel may be a feasible strategy for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Li-Jiao Hou
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| | - Xiao-Xiu Huang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| | - Li-Na Xu
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| | - Yan-Yan Zhang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| | - Na Zhao
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| | - Rong-Ying Ou
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| | - Wen-Feng Li
- Department of Chemoradiotherapy, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| | - Wen-Ji Zhang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Qi-Wei Jiang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Yang Yang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Meng-Ning Wei
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Jia-Rong Huang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Kun Wang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Meng-Ling Yuan
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Zi-Hao Xing
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Xiao-Jian Yan
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| |
Collapse
|
26
|
Li D, Hu C, Li H. Survivin as a novel target protein for reducing the proliferation of cancer cells. Biomed Rep 2018; 8:399-406. [PMID: 29725522 DOI: 10.3892/br.2018.1077] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/28/2018] [Indexed: 12/12/2022] Open
Abstract
Survivin, also known as baculoviral inhibitor of apoptosis repeat-containing 5, is a novel member of the inhibitor of apoptosis protein family. Survivin is highly expressed in tumors and embryonic tissues and is associated with tumor cell differentiation, proliferation, invasion and metastasis; however, survivin is expressed at low levels in normal terminally differentiated adult tissues. Meanwhile, the expression level of survivin is also a negative prognostic factor for patients with cancer. These unique characteristics of survivin make it an exciting potential therapeutic target for cancer treatment. This review will discuss the biological characteristics of survivin and its potential use as a treatment target to reduce cancer cell proliferation.
Collapse
Affiliation(s)
- Dongyu Li
- Department of Genetics, College of Agricultural and Life Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chenghao Hu
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Huibin Li
- Department of Burns and Plastic Surgery, People's Hospital of Linyi, Linyi, Shandong 276000, P.R. China
| |
Collapse
|
27
|
YM155 induces apoptosis in p53-deficient T-acute lymphoblastic leukemia cells independent of survivin inhibition. Anticancer Drugs 2017; 28:298-306. [PMID: 27930382 DOI: 10.1097/cad.0000000000000462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
T-acute lymphoblastic leukemia (T-ALL) is an aggressive hematological cancer that arises from the malignant transformation of T-cell progenitors. Despite the significant progress in current treatment, challenges remain the lifelong morbidity after current chemotherapy regimens and postrelapse survival. In addition, patients with T-ALL have inferior outcomes compared with those with B-cell precursor; consequently, novel therapeutic approaches are still necessary to improve the outcome in this cohort. YM155 is an imidazolium derivative originally discovered as a suppressant of survivin expression. It has been reported that YM155 has potent antiproliferative activity on a variety of human cancer cell lines; however, its effects in T-ALL cells have been underexplored. The aim of the present study was to examine the effects of YM155 on p53-deficient T-ALL cell lines, JURKAT and CCRF-CEM. Resazurin dye was used to evaluate cell viability. Colony formation was observed in MethoCult methylcellulose medium. Apoptotic cells were detected by flow cytometry (annexin V labeling and TUNEL assay). Cell cycle analysis was carried out by DNA quantification in flow cytometry. DNA damage was assessed using a comet assay and the survivin expression profile was evaluated by real-time PCR and immunoblotting. YM155 treatment decreased cell viability and clonogenicity capacity of T-ALL cells, increased the apoptosis index and DNA damage, and altered the cell cycle dynamic, independent of survivin inhibition. Taken together, the data reinforce that YM155 may be useful as a therapeutic possibility to combat leukemia.
Collapse
|
28
|
Abstract
YM155 (sepantronium bromide) has been evaluated in clinical trials as a survivin suppressant, but despite positive signals from early work, later studies were negative. Clarification of the mechanism of action of YM155 is important for its further development. YM155 affects cells in a cell cycle-specific manner. When cells are in G1, YM155 prevented their progression through the S phase, leaving the cells at G1/S when exposed to YM155. Passage through mitosis from G2 is also defective following YM155 exposure. In this study, YM155 did not behave like a typical DNA intercalator in viscosity, circular dichroism, and absorption spectroscopy studies. In addition, molecular modeling experiments ruled out YM155 DNA interaction to produce DNA intercalation. We show that YM155 inhibited topoisomerase 2α decatenation and topoisomerase 1-mediated cleavage of DNA, suggesting that YM155 inhibits the enzyme function. Consistent with these findings, DNA double-strand break repair was also inhibited by YM155.
Collapse
|
29
|
Tsuneki M, Kinjo T, Mori T, Yoshida A, Kuyama K, Ohira A, Miyagi T, Takahashi K, Kawai A, Chuman H, Yamazaki N, Masuzawa M, Arakawa H. Survivin: A novel marker and potential therapeutic target for human angiosarcoma. Cancer Sci 2017; 108:2295-2305. [PMID: 28845553 PMCID: PMC5665764 DOI: 10.1111/cas.13379] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 08/10/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022] Open
Abstract
Human angiosarcoma is a rare malignant vascular tumor associated with extremely poor clinical outcome and generally arising in skin of the head and neck region. However, little is known about the molecular pathogeneses and useful immunohistochemical markers of angiosarcoma. To investigate the mechanisms of angiosarcoma progression, we collected 85 cases of human angiosarcoma specimens with clinical records and analyzed ISO-HAS-B patient-derived angiosarcoma cells. As control subjects, 54 cases of hemangioma and 34 of pyogenic granuloma were collected. Remarkably, consistent with our recent observations regarding the involvement of survivin expression following Hippo pathway inactivation in the neoplastic proliferation of murine hemangioendothelioma cells and human infantile hemangioma, nuclear survivin expression was observed in all cases of angiosarcoma but not in hemangiomas and pyogenic granulomas, and the Hippo pathway was inactivated in 90.3% of yes-associated protein (YAP) -positive angiosarcoma cases. However, survivin expression modes and YAP localization (Hippo pathway activation modes) were not correlated with survival. In addition, we confirmed that survivin small interference RNA (siRNA) transfection and YM155, an anti-survivin drug, elicited decreased nuclear survivin expression and cell proliferation in ISO-HAS-B cells which expressed survivin consistently. Conclusively, these findings support the importance of survivin as a good marker and critical regulator of cellular proliferation for human angiosarcoma and YM155 as a potential therapeutic agent.
Collapse
Affiliation(s)
- Masayuki Tsuneki
- Division of Cancer Biology, National Cancer Center Research Institute, Tokyo, Japan.,Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan
| | - Takao Kinjo
- Division of Morphological Pathology, Department of Basic Laboratory Sciences, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Taisuke Mori
- Departments of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Akihiko Yoshida
- Departments of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Kayo Kuyama
- Department of Oral Pathology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Aoi Ohira
- Deparment of Dermatology, University of the Ryukyus, Okinawa, Japan
| | - Takuya Miyagi
- Deparment of Dermatology, University of the Ryukyus, Okinawa, Japan
| | - Kenzo Takahashi
- Deparment of Dermatology, University of the Ryukyus, Okinawa, Japan
| | - Akira Kawai
- Musculoskeletal Oncology and Rehabilitation, National Cancer Center Hospital, Tokyo, Japan
| | - Hirokazu Chuman
- Musculoskeletal Oncology and Rehabilitation, National Cancer Center Hospital, Tokyo, Japan
| | - Naoya Yamazaki
- Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Mikio Masuzawa
- Department of Molecular Diagnostics, School of Allied Health Sciences, Kitasato University, Kanagawa, Japan
| | - Hirofumi Arakawa
- Division of Cancer Biology, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
30
|
Lapatinib potentiates cytotoxicity of YM155 in neuroblastoma via inhibition of the ABCB1 efflux transporter. Sci Rep 2017; 7:3091. [PMID: 28596528 PMCID: PMC5465103 DOI: 10.1038/s41598-017-03129-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 04/25/2017] [Indexed: 01/01/2023] Open
Abstract
Adverse side effects of cancer agents are of great concern in the context of childhood tumors where they can reduce the quality of life in young patients and cause life-long adverse effects. Synergistic drug combinations can lessen potential toxic side effects through lower dosing and simultaneously help to overcome drug resistance. Neuroblastoma is the most common cancer in infancy and extremely heterogeneous in clinical presentation and features. Applying a systematic pairwise drug combination screen we observed a highly potent synergy in neuroblastoma cells between the EGFR kinase inhibitor lapatinib and the anticancer compound YM155 that is preserved across several neuroblastoma variants. Mechanistically, the synergy was based on a lapatinib induced inhibition of the multidrug-resistance efflux transporter ABCB1, which is frequently expressed in resistant neuroblastoma cells, which allowed prolonged and elevated cytotoxicity of YM155. In addition, the drug combination (i.e. lapatinib plus YM155) decreased neuroblastoma tumor size in an in vivo model.
Collapse
|
31
|
Sim MY, Huynh H, Go ML, Yuen JSP. Action of YM155 on clear cell renal cell carcinoma does not depend on survivin expression levels. PLoS One 2017; 12:e0178168. [PMID: 28582447 PMCID: PMC5459331 DOI: 10.1371/journal.pone.0178168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 05/08/2017] [Indexed: 12/12/2022] Open
Abstract
The dioxonapthoimidazolium YM155 is a survivin suppressant which has been investigated as an anticancer agent in clinical trials. Here, we investigated its growth inhibitory properties on a panel of immortalized and patient derived renal cell carcinoma (RCC) cell lines which were either deficient in the tumour suppressor von Hippel-Lindau (VHL) protein or possessed a functional copy. Neither the VHL status nor the survivin expression levels of these cell lines influenced their susceptibility to growth inhibition by YM155. Of the various RCC lines, the papillary subtype was more resistant to YM155, suggesting that the therapeutic efficacy of YM155 may be restricted to clear cell subtypes. YM155 was equally potent in cells (RCC786.0) in which survivin expression had been stably silenced or overexpressed, implicating a limited reliance on survivin in the mode of action of YM155. A follow-up in-vitro high throughput RNA microarray identified possible targets of YM155 apart from survivin. Selected genes (ID1, FOXO1, CYLD) that were differentially expressed in YM155-sensitive RCC cells and relevant to RCC pathology were validated with real-time PCR and western immunoblotting analyses. Thus, there is corroboratory evidence that the growth inhibitory activity of YM155 in RCC cell lines is not exclusively mediated by its suppression of survivin. In view of the growing importance of combination therapy in oncology, we showed that a combination of YM155 and sorafenib at ½ x IC50 concentrations was synergistic on RCC786.0 cells. However, when tested intraperitoneally on a murine xenograft model derived from a nephrectomised patient with clear cell RCC, a combination of suboptimal doses of both drugs failed to arrest tumour progression. The absence of synergy in vivo highlighted the need to further optimize the dosing schedules of YM155 and sorafenib, as well as their routes of administration. It also implied that the expression of other oncogenic proteins which YM155 may target is either low or absent in this clear cell RCC.
Collapse
Affiliation(s)
- Mei Yi Sim
- Department of Urology, Singapore General Hospital, Republic of Singapore
- * E-mail:
| | - Hung Huynh
- Laboratory of Molecular Endocrinology, Division of Molecular and Cellular Research, National Cancer Centre, Republic of Singapore
| | - Mei Lin Go
- Department of Pharmacy, National University of Singapore, Republic of Singapore
| | | |
Collapse
|
32
|
Nyquist MD, Prasad B, Mostaghel EA. Harnessing Solute Carrier Transporters for Precision Oncology. Molecules 2017; 22:E539. [PMID: 28350329 PMCID: PMC5570559 DOI: 10.3390/molecules22040539] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 12/11/2022] Open
Abstract
Solute Carrier (SLC) transporters are a large superfamily of transmembrane carriers involved in the regulated transport of metabolites, nutrients, ions and drugs across cellular membranes. A subset of these solute carriers play a significant role in the cellular uptake of many cancer therapeutics, ranging from chemotherapeutics such as antimetabolites, topoisomerase inhibitors, platinum-based drugs and taxanes to targeted therapies such as tyrosine kinase inhibitors. SLC transporters are co-expressed in groups and patterns across normal tissues, suggesting they may comprise a coordinated regulatory circuit serving to mediate normal tissue functions. In cancer however, there are dramatic changes in expression patterns of SLC transporters. This frequently serves to feed the increased metabolic demands of the tumor cell for amino acids, nucleotides and other metabolites, but also presents a therapeutic opportunity, as increased transporter expression may serve to increase intracellular concentrations of substrate drugs. In this review, we examine the regulation of drug transporters in cancer and how this impacts therapy response, and discuss novel approaches to targeting therapies to specific cancers via tumor-specific aberrations in transporter expression. We propose that among the oncogenic changes in SLC transporter expression there exist emergent vulnerabilities that can be exploited therapeutically, extending the application of precision medicine from tumor-specific drug targets to tumor-specific determinants of drug uptake.
Collapse
Affiliation(s)
- Michael D Nyquist
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA.
| | - Elahe A Mostaghel
- Division of Oncology, Department of Medicine, University of Washington, Seattle, WA 98195 USA.
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
33
|
Chow YP, Alias H, Jamal R. Meta-analysis of gene expression in relapsed childhood B-acute lymphoblastic leukemia. BMC Cancer 2017; 17:120. [PMID: 28183295 PMCID: PMC5301337 DOI: 10.1186/s12885-017-3103-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 02/01/2017] [Indexed: 02/06/2023] Open
Abstract
Background Relapsed pediatric B-acute lymphoblastic leukemia (B-ALL) remains as the leading cause of cancer death among children. Other than stem cell transplantation and intensified chemotherapy, no other improved treatment strategies have been approved clinically. Gene expression profiling represents a powerful approach to identify potential biomarkers and new therapeutic targets for various diseases including leukemias. However, inadequate sample size in many individual experiments has failed to provide adequate study power to yield translatable findings. With the hope of getting new insights into the biological mechanisms underpinning relapsed ALL and identifying more promising biomarkers or therapeutic targets, we conducted a meta-analysis of gene expression studies involving ALL from 3 separate studies. Method By using the keywords “acute lymphoblastic leukemia”, and “microarray”, a total of 280 and 275 microarray datasets were found listed in Gene Expression Omnibus database GEO and ArrayExpress database respectively. Further manual inspection found that only three studies (GSE18497, GSE28460, GSE3910) were focused on gene expression profiling of paired diagnosis-relapsed pediatric B-ALL. These three datasets which comprised of a total of 108 matched diagnosis-relapsed pediatric B-ALL samples were then included for this meta-analysis using RankProd approach. Results Our analysis identified a total of 1795 upregulated probes which corresponded to 1527 genes (pfp < 0.01; FC > 1), and 1493 downregulated probes which corresponded to 1214 genes (pfp < 0.01; FC < 1) respectively. S100A8 appeared as the top most overexpressed gene (pfp < 0.01, FC = 1.8) and is a potential target for further validation. Based on gene ontology biological process annotation, the upregulated genes were most enriched in cell cycle processes (enrichment score = 15.3), whilst the downregulated genes were clustered in transcription regulation (enrichment score = 12.6). Elevated expression of cell cycle regulators (e.g kinesins, AURKA, CDKs) was the key genetic defect implicated in relapsed ALL, and serve as attractive targets for therapeutic intervention. Conclusion We identified S100A8 as the most overexpressed gene, and the cell cycle pathway as the most promising biomarker and therapeutic target for relapsed childhood B-ALL. The validity of the results warrants further investigation. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3103-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yock-Ping Chow
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia Medical Center, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Hamidah Alias
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia Medical Center, 56000, Cheras, Kuala Lumpur, Malaysia.,Department of Pediatric, Faculty of Medicine, National University of Malaysia, Universiti Kebangsaan Malaysia Medical Center, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia Medical Center, 56000, Cheras, Kuala Lumpur, Malaysia. .,Department of Pediatric, Faculty of Medicine, National University of Malaysia, Universiti Kebangsaan Malaysia Medical Center, 56000, Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|