1
|
Ahmed Abdelmawgood I, Sayed AM, Mohamed OA, Ali Ramadan S, Waleed Farg J, Saad W, Sayed Hamdy R, Sharaf B, Ashry H, Kotb MA. Ginger and its constituents in asthma: a mini-review. J Asthma 2024; 61:1392-1401. [PMID: 38805387 DOI: 10.1080/02770903.2024.2361779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 05/30/2024]
Abstract
OBJECTIVE The primary objective of this review is to focus on research findings that aim to determine the immunomodulatory action of ginger's active components and the molecular mechanisms that reduce asthma. The study aims to provide an overview of the scientific literature available on ginger's efficacy in treating allergic asthma. DATA SOURCE The mouse model of asthma has been used to investigate the actions of ginger and its active compounds on allergies and asthma. Various studies and scientific literature on ginger's health-improving qualities and its traditional use have been examined. RESULTS The findings indicate that ginger and its active ingredients have anti-asthmatic features and a suppressive impact on mast cell production of histamine. Animals given ginger and compounds derived from ginger demonstrate a notable reduction in allergic response, suggesting a significant role in lowering the allergic reaction. CONCLUSION While ginger shows promise as a potential treatment for allergies and asthma due to its anti-inflammatory, antibacterial, antidiabetic, anticancer, and antioxidant effects, further examination, extrapolation, and confirmation of these results are necessary before utilizing ginger and its active components in human treatments. This review highlights the need for additional research and provides an overview of the current scientific literature on ginger's efficacy in treating allergic asthma.
Collapse
Affiliation(s)
| | - Ahmed M Sayed
- Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Omnia A Mohamed
- Biophysics Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Sohaib Ali Ramadan
- Molecular Biotechnology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, Egypt
| | | | - Wessam Saad
- Biotechnology English Instructed Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Rahma Sayed Hamdy
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Bahaa Sharaf
- Molecular Biotechnology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, Egypt
| | - Hamid Ashry
- Biochemistry Branch, Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed A Kotb
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
2
|
Thuong LHH, Huang CL, Fong YC, Liu CL, Guo JH, Wu CY, Liu PI, Tang CH. Bone sialoprotein facilitates anoikis resistance in lung cancer by inhibiting miR-150-5p expression. J Cell Mol Med 2024; 28:e70155. [PMID: 39466654 DOI: 10.1111/jcmm.70155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/10/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024] Open
Abstract
Metastatic lung cancer is a highly prevalent cancer with a very low chance of long-term survival. Metastasis at secondary sites requires that cancer cells develop anoikis resistance to survive during circulation. High levels of bone sialoprotein (BSP), a member of the small integrin-binding ligand N-linked glycoproteins (SIBLINGs), have been shown to promote the spread of lung cancer cells; however, the effects of BSP in anoikis resistance are largely unknown. In this study, we determined that BSP promotes anoikis resistance in lung cancer cells. BSP was also shown to promote the expression of E-cadherin and vimentin (epithelial-to-mesenchymal transition markers, which have been utilized as indicators of anoikis resistance). It appears that BSP facilitates MMP-14-dependent anoikis resistance by inhibiting the synthesis of miR-150-5p and activating the ERK signalling pathway. Knockdown of BSP expression was shown to block lung cancer metastasis by lowering anoikis resistance in vivo. These results indicate that BSP is a promising target to deal with anoikis resistance and metastasis in human lung cancers.
Collapse
Affiliation(s)
- Le Huynh Hoai Thuong
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chang-Lun Huang
- Division of General Thoracic Surgery, Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Chun-Lin Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| | - Jeng-Hung Guo
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Ying Wu
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
- Department of Neurosurgery, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| | - Po-I Liu
- Department of Physical Therapy, Asia University, Taichung, Taiwan
- Department of General Thoracic Surgery, Asia University Hospital, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
3
|
Zhao LP, Wang HJ, Hu D, Hu JH, Guan ZR, Yu LH, Jiang YP, Tang XQ, Zhou ZH, Xie T, Lou JS. β-Elemene induced ferroptosis via TFEB-mediated GPX4 degradation in EGFR wide-type non-small cell lung cancer. J Adv Res 2024; 62:257-272. [PMID: 37689240 PMCID: PMC11331178 DOI: 10.1016/j.jare.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023] Open
Abstract
INTRODUCTION β-Elemene (β-ELE), derived from Curcuma wenyujin, has anticancer effect on non-small cell lung cancer (NSCLC). However, the potential target and detail mechanism were still not clear. TFEB is the master regulator of lysosome biogenesis. Ferroptosis, a promising strategy for cancer therapy could be triggered via suppression on glutathione peroxidase 4 (GPX4). Weather TFEB-mediated lysosome degradation contributes to GPX4 decline and how β-ELE modulates on this process are not clear. OBJECTIVES To observe the action of β-ELE on TFEB, and the role of TFEB-mediated GPX4 degradation in β-ELE induced ferroptosis. METHODS Surface plasmon resonance (SPR) and molecular docking were applied to observe the binding affinity of β-ELE on TFEB. Activation of TFEB and lysosome were observed by immunofluorescence, western blot, flow cytometry and qPCR. Ferroptosis induced by β-ELE was observed via lipid ROS, a labile iron pool (LIP) assay and western blot. A549TFEB KO cells were established via CRISPR/Cas9. The regulation of TFEB on GPX4 and ferroptosis was observed in β-ELE treated A549WT and A549TFEB KO cells, which was further studied in orthotopic NOD/SCID mouse model. RESULTS β-ELE can bind to TFEB, notably activate TFEB, lysosome and transcriptional increase on downstream gene GLA, MCOLN1, SLC26A11 involved in lysosome activity in EGFR wild-type NSCLC cells. β-ELE increased GPX4 ubiquitination and lysosomal localization, with the increase on lysosome degradation of GPX4. Furthermore, β-ELE induced ferroptosis, which could be promoted by TFEB overexpression or compromised by TFEB knockout. Genetic knockout or inactivation of TFEB compromised β-ELE induced lysosome degradation of GPX4, which was further demonstrated in orthotopic NSCLC NOD/SCID mice model. CONCLUSION This study firstly demonstrated that TFEB promoted GPX4 lysosome degradation contributes to β-ELE induced ferroptosis in EGFR wild-type NSCLC, which gives a clue that TFEB mediated GPX4 degradation would be a novel strategy for ferroptosis induction and NSCLC therapy.
Collapse
Affiliation(s)
- Li-Ping Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hao-Jie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Die Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jun-Hu Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zheng-Rong Guan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Li-Hua Yu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ya-Ping Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiao-Qi Tang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhao-Huang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Jian-Shu Lou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
4
|
Wang Z, Yang L. Natural-product-based, carrier-free, noncovalent nanoparticles for tumor chemo-photodynamic combination therapy. Pharmacol Res 2024; 203:107150. [PMID: 38521285 DOI: 10.1016/j.phrs.2024.107150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/22/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Cancer, with its diversity, heterogeneity, and complexity, is a significant contributor to global morbidity, disability, and mortality, highlighting the necessity for transformative treatment approaches. Photodynamic therapy (PDT) has aroused continuous interest as a viable alternative to conventional cancer treatments that encounter drug resistance. Nanotechnology has brought new advances in medicine and has shown great potential in drug delivery and cancer treatment. For precise and efficient therapeutic utilization of such a tumor therapeutic approach with high spatiotemporal selectivity and minimal invasiveness, the carrier-free noncovalent nanoparticles (NPs) based on chemo-photodynamic combination therapy is essential. Utilizing natural products as the foundation for nanodrug development offers unparalleled advantages, including exceptional pharmacological activity, easy functionalization/modification, and well biocompatibility. The natural-product-based, carrier-free, noncovalent NPs revealed excellent synergistic anticancer activity in comparison with free photosensitizers and free bioactive natural products, representing an alternative and favorable combination therapeutic avenue to improve therapeutic efficacy. Herein, a comprehensive summary of current strategies and representative application examples of carrier-free noncovalent NPs in the past decade based on natural products (such as paclitaxel, 10-hydroxycamptothecin, doxorubicin, etoposide, combretastatin A4, epigallocatechin gallate, and curcumin) for tumor chemo-photodynamic combination therapy. We highlight the insightful design and synthesis of the smart carrier-free NPs that aim to enhance PDT efficacy. Meanwhile, we discuss the future challenges and potential opportunities associated with these NPs to provide new enlightenment, spur innovative ideas, and facilitate PDT-mediated clinical transformation.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China; School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus, Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, PR China
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, PR China; Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
5
|
Islam MT, Jang NH, Lee HJ. Natural Products as Regulators against Matrix Metalloproteinases for the Treatment of Cancer. Biomedicines 2024; 12:794. [PMID: 38672151 PMCID: PMC11048580 DOI: 10.3390/biomedicines12040794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Cancers are currently the major cause of mortality in the world. According to previous studies, matrix metalloproteinases (MMPs) have an impact on tumor cell proliferation, which could lead to the onset and progression of cancers. Therefore, regulating the expression and activity of MMPs, especially MMP-2 and MMP-9, could be a promising strategy to reduce the risk of cancers. Various studies have tried to investigate and understand the pathophysiology of cancers to suggest potent treatments. In this review, we summarize how natural products from marine organisms and plants, as regulators of MMP-2 and MMP-9 expression and enzymatic activity, can operate as potent anticancer agents.
Collapse
Affiliation(s)
- Md. Towhedul Islam
- Department of Chemistry, Faculty of Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Nak Han Jang
- Department of Chemistry Education, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
6
|
Qin P, Li Q, Zu Q, Dong R, Qi Y. Natural products targeting autophagy and apoptosis in NSCLC: a novel therapeutic strategy. Front Oncol 2024; 14:1379698. [PMID: 38628670 PMCID: PMC11019012 DOI: 10.3389/fonc.2024.1379698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide, with non-small cell lung cancer (NSCLC) being the predominant type. The roles of autophagy and apoptosis in NSCLC present a dual and intricate nature. Additionally, autophagy and apoptosis interconnect through diverse crosstalk molecules. Owing to their multitargeting nature, safety, and efficacy, natural products have emerged as principal sources for NSCLC therapeutic candidates. This review begins with an exploration of the mechanisms of autophagy and apoptosis, proceeds to examine the crosstalk molecules between these processes, and outlines their implications and interactions in NSCLC. Finally, the paper reviews natural products that have been intensively studied against NSCLC targeting autophagy and apoptosis, and summarizes in detail the four most retrieved representative drugs. This paper clarifies good therapeutic effects of natural products in NSCLC by targeting autophagy and apoptosis and aims to promote greater consideration by researchers of natural products as candidates for anti-NSCLC drug discovery.
Collapse
Affiliation(s)
- Peiyi Qin
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Qingchen Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qi Zu
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Ruxue Dong
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Yuanfu Qi
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
Hsu HL, Lin BJ, Lin YC, Tu CC, Nguyen NL, Wang CC, Chen MC, Chen CH. Cucurbitacin E Exerts Anti-Proliferative Activity via Promoting p62-Dependent Apoptosis in Human Non-Small-Cell Lung Cancer A549 Cells. Curr Issues Mol Biol 2023; 45:8138-8151. [PMID: 37886957 PMCID: PMC10605876 DOI: 10.3390/cimb45100514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
EGFR tyrosine kinase inhibitors (TKIs) are the first-line treatment for advanced EGFR-mutated non-small-cell lung cancer (NSCLC). However, NSCLC patients with wild-type EGFR and KRAS mutation are ineligible for EGFR-TKIs. Therefore, the discovery of new therapeutic agents is urgently needed for NSCLC patients who cannot receive targeted therapies. Natural products possess tremendous chemical diversity and have been extensively investigated for their anticancer activity. In this study, we found that Cucurbitacin E (Cu E), a triterpene of cucurbitacins widely presented in the edible plants of the Cucurbitaceae family, significantly inhibits the viability and proliferation of A549 cells that harbor wild-type EGFR and KRAS mutation. Our results revealed that Cu E increases cell-cycle arrest at G2/M and subG1 phase. Mechanistically, Cu E significantly inhibits the phosphorylation and protein levels of regulatory proteins and hinders G2/M cell-cycle progression. Meanwhile, the treatment of Cu E resulted in DNA damage response and apoptosis. For the first time, we observed that Cu E induces incomplete autophagy as evidenced by increased LC3B-II expression and p62-accumulation. Knockdown of p62 rescued the cells from Cu E-mediated anti-proliferative effect, apoptosis, DNA damage, and ROS production. These findings suggest that Cu E is a promising drug candidate for NSCLC.
Collapse
Affiliation(s)
- Han-Lin Hsu
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Bo-Jyun Lin
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Chen Lin
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chih-Chieh Tu
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Nham-Linh Nguyen
- Faculty of Chemical and Food Technology, HCMC University of Technology and Education, Ho Chi Minh 70000, Vietnam
| | - Ching-Chiung Wang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Traditional Herbal Medicine Research, Center of Taipei Medical University Hospital, Taipei 110, Taiwan
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| | - Mei-Chuan Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Traditional Herbal Medicine Research, Center of Taipei Medical University Hospital, Taipei 110, Taiwan
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Chun-Han Chen
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| |
Collapse
|
8
|
James A, Akash K, Sharma A, Bhattacharyya S, Sriamornsak P, Nagraik R, Kumar D. Himalayan flora: targeting various molecular pathways in lung cancer. Med Oncol 2023; 40:314. [PMID: 37787816 DOI: 10.1007/s12032-023-02171-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/21/2023] [Indexed: 10/04/2023]
Abstract
The fatal amplification of lung cancer across the globe and the limitations of current treatment strategies emphasize the necessity for substitute therapeutics. The incorporation of phyto-derived components in chemo treatment holds promise in addressing those challenges. Despite the significant progressions in lung cancer therapeutics, the complexities of molecular mechanism and pathways underlying this disease remain inadequately understood, necessitating novel biomarker targeting. The Himalayas, abundant in diverse plant varieties with established chemotherapeutic potential, presents a promising avenue for investigating potential cures for lung carcinoma. The vast diversity of phytocompounds herein can be explored for targeting the disease. This review delves into the multifaceted targets of lung cancer and explores the established phytochemicals with their specific molecular targets. It emphasizes comprehending the intricate pathways that govern effective therapeutic interventions for lung cancer. Through this exploration of Himalayan flora, this review seeks to illuminate potential breakthroughs in lung cancer management using natural compounds. The amalgamation of Himalayan plant-derived compounds with cautiously designed combined therapeutic approaches such as nanocarrier-mediated drug delivery and synergistic therapy offers an opportunity to redefine the boundaries of lung cancer treatment by reducing the drug resistance and side effects and enabling an effective targeted delivery of drugs. Furthermore, additional studies are obligatory to understand the possible derivation of natural compounds used in current lung cancer treatment from plant species within the Himalayan region.
Collapse
Affiliation(s)
- Abija James
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - K Akash
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Avinash Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sanjib Bhattacharyya
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Beibei, 400715, Chongqing, People's Republic of China
- Department of Sciences, Nirma University, Ahmedabad, Gujarat, 382481, India
| | | | - Rupak Nagraik
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| |
Collapse
|
9
|
Samie A, Alavian H, Vafaei-Pour Z, Mohammadpour AH, Jafarian AH, Danesh NM, Abnous K, Taghdisi SM. Accelerated Wound Healing with a Diminutive Scar through Cocrystal Engineered Curcumin. Mol Pharm 2023; 20:5090-5107. [PMID: 37624646 DOI: 10.1021/acs.molpharmaceut.3c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Pharmaceutical cocrystals ( Regulatory Classification of Pharmaceutical Co-Crystals Guidance for Industry; Food and Drug Administration, 2018) are crystalline solids produced through supramolecular chemistry to modulate the physicochemical properties of active pharmaceutical ingredients (APIs). Despite their extensive development in interdisciplinary sciences, this is a pioneering study on the efficacy of pharmaceutical cocrystals in wound healing and scar reducing. Curcumin-pyrogallol cocrystal (CUR-PYR) was accordingly cherry-picked since its superior physicochemical properties adequately compensate for limitative drawbacks of curcumin (CUR). CUR-PYR has been synthesized by a liquid-assisted grinding (LAG) method and characterized via FT-IR, DSC, and PXRD analyses. In vitro antibacterial study indicated that CUR-PYR cocrystal, CUR+PYR physical mixture (PM), and PYR are more effective against both Gram-negative (Pseudomonas aeruginosa and Escherichia coli) and Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacteria in comparison with CUR. In vitro results also demonstrated that the viability of HDF and NIH-3T3 cells treated with CUR-PYR were improved more than those received CUR which is attributed to the effect of PYR in the form of cocrystal. The wound healing process has been monitored through a 15 day in vivo experiment on 75 male rats stratified into six groups: five groups treated by CUR-PYR+Vaseline (CUR-PYR.ung), CUR+PYR+Vaseline (CUR+PYR.ung), CUR+Vaseline (CUR.ung), PYR+Vaseline (PYR.ung), and Vaseline (VAS) ointments and a negative control group of 0.9% sodium chloride solution (NS). It was revealed that the wounds under CUR-PYR.ung treatment closed by day 12 postsurgery, while the wounds in other groups failed to reach the complete closure end point until the end of the experiment. Surprisingly, a diminutive scar (3.89 ± 0.97% of initial wound size) was observed in the CUR-PYR.ung treated wounds by day 15 after injury, followed by corresponding values for PYR.ung (12.08 ± 2.75%), CUR+PYR.ung (13.89 ± 5.02%), CUR.ung (16.24 ± 6.39%), VAS (18.97 ± 6.89%), and NS (20.33 ± 5.77%). Besides, investigating histopathological parameters including inflammation, granulation tissue, re-epithelialization, and collagen deposition signified outstandingly higher ability of CUR-PYR cocrystal in wound healing than either of its two constituents separately or their simple PM. It was concluded that desired solubility of the prepared cocrystal was essentially responsible for accelerating wound closure and promoting tissue regeneration which yielded minimal scarring. This prototype research suggests a promising application of pharmaceutical cocrystals for the purpose of wound healing.
Collapse
Affiliation(s)
- Ali Samie
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Hoda Alavian
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Zeinab Vafaei-Pour
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Amir Hooshang Mohammadpour
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Science, Mashhad 9177948954, Iran
| | - Amir Hossein Jafarian
- Cancer and Molecular Research Center, Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Noor Mohammad Danesh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Khalil Abnous
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| |
Collapse
|
10
|
Tabassum M, Lone BA, Bhat MN, Bhushan A, Banjare N, Manrique E, Gupta P, Mondhe DM, Gupta PN. Apoptotic Potential and Antitumor Efficacy of Trilliumoside A: A New Steroidal Saponin Isolated from Rhizomes of Trillium govanianum. ACS OMEGA 2023; 8:31914-31927. [PMID: 37692233 PMCID: PMC10483520 DOI: 10.1021/acsomega.3c03649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023]
Abstract
Natural product-derived molecules exhibit potential as anticancer agents. Trilliumoside A, a new steroidal saponin, was obtained from rhizomes of Trillium govanianum, and its anticancer activity was investigated in the presented study. Trilliumoside A was investigated in a panel of cell lines, and it exhibited promising cytotoxic activity on the A549 cells (human lung cancer cells) with an IC50 of 1.83 μM. The mechanism of cell death induced by Trilliumoside A in A549 cells and its anticancer potential in murine tumor models (EAC and EAT) were presented in the current research. Trilliumoside A was found to induce apoptosis in A549 cells by increasing the expression of various apoptotic proteins, such as Bax, Puma, cytochrome C, cleaved PARP, and cleaved caspase 3. Additionally, Trilliumoside A regulates the expression of p53, CDK2, and Cyclin A by decreasing the mitochondrial membrane potential, elevating reactive oxygen species, and stopping the growth of A549 cells in the synthesis phase (S) of the cell cycle. Trilliumoside A showed a considerable reduction in the tumor volume, the amount of ascitic fluid, and the total cell number without affecting the body weight of animals. Our results demonstrate that Trilliumoside A inhibits the proliferation of human lung cancer cells by inducing DNA damage, arresting the cell cycle, and activating the mitochondrial signaling pathway. The study demonstrated the potential of Trilliumoside A as a potential anticancer agent.
Collapse
Affiliation(s)
- Misbah Tabassum
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bashir Ahmad Lone
- Natural
Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mudasir Nazir Bhat
- Plant
Science and Agrotechnology Division, CSIR-Indian
Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anil Bhushan
- Natural
Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nagma Banjare
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Esteban Manrique
- Real
Jardin Botanico-CSIC, Claudio Moyano 1, 28760 Madrid, Spain
| | - Prasoon Gupta
- Natural
Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dilip M. Mondhe
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prem N. Gupta
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
11
|
Sherawat K, Mehan S. Tanshinone-IIA mediated neuroprotection by modulating neuronal pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1647-1667. [PMID: 37010572 DOI: 10.1007/s00210-023-02476-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/23/2023] [Indexed: 04/04/2023]
Abstract
The progression of neurological diseases is mainly attributed to oxidative stress, apoptosis, inflammation, and trauma, making them a primary public concern. Since no drugs can stop these neurological disorders from happening, active phytochemical intervention has been suggested as a possible treatment. Among the several phytochemicals being studied for their potential health advantages, tanshinone-IIA (Tan-IIA ) stands out due to its wide range of therapeutic effects. Tan-IIA, derived from the Salvia miltiorrhiza plant, is a phenanthrenequinone. The pharmacological characteristics of Tan-IIAagainst various neurodegenerative and neuropsychiatric illnesses have led researchers to believe that the compound possesses neuroprotective potential. Tan-IIA has therapeutic potential in treating neurological diseases due to its capacity to cross the blood-brain barrier and its broad range of activities. In treating neurological disorders, Tan-IIA has been shown to have neuroprotective effects such as anti-apoptotic, anti-inflammatory, BBB protectant, and antioxidant properties. This article concisely summarises the latest scientific findings about the cellular and molecular aspects of Tan-IIA neuroprotection in relation to various neurological diseases. The results of preclinical studies on Tan-IIA provide insight into its potential application in future therapeutic development. This molecule rapidly establishes as a prominent bioactive compound for clinical research.
Collapse
Affiliation(s)
- Kajal Sherawat
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
12
|
Hasan G, Hassan MI, Sohal SS, Shamsi A, Alam M. Therapeutic Targeting of Regulated Signaling Pathways of Non-Small Cell Lung Carcinoma. ACS OMEGA 2023; 8:26685-26698. [PMID: 37546685 PMCID: PMC10398694 DOI: 10.1021/acsomega.3c02424] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/15/2023] [Indexed: 08/08/2023]
Abstract
Non-small cell lung carcinoma (NSCLC) is the most common cancer globally. Phytochemicals and small molecule inhibitors significantly prevent varying types of cancers, including NSCLC. These therapeutic molecules serve as important sources for new drugs that interfere with cellular proliferation, apoptosis, metastasis, and angiogenesis by regulating signaling pathways. These molecules affect several cellular signaling cascades, including p53, NF-κB, STAT3, RAS, MAPK/ERK, Wnt, and AKT/PI3K, and are thus implicated in the therapeutic management of cancers. This review aims to describe the bioactive compounds and small-molecule inhibitors, their anticancer action, and targeting cellular signaling cascades in NSCLC. We highlighted the therapeutic potential of Epigallocatechin gallate (EGCG), Perifosine, ABT-737, Thymoquinine, Quercetin, Venetoclax, Gefitinib, and Genistein. These compounds are implicated in the therapeutic management of NSCLC. This review further offers deeper mechanistic insights into different signaling pathways that could be targeted for NSCLC therapy by phytochemicals and small-molecule inhibitors.
Collapse
Affiliation(s)
- Gulam
Mustafa Hasan
- Department
of Biochemistry, College of Medicine, Prince
Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Sukhwinder Singh Sohal
- Respiratory
Translational Research Group, Department of Laboratory Medicine, School
of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7001, Tasmania, Australia
| | - Anas Shamsi
- Centre
of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab
Emirates
| | - Manzar Alam
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
13
|
Zakaria NH, Saad N, Che Abdullah CA, Mohd Esa N. The Antiproliferative Effect of Chloroform Fraction of Eleutherine bulbosa (Mill.) Urb. on 2D- and 3D-Human Lung Cancer Cells (A549) Model. Pharmaceuticals (Basel) 2023; 16:936. [PMID: 37513848 PMCID: PMC10384492 DOI: 10.3390/ph16070936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Since lung cancer is the leading cause of cancer-related death worldwide, research is being conducted to discover anticancer agents as its treatment. Eleutherine bulbosa, a Dayak folklore medicine, exhibited anticancer effects against several cancer cells; however, its anticancer potency against lung cancer cells has not been explored yet. This study aims to determine the anticancer potency of E. bulbosa bulbs against lung cancer cells (A549) using 2D and 3D culture models, as well as determine its active compounds using gas chromatography-mass spectrometry (GC-MS) analysis. Three fractions of E. bulbosa bulbs, namely chloroform, n-hexane, and ethyl acetate, were tested for cytotoxicity using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide (MTT) and CellTiter-Glo. The antiproliferative effects of the most cytotoxic fraction against the 2D culture model were determined by a clonogenic survival assay and propidium iodide/Hoechst 33342 double staining, whereas the effects against the 3D culture model were determined by microscopy, flow cytometry, and gene expression analysis. The chloroform fraction is the most cytotoxic against A549 cells than other fractions, and it inhibited colony formation and induced apoptosis of A549 cells. The chloroform fraction also inhibited the growth of the A549 spheroid by suppressing the spheroid size, inducing apoptosis, reducing the proportion of CD44 lung cancer stem cells, causing arrest at the S phase of the cell cycle, and suppressing the expression of the SOX2 and MYC genes. Furthermore, the GC-MS analysis detected 20 active compounds in the chloroform fraction, including the major compounds of eleutherine and isoeleutherine. In conclusion, the chloroform fraction of E. bulbosa bulbs exhibit its antiproliferative effect on 2D and 3D culture models of A549 cells, suggesting it could be a lung cancer chemopreventive agent.
Collapse
Affiliation(s)
- Nur Hannan Zakaria
- UPM-MAKNA Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Natural Medicine and Product Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Norazalina Saad
- UPM-MAKNA Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Che Azurahanim Che Abdullah
- UPM-MAKNA Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Materials Synthesis and Characterization Laboratory (MSCL), Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Norhaizan Mohd Esa
- Natural Medicine and Product Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
14
|
Bai X, Song L. Editorial: Phytochemicals targeting autophagy in treatment of bacterial infection and malignancies. Front Pharmacol 2023; 14:1205764. [PMID: 37256228 PMCID: PMC10225651 DOI: 10.3389/fphar.2023.1205764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/09/2023] [Indexed: 06/01/2023] Open
Affiliation(s)
- Xiaoxue Bai
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of General Practice, The First Hospital of Jilin University, Changchun, China
| | - Lei Song
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Center for Pathogen Biology and Infectious Diseases, Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Wang G, Wang A, Wang L, Xu G, Hong X, Fang F. Identification and validation of novel lung adenocarcinoma subtypes and construction of prognostic models: based on cuprotosis-related genes. BMC Pulm Med 2023; 23:63. [PMID: 36774456 PMCID: PMC9921311 DOI: 10.1186/s12890-023-02350-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 02/01/2023] [Indexed: 02/13/2023] Open
Abstract
Cuprotosis is a novel and unique form of cell death that is of great value in a variety of cancers. However, the prognostic role of cuprotosis-related genes (CRGs) in lung cancer remains undetermined. We compared the expression profile of CRGs in lung adenocarcinoma (LUAD) patients, revealing the genetic alterations and inter-gene correlations of CRGs. Based on 13 CRGs, LUAD patients could be well differentiated into two molecular subgroups, and the differentially expressed genes (DEGs) in these molecular subtypes were identified. Furthermore, 10 cuprotosis pattern-related DEGs with a significant prognostic value were obtained for constructing a prognostic model. Through validation in an external validation set, the prognostic model based on the CRGs-risk score showed the robust and effective predictive ability and served as an independent prognostic indicator for LUAD patients. Therefore, combining the CRGs-risk score with multiple factors such as clinicopathological characteristics, a quantitative nomogram was developed to predict the survival and prognosis of LUAD patients, improving the clinical application value of the CRGs-risk score. In the low CRGs-risk score group, the related immune cell infiltration was increased and the immune function was activated in LUAD patients. This study may add to the knowledge of CRGs in LUAD, partly contribute to evaluating the prognosis of LUAD patients, and provide direction for the development of targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Guangyao Wang
- grid.511973.8The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530000 China
| | - Anqiao Wang
- Longgang District People’s Hospital of Shenzhen, Shenzhen, 518038 China
| | - Li Wang
- grid.511973.8The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530000 China
| | - Guanglan Xu
- grid.511973.8The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530000 China
| | - Xiaohua Hong
- Guangxi University of Chinese Medicine, NanNing, 530000, China.
| | - Fang Fang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530000, China.
| |
Collapse
|
16
|
Sharma A, Sharma L, Nandy SK, Payal N, Yadav S, Vargas-De-La-Cruz C, Anwer MK, Khan H, Behl T, Bungau SG. Molecular Aspects and Therapeutic Implications of Herbal Compounds Targeting Different Types of Cancer. Molecules 2023; 28:750. [PMID: 36677808 PMCID: PMC9867434 DOI: 10.3390/molecules28020750] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023] Open
Abstract
Due to genetic changes in DNA (deoxyribonucleic acid) sequences, cancer continues to be the second most prevalent cause of death. The traditional target-directed approach, which is confronted with the importance of target function in healthy cells, is one of the most significant challenges in anticancer research. Another problem with cancer cells is that they experience various mutations, changes in gene duplication, and chromosomal abnormalities, all of which have a direct influence on the potency of anticancer drugs at different developmental stages. All of these factors combine to make cancer medication development difficult, with low clinical licensure success rates when compared to other therapy categories. The current review focuses on the pathophysiology and molecular aspects of common cancer types. Currently, the available chemotherapeutic drugs, also known as combination chemotherapy, are associated with numerous adverse effects, resulting in the search for herbal-based alternatives that attenuate resistance due to cancer therapy and exert chemo-protective actions. To provide new insights, this review updated the list of key compounds that may enhance the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Aditi Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Lalit Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Shouvik Kumar Nandy
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Nazrana Payal
- School of Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Shivam Yadav
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Chhatrapati Shahu ji Maharaj University, Kanpur 208024, Uttar Pradesh, India
| | - Celia Vargas-De-La-Cruz
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, Bromatology and Toxicology, Universidad Nacional Mayor de San Marcos, Lima 150001, Peru
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima 15001, Peru
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Tapan Behl
- School of Health Science and Technology, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410028 Oradea, Romania
| |
Collapse
|
17
|
Sun M, Huang D, Liu Y, Chen H, Yu H, Zhang G, Chen Q, Chen H, Zhang J. Effects of Cinobufagin on the Proliferation, Migration, and Invasion of H1299 Lung Cancer Cells. Chem Biodivers 2023; 20:e202200961. [PMID: 36522286 DOI: 10.1002/cbdv.202200961] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/30/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Cinobufagin (CB), with its steroidal nucleus structure, is one of the major, biologically active components of Chan Su. Recent studies have shown that CB exerts inhibitory effects against numerous cancer cells. However, the effects of CB regarding the metastasis of non-small cell lung cancer (NSCLC) and the involved mechanisms need to be further studied. The purpose of the present study aimed to report the inhibitory function of CB against proliferation and metastasis of H1299 cells. CB inhibited proliferation of H1299 lung cancer cells with an IC50 value of 0.035±0.008 μM according to the results of MTT assays. Antiproliferative activity was also observed in colony forming cell assays. In addition, 5-ethynyl-2'-deoxyuridine (EdU) retention assays revealed that CB significantly inhibited the rate of DNA synthesis in H1299 cells. Moreover, results of the scratch wound healing assays and transwell migration assays displayed that CB exhibited significant inhibition against migration and invasion of H1299 cells. Furthermore, CB could concentration-dependently reduce the expression of integrin α2, β-catenin, FAK, Src, c-Myc, and STAT3 in H1299 cells. These western blotting results indicated that CB might target integrin α2, β-catenin, FAK and Src to suppress invasion and migration of NSCLC, which was consistent with the network pharmacology analysis results. Collectively, findings of the current study suggest that CB possesses promising activity against NSCLC growth and metastasis.
Collapse
Affiliation(s)
- Mingna Sun
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Dongyu Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yun Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Institute of Biological Products and Materia Medica, Guangzhou, China
| | - Haifang Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Guobin Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qilei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Hubiao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| |
Collapse
|
18
|
Hwang YN, Kwon IS, Na HH, Park JS, Kim KC. Dual Cytotoxic Responses Induced by Treatment of A549 Human Lung Cancer Cells with Sweet Bee Venom in a Dose-Dependent Manner. J Pharmacopuncture 2022; 25:390-395. [PMID: 36628342 PMCID: PMC9806155 DOI: 10.3831/kpi.2022.25.4.390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/31/2022] Open
Abstract
Objectives Sweet bee venom (sBV) is purified from Apis mellifera, containing a high level of melittin-its main component. It has been used as a therapeutic agent for pain relief and anti-inflammation, as well as for treating neuronal abnormalities. Recently, there have been studies on the therapeutic application of sBV for anticancer treatment. In the present study, we investigated the pharmacological effect of sBV treatment in A549 human lung cancer cells. Methods We used microscopic analysis to observe the morphological changes in A549 cells after sBV treatment. The MTT assay was used to examine the cytotoxic effect after dose-dependent sBV treatment. Molecular changes in sBV were evaluated by the expression of apoptosis marker proteins using western blot analysis. Results Microscopic analysis suggested that the growth inhibitory effect occurred in a dose-dependent manner; however, cell lysis occurred at a concentration over 20 μg/mL of sBV. The MTT assay indicated that sBV treatment exhibited a growth inhibitory effect at a concentration over 5 μg/mL. On fluorescence activated cell sorting analysis, G0 dead cells were observed after G1 arrest at treatment concentrations up to 10 μg/mL. However, rapid cell rupture was observed at a concentration of 20 μg/mL. Western blot analysis demonstrated that sBV treatment modulated the expression of multiple cell death-related proteins, including cleaved-PARP, cleaved-caspase 9, p53, Bcl2, and Bax. Conclusion sBV induced cell death in A549 human lung cancer cells at a pharmacological concentration, albeit causing hemolytic cell death at a high concentration.
Collapse
Affiliation(s)
- Yu-Na Hwang
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - In-Seo Kwon
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Han-Heom Na
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea,Kangwon Center for System Imaging, Kangwon National University, Chuncheon, Republic of Korea
| | - Jin-Sung Park
- Korean Pharmacopuncture Institute, Seoul, Republic of Korea
| | - Keun-Cheol Kim
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea,Corresponding Author Keun-Cheol Kim, Department of Biological Sciences, College of Natural Sciences, Kangwon National University, 1 Kangwondaehak Rd, Chuncheon 24341, Republic of Korea, Tel: +82-33-250-8532, E-mail:
| |
Collapse
|
19
|
Ahmed MB, Islam SU, Alghamdi AAA, Kamran M, Ahsan H, Lee YS. Phytochemicals as Chemo-Preventive Agents and Signaling Molecule Modulators: Current Role in Cancer Therapeutics and Inflammation. Int J Mol Sci 2022; 23:15765. [PMID: 36555406 PMCID: PMC9779495 DOI: 10.3390/ijms232415765] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer is one of the deadliest non communicable diseases. Numerous anticancer medications have been developed to target the molecular pathways driving cancer. However, there has been no discernible increase in the overall survival rate in cancer patients. Therefore, innovative chemo-preventive techniques and agents are required to supplement standard cancer treatments and boost their efficacy. Fruits and vegetables should be tapped into as a source of compounds that can serve as cancer therapy. Phytochemicals play an important role as sources of new medication in cancer treatment. Some synthetic and natural chemicals are effective for cancer chemoprevention, i.e., the use of exogenous medicine to inhibit or impede tumor development. They help regulate molecular pathways linked to the development and spread of cancer. They can enhance antioxidant status, inactivating carcinogens, suppressing proliferation, inducing cell cycle arrest and death, and regulating the immune system. While focusing on four main categories of plant-based anticancer agents, i.e., epipodophyllotoxin, camptothecin derivatives, taxane diterpenoids, and vinca alkaloids and their mode of action, we review the anticancer effects of phytochemicals, like quercetin, curcumin, piperine, epigallocatechin gallate (EGCG), and gingerol. We examine the different signaling pathways associated with cancer and how inflammation as a key mechanism is linked to cancer growth.
Collapse
Affiliation(s)
- Muhammad Bilal Ahmed
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Salman Ul Islam
- Department of Pharmacy, Cecos University, Peshawar, Street 1, Sector F 5 Phase 6 Hayatabad, Peshawar 25000, Pakistan
| | | | - Muhammad Kamran
- School of Molecular Sciences, The University of Western Australia, M310, 35 Stirling Hwy, Perth, WA 6009, Australia
| | - Haseeb Ahsan
- Department of Pharmacy, Faculty of Life and Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Young Sup Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
20
|
Sayyar Z, Jafarizadeh-Malmiri H, Beheshtizadeh N. A study on the anticancer and antimicrobial activity of Curcumin nanodispersion and synthesized ZnO nanoparticles. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Cheng X, Chen Q, Sun P. Natural phytochemicals that affect autophagy in the treatment of oral diseases and infections: A review. Front Pharmacol 2022; 13:970596. [PMID: 36091810 PMCID: PMC9461701 DOI: 10.3389/fphar.2022.970596] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/03/2022] [Indexed: 01/01/2023] Open
Abstract
Autophagy is a critical factor in eukaryotic evolution. Cells provide nutrition and energy during autophagy by destroying non-essential components, thereby allowing intracellular material conversion and managing temporary survival stress. Autophagy is linked to a variety of oral disorders, including the type and extent of oral malignancies. Furthermore, autophagy is important in lymphocyte formation, innate immunity, and the regulation of acquired immune responses. It is also required for immunological responses in the oral cavity. Knowledge of autophagy has aided in the identification and treatment of common oral disorders, most notably cancers. The involvement of autophagy in the oral immune system may offer a new understanding of the immune mechanism and provide a novel approach to eliminating harmful bacteria in the body. This review focuses on autophagy creation, innate and acquired immunological responses to autophagy, and the status of autophagy in microbial infection research. Recent developments in the regulatory mechanisms of autophagy and therapeutic applications in oral illnesses, particularly oral cancers, are also discussed. Finally, the relationship between various natural substances that may be used as medications and autophagy is investigated.
Collapse
Affiliation(s)
| | | | - Ping Sun
- *Correspondence: Ping Sun, ; Qianming Chen,
| |
Collapse
|
22
|
How Can the EU Beating Cancer Plan Help in Tackling Lung Cancer, Colorectal Cancer, Breast Cancer and Melanoma? Healthcare (Basel) 2022; 10:healthcare10091618. [PMID: 36141230 PMCID: PMC9498919 DOI: 10.3390/healthcare10091618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 12/09/2022] Open
Abstract
Cancer is the second leading cause of mortality in EU countries, and the needs to tackle cancer are obvious. New scientific understanding, techniques and methodologies are opening up horizons for significant improvements in diagnosis and care. However, take-up is uneven, research needs and potential outstrip currently available resources, manifestly beneficial practices—such as population-level screening for lung cancer—are still not generalised, and the quality of life of patients and survivors is only beginning to be given attention it merits. This paper, mainly based on a series of multistakeholder expert workshops organised by the European Alliance for Personalised Medicine (EAPM), looks at some of those specifics in the interest of planning a way forward. Part of this exercise also involves taking account of the specific nature of Europe and its constituent countries, where the complexities of planning a way forward are redoubled by the wide variations in national and regional approaches to cancer, local epidemiology and the wide disparities in health systems. Despite all the differences between cancers and national and regional resources and approaches to cancer care, there is a common objective in pursuing broader and more equal access to the best available care for all European citizens.
Collapse
|
23
|
Liu N, He T, Xiao Z, Du J, Zhu K, Liu X, Chen T, Liu W, Ni G, Liu X, Wang T, Quan J, Zhang J, Zhang P, Yuan J. 131I-Caerin 1.1 and 131I-Caerin 1.9 for the treatment of non-small-cell lung cancer. Front Oncol 2022; 12:861206. [PMID: 36046040 PMCID: PMC9420947 DOI: 10.3389/fonc.2022.861206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/21/2022] [Indexed: 11/20/2022] Open
Abstract
Objective To investigate the effect of the 131I-labeled high-affinity peptides Caerin 1.1 and Caerin 1.9 for the treatment of A549 human NSCLC cells. Methods ① 3-[4,5-Dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and plate clone formation assays were performed to confirm the in vitro anti-tumor activity of Caerin 1.1 and Caerin 1.9. ② Chloramine-T was used to label Caerin 1.1 and Caerin 1.9 with 131I, and the Cell Counting Kit 8 assay was performed to analyze the inhibitory effect of unlabeled Caerin 1.1, unlabeled Caerin 1.9, 131I-labeled Caerin 1.1, and 131I-labeled Caerin 1.9 on the proliferation of NSCLC cells. An A549 NSCLC nude mouse model was established to investigate the in vivo anti-tumor activity of unlabeled Caerin 1.1, unlabeled Caerin 1.9, 131I-labeled Caerin 1.1, and 131I-labeled Caerin 1.9. Results ① Caerin 1.1 and Caerin 1.9 inhibited the proliferation of NSCLC cells in vitro in a concentration-dependent manner. The half-maximal inhibitory concentration was 16.26 µg/ml and 17.46 µg/ml, respectively, with no significant intergroup difference (P>0.05). ② 131I-labeled Caerin 1.1 and 131I-labeled Caerin 1.9 were equally effective and were superior to their unlabeled versions in their ability to inhibit the proliferation and growth of NSCLC cells (P>0.05). Conclusions 131I-labeled Caerin 1.1 and 131I-labeled Caerin 1.9 inhibit the proliferation and growth of NSCLC cells and may become potential treatments for NSCLC.
Collapse
Affiliation(s)
- Na Liu
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Tiantian He
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Zewei Xiao
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Juan Du
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Keke Zhu
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Xiongying Liu
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Tongsheng Chen
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Wenjuan Liu
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Guoying Ni
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Xiaosong Liu
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- Thoracic and Abdominal Radiotherapy Department, The First People’s Hospital of Foshan, Foshan, China
| | - Tianfang Wang
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- Genecology Research Centre, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Jiangtao Quan
- Department of Nuclear Medicine, General Hospital of the Southern Theatre Command, People’s Liberation Army of China, Guangzhou, China
| | - Jinhe Zhang
- Department of Nuclear Medicine, General Hospital of the Southern Theatre Command, People’s Liberation Army of China, Guangzhou, China
- *Correspondence: Jinhe Zhang, ; Peipei Zhang, ; Jianwei Yuan,
| | - Peipei Zhang
- Thoracic and Abdominal Radiotherapy Department, The First People’s Hospital of Foshan, Foshan, China
- *Correspondence: Jinhe Zhang, ; Peipei Zhang, ; Jianwei Yuan,
| | - Jianwei Yuan
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- *Correspondence: Jinhe Zhang, ; Peipei Zhang, ; Jianwei Yuan,
| |
Collapse
|
24
|
Vieira IRS, Conte-Junior CA. Nano-delivery systems for food bioactive compounds in cancer: prevention, therapy, and clinical applications. Crit Rev Food Sci Nutr 2022; 64:381-406. [PMID: 35938315 DOI: 10.1080/10408398.2022.2106471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bioactive compounds represent a broad class of dietary metabolites derived from fruits and vegetables, such as polyphenols, carotenoids and glucosinolates with potential for cancer prevention. Curcumin, resveratrol, quercetin, and β-carotene have been the most widely applied bioactive compounds in chemoprevention. Lately, many approaches to encapsulating bioactive components in nano-delivery systems have improved biomolecules' stability and targeted delivery. In this review, we critically analyze nano-delivery systems for bioactive compounds, including polymeric nanoparticles (NPs), solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), liposomes, niosomes, and nanoemulsions (NEs) for potential use in cancer therapy. Efficacy studies of the nanoformulations using cancer cell lines and in vivo models and updated human clinical trials are also discussed. Nano-delivery systems were found to improve the therapeutic efficacy of bioactive molecules against various types of cancer (e.g., breast, prostate, colorectal and lung cancer) mainly due to the antiproliferation and pro-apoptotic effects of tumor cells. Furthermore, some bioactive compounds have promised combination therapy with standard chemotherapeutic agents, with increased tumor efficiency and fewer side effects. These opportunities were identified and developed to ensure more excellent safety and efficacy of novel herbal medicines enabling novel insights for designing nano-delivery systems for bioactive compounds applied in clinical cancer therapy.
Collapse
Affiliation(s)
- Italo Rennan Sousa Vieira
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
25
|
Anju, Kumar A, Yadav P, Navik U, Jaitak V. Chemical composition , in vitro and in silico evaluation of essential oil from Eucalyptus tereticornis leaves for lung cancer. Nat Prod Res 2022; 37:1656-1661. [PMID: 35938316 DOI: 10.1080/14786419.2022.2107642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Chemical composition of the essential oil (EO) of Eucalyptus tereticornis leaves was studied by gas chromatography-mass spectrometry. Forty-five constituents were identified in the oil hydrodistilled from the sample collected from Ghudda Village, Bathinda (Pb), India of which eucalyptol (34.39%) and ledol (9.92%) were the major constituents. In vitro antioxidant and anticancer potential of EO was analysed by DPPH 2,2-diphenylpicrylhydrazyl (DPPH) and MTT assay. The percentage free radical scavenging activity was found to be 63.77%. The antiproliferative activity was analysed using MTT assay in adenocarcinomic human alveolar basal epithelial A549 cancer cell line and showed IC50 value of 47.14 µg/ml. In silico study of EO, constituents were performed using Maestro 12.9 against EGFR (PDB ID-2RGP). Five constituents from EO showed high dockscore as compared to standard Mobicertinib which indicated the effectiveness of oil constituents against lung cancer.
Collapse
Affiliation(s)
- Anju
- Laboratory of Natural Product Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Amit Kumar
- Laboratory of Natural Product Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Vikas Jaitak
- Laboratory of Natural Product Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| |
Collapse
|
26
|
Balkrishna A, Mulay VP, Verma S, Srivastava J, Lochab S, Varshney A. Penta-O-Galloyl-β-D-Glucose in Pistacia integerrima Targets AMPK-ULK1 and ERK/STAT3 Signaling Axes to Induce ROS-Independent Autophagic Cell Death in Human Lung Cancer Cells. Front Pharmacol 2022; 13:889335. [PMID: 35928273 PMCID: PMC9343872 DOI: 10.3389/fphar.2022.889335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/09/2022] [Indexed: 12/22/2022] Open
Abstract
Natural molecules have promising perspectives as adjuvants to chemotherapies against cancer. Pistacia chinensis subsp. Integerrima (hereafter, Pistacia integerrima) traditionally known for medicinal values in respiratory disorders was tested for anti-lung cancer properties. The extract prepared from Pistacia integerrima (PI) selectively impaired the viability of lung cancer cells, A549 and NCI-H460, compared to non-cancer cells. At non-lethal concentrations, PI mitigated colony-forming, spheroid formations and metastatic properties of lung cancer cells. As a step toward identifying the phytomolecule that is imparting the anti-lung cancer properties in PI, we subjected the extract to extensive characterization through UPLC/QToF-MS and further validated the findings with UHPLC. The gallotannin, penta-O-galloyl-β-D-glucose (PGG), among others, was identified through UPLC/QToF-MS. PGG exhibits potential chemopreventive effects against various cancer types. However, a defined mechanism of action of PGG in restricting lung cancer progression is still unexplored. Bioactivity-guided column fractionations enabled the determination of PGG as the major phytochemical that governed PI-mediated AMPK-ULK1-dependent autophagy and apoptosis, albeit independent of intracellular ROS activation. Interestingly, the autophagy flux when inhibited restored the cell viability even in the presence of PI. The study further delineated that PI and PGG activated ERK and inhibited STAT3 to trigger apoptosis through caspase-3 and PARP 1 pathways. Collectively, the finding demonstrates that plant extract, PGG, in the PI extract effectively combats lung cancer progression through autophagic cell death by altering ERK/AMPK-ULK1/STAT3 signaling axes. The study proposes PGG as a potential AMPK activator and STAT3 inhibitor that can be exploited further in developing adjuvant chemotherapeutics against lung cancer.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Haridwar, India
- Patanjali Yog Peeth (UK) Trust, Glasgow, United Kingdom
| | - Vallabh Prakash Mulay
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Sudeep Verma
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Jyotish Srivastava
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Savita Lochab
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
- *Correspondence: Savita Lochab, ; Anurag Varshney,
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Haridwar, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
- *Correspondence: Savita Lochab, ; Anurag Varshney,
| |
Collapse
|
27
|
6 -O-Galloylpaeoniflorin Exerts Inhibitory Bioactivities in Human Neuroblastoma Cells via Modulating AMPK/miR-489/XIAP Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1327835. [PMID: 35572727 PMCID: PMC9098314 DOI: 10.1155/2022/1327835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022]
Abstract
Although therapies against neuroblastoma (NBM) have advanced, the patients still suffer from poor prognoses due to distal metastasis or the occurrence of multidrug resistance. Accumulating evidence has proved that chemicals derived from natural products possess potent anti-NBM properties or can be used as adjuvants for chemotherapy. In the present study, we demonstrated that 6′-O-galloylpaeoniflorin (GPF), a galloylated derivative of paeoniflorin isolated from the roots of Paeonia lactiflora Pall, exerted significant inhibitory effects on proliferation and invasion of SH-SY5Y cells (an NBM cell line) and enhanced the sensitivity of SH-SY5Y cells to cisplatin in vitro. Further studies showed that GPF treatment upregulated miR-489 in NBM cells via activating AMP-activated protein kinase (AMPK). We also demonstrated that similar to GPF treatment, miR-489 exhibited a significant anti-NBM capacity. Further studies showed that miR-489 directly targeted the X-linked inhibitor of apoptosis protein (XIAP). Overall, our results indicated that GPF possessed an evident anti-NBM capacity dependent on AMPK/miR-489/XIAP pathway, providing an emerging strategy for clinical treatment of NBM.
Collapse
|
28
|
Effects of Traditional Chinese Medicine Anticancer Decoction Combined with Basic Chemotherapy and Nursing Intervention on Oral Cancer Patients after Surgery and Its Effect on Tumor Markers and Immune Function. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6341381. [PMID: 35402612 PMCID: PMC8986392 DOI: 10.1155/2022/6341381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/23/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022]
Abstract
Objective To prospectively study the application effect of traditional Chinese medicine (TCM) anticancer decoction with basic chemotherapy and nursing intervention on oral cancer patients after surgery and the effect on tumor markers and immune function. Methods Eighty-four postoperative oral cancer patients in our hospital from May 2017 to February 2019 were selected and divided into observation group (42 cases) and control group (42 cases). The control group was treated with basic chemotherapy combined with basic nursing care, and the observation group was treated with TCM anticancer decoction and comprehensive nursing intervention on the basis of the control group. The clinical efficacy, the occurrence of adverse reactions, the satisfaction of nursing care, and the two-year cumulative survival rate of the two groups were compared. The immune function, tumor marker level, VAS score, QoR40 score, and survival quality score of the two groups were compared before and after nursing care. Results The total clinical treatment efficiency of the observation group (88.10%) was significantly higher than that of the control group (69.05%), and the differences between the two groups in oral cleanliness, aspiration frequency, and oral comfort were statistically significant (P < 0.05). The differences in the occurrence of halitosis, oral fungal infection, leukopenia, gastrointestinal reaction, and fever in the observation group were statistically significant compared with the control group (P < 0.05). The nursing satisfaction rate in the observation group (95.24%) was significantly higher than that in the control group (78.57%). The two-year cumulative survival rate of the observation group (92.86%) was significantly higher than that of the control group (73.81%). After nursing care, CD4+, CD4+/CD8+, VAS scores, QoR40 scores, and quality of survival scores in both groups all increased, and CD8+, CD56+, CEA level, NSE level, and CA19-9 level all decreased (all P < 0.05). Conclusion The clinical efficacy of TCM anticancer decoction with basic chemotherapy and nursing interventions in the treatment of postoperative oral cancer patients was remarkable, which could significantly improve patients' oral cleanliness and comfort, reduce the frequency of sputum aspiration, improve patients' immunity, reduce tumor marker levels, inhibit tumor activity, improve patients' nursing satisfaction, further improve patients' treatment compliance, reduce patients' pain level, improve patients' survival quality, and prolong patients' survival time with high safety. It could be used as a theoretical basis for subsequent clinical research.
Collapse
|
29
|
Makhija P, Handral HK, Mahadevan G, Kathuria H, Sethi G, Grobben B. Black cardamom (Amomum subulatum Roxb.) fruit extracts exhibit apoptotic activity against lung cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114953. [PMID: 34968666 DOI: 10.1016/j.jep.2021.114953] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried fruits of Amomum subulatum Roxb. (A. subulatum) are widely used as a spice. It is a part of official ayurvedic formulations used in folklore medicine to treat cancer.A. subulatum has been used in ayurvedic formulations to treat various lung conditions such as cough, lung congestion, pulmonary tuberculosis. The present traditional knowledge highlights the effectiveness of A. subulatum in treating cancer and its lung-specific efficacy. AIM OF THE STUDY This study aims to investigate the cytotoxic potential of A. subulatum on the phenomenal and mechanistic level of lung cancer cells and identify the presence of A. subulatum actives. MATERIALS AND METHODS The bioactivity of the extracts was tested using MTT assay, apoptotic assay, cell cycle analysis, superoxide production assay, reactive oxygen species (ROS) assay, and western blot analysis. Firstly, five different extracts were prepared using sequential extraction, and then screening of cell lines was performed using MTT assay. RESULTS Lung cancer cells were selected as the most sensitive target, and dichloromethane extract (DE) was the most active extract. Annexin assay confirmed the mode of cell death as apoptosis. SubG1 peak found in cell cycle analysis substantiated this finding. ROS generation and superoxide showed association with apoptotic death. The upregulation and overexpression of cleaved poly(ADP-ribose)polymerase-1 (PARP-1) showed the failure of DNA repairing machinery contributes to apoptosis. LC-MS findings show the presence of cytotoxic actives cardamonin and alpinetin. CONCLUSIONS In summary, this study shows the apoptosis-inducing potential of A. subulatum fruit extracts and confirms DNA damage as one of the causes of cell death. Further explorations using bio-fractionation and in-vivo studies are required to determine the most active constituents in A. subulatum.
Collapse
Affiliation(s)
- Pooja Makhija
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| | - Harish K Handral
- Stem Cell Bioprocessing Technology Institute (BTI), Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, 138668, Singapore
| | - Gomathi Mahadevan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Himanshu Kathuria
- Department of Pharmacy, National University of Singapore, 117543, Singapore; Nusmetics Pte Ltd, Makerspace, i4 building, 3 Research Link, 117602, Singapore.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Blk MD3, 16 Medical Drive, 117600, Singapore
| | - Bert Grobben
- Budding Innovations Pte Ltd, 06-02 80 Jellicoe Rd, 208766, Singapore.
| |
Collapse
|
30
|
Bixin Prevents Colorectal Cancer Development through AMPK-Activated Endoplasmic Reticulum Stress. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9329151. [PMID: 35252457 PMCID: PMC8894005 DOI: 10.1155/2022/9329151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/14/2022] [Accepted: 02/01/2022] [Indexed: 01/01/2023]
Abstract
Chemicals isolated from natural products have been broadly applied in the treatment of colorectal cancer (CRC). Bixin, an apocarotenoid from the seeds of Bixa orellana, exerts multiple pharmacological properties, including neuroprotective, anti-inflammatory, cardioprotective, and antitumor effects; yet, the therapeutic effects of Bixin on CRC are still unknown. Here, we described that Bixin treatment significantly inhibited the proliferation and motility of two CRC cell lines (CaCO2 and SW480) in vitro and in vivo. In addition, Bixin administration has sensitized CRC cells to TNF-related apoptosis-inducing ligand- (TRAIL-) induced cell apoptosis. Moreover, we showed that Bixin treatment initiated the activation of PERK/eIF-2α signal in CaCO2 and SW480 cells, leading to endoplasmic reticulum stress-associated apoptosis. Pharmacological inhibition of AMP-activated protein kinase (AMPK) abrogated the Bixin-induced activation of protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2 alpha (eIF-2α) pathway, as well as reversed the inhibitory effects of Bixin on CRC development. In conclusion, this study indicated that Bixin treatment inhibits the progression of CRC through activating the AMPK/PERK/eIF-2α pathway, providing a novel potential strategy for clinical prevention of CRC.
Collapse
|
31
|
Kheyrandish S, Rastgar A, Hamidi M, Sajjadi SM, Sarab GA. Evaluation of anti-tumor effect of the exopolysaccharide from new cold-adapted yeast, Rhodotorula mucilaginosa sp. GUMS16 on chronic myeloid leukemia K562 cell line. Int J Biol Macromol 2022; 206:21-28. [PMID: 35217074 DOI: 10.1016/j.ijbiomac.2022.02.113] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/05/2022] [Accepted: 02/17/2022] [Indexed: 12/28/2022]
Abstract
Recently, the development and application of fungal exopolysaccharides (EPS) as natural biopolymers are on the rise. The present study is based on the investigation of possible antiproliferative and antioxidant activities of EPS from the Rhodotorula mucilaginosa sp. GUMS16 on BCR-ABL positive cells (K562). The cytotoxicity, colony formation assays lactate and dehydrogenase (LDH) activity were performed to assess the possible cancer cell death. To elucidate the underlying antiproliferative mechanism of the EPS, cell cycle analysis following real-time PCR (gene expression assessment) were evaluated. The results indicated that, the EPS with an IC50 dose of 1500 μg/ml, reduced the viability of K562 cells without having toxic effects on normal cells as well as decrease in size and number of colonies in EPS-treated group (p < 0.0001). The increase of LDH was 2.75 times more than the control (p < 0.0001). Gene expression revealed up- and down-regulation of apoptotic and anti-apoptotic genes in EPS group compared with the control. Moreover, the DPPH scavenging activity of the EPS in treated cells was significantly higher than the control group (p < 0.0001). Taken together, we concluded that the EPS from GUMS16 strain is able to inhibit the growth of K562 cells besides having antioxidant activities.
Collapse
Affiliation(s)
- Setare Kheyrandish
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Amirhossein Rastgar
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Masoud Hamidi
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran; BioMatter-Biomass Transformation Lab (BTL), École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium.
| | - Seyed Mehdi Sajjadi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Gholamreza Anani Sarab
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
32
|
Zingerone Inhibits the Neutrophil Extracellular Trap Formation and Protects against Sepsis via Nrf2-Mediated ROS Inhibition. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3990607. [PMID: 35126812 PMCID: PMC8816574 DOI: 10.1155/2022/3990607] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/26/2021] [Accepted: 12/30/2021] [Indexed: 11/20/2022]
Abstract
Neutrophils release chromatin and antimicrobial proteins to trap and kill microbes, which is termed as neutrophil extracellular trap (NET) formation. NETs play a pivotal role in host defense against infection. However, emerging evidence indicated that NETs also contribute to an exaggerated inflammatory response and organic injuries in sepsis. Zingerone, a natural compound extracted from Zingiber officinale, exerts antioxidant, anti-inflammatory, and antioncogenic properties. In this study, we found that treatment with zingerone reduced organ injury and improved the outcome in a cecal ligation puncture- (CLP-) induced polymicrobial sepsis model. Administration of zingerone also alleviates reactive oxygen species (ROS) accumulation and systematic inflammation in septic mice and inhibits neutrophil extracellular traps (NETs) formation in vivo and in vitro. Furthermore, inhibition of nuclear factor erythroid 2-related factor 2 (Nrf2) with its specific antagonist significantly counteracted the suppressive effects of zingerone on ROS and NETs and retarded the protective role of zingerone against sepsis-associated organ injury. In addition, exposure to zingerone does not affect phagocytic activity of neutrophils in vitro and bacterial dissemination in vivo. Above all, our results indicate that zingerone treatment obviously attenuates NET formation and inflammatory response via Nrf2-mediated ROS inhibition, thus providing a novel therapeutic strategy against sepsis-induced injury.
Collapse
|
33
|
Hou H, Qu B, Su C, Hou G, Gao F. Design, Synthesis and Anti-Lung Cancer Evaluation of 1, 2, 3-Triazole Tethered Dihydroartemisinin-Isatin Hybrids. Front Pharmacol 2022; 12:801580. [PMID: 34975498 PMCID: PMC8716824 DOI: 10.3389/fphar.2021.801580] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/22/2021] [Indexed: 01/26/2023] Open
Abstract
A series of 1,2,3-triazole tethered dihydroartemisinin-isatin hybrids 8a-c and 9a-k were designed and synthesized. Their antiproliferative activity against A549, doxorubicin-resistant A549 (A549/DOX) as well as cisplatin-resistant A549 (A549/DDP) lung cancer cell lines was also investigated in this study. All hybrids (half maximal inhibitory concentration/IC50: 7.54–73.8 μM) were more potent than the parent drug dihydroartemisinin (IC50: 69.4–88.0 μM) and also non-cytotoxic towards mouse embryonic fibroblast cells NIH/3T3 (IC50: >100 μM). The structure-activity relationships illustrated that the substituents on C-3 and C-5 position of isatin moiety influenced the activity significantly. Imine at C-3 position decreased the activity, whereas fluoro at C-5 position enhanced the activity. In particular, hybrids 8a,c (IC50: 7.54–12.1 μM) and 9i (IC50: 9.10–15.9 μM) were comparable to cisplatin (IC50: 7.54–15.9 μM vs 9.38–19.7 μM) against A549 and A549/DOX, but 4.6–7.6 folds more potent than that of cisplatin (IC50: 8.77–14.3 μM vs 66.9 μM) against A549/DDP cells. Moreover, hybrids 8a,c exhibited excellent stability (liver microsomes: 68–83%) in mouse/human microsomes and good pharmacokinetic properties, demonstrating their potential as a novel anti-lung cancer chemotherapeutic candidates.
Collapse
Affiliation(s)
- Haodong Hou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bin Qu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chen Su
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guihua Hou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
34
|
Zhu Y, Sun D, Liu H, Sun L, Jie J, Luo J, Peng L, Song L. Bixin protects mice against bronchial asthma though modulating PI3K/Akt pathway. Int Immunopharmacol 2021; 101:108266. [PMID: 34678694 DOI: 10.1016/j.intimp.2021.108266] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022]
Abstract
Accumulating evidence has implicated the potential of natural compounds in treatment of asthma. Bixin is a natural food coloring isolated from the seeds of Bixa Orellana, which possesses anti-tumor, anti-inflammatory and antioxidative properties. Nevertheless, its therapeutic effect in asthma has not been elucidated. Our present study demonstrated that administration of Bixin suppressed allergic airway inflammation and reversed glucocorticoids resistance, as well as alleviated airway remodeling and airway hyperresponsiveness (AHR) in asthmatic mice. In vitro studies showed that Bixin treatment could inhibit the development of epithelial-mesenchymal transition (EMT) mediated by transforming growth factor beta (TGF-β) signaling. Importantly, Bixin antagonized activation of phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway both in vitro and in vivo. Above all, our findings reveal that Bixin functions as a potent antagonist of PI3K/Akt signaling to protect against allergic asthma, highlighting a novel strategy for asthma treatment based on natural products.
Collapse
Affiliation(s)
- Yingjie Zhu
- Department of Respiratory Medicine, Center For Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun 130021, Jilin, PR China
| | - Dong Sun
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, PR China
| | - Han Liu
- Department of Respiratory Medicine, Center For Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun 130021, Jilin, PR China
| | - Linzi Sun
- Department of Respiratory Medicine, Center For Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun 130021, Jilin, PR China
| | - Jing Jie
- Department of Respiratory Medicine, Center For Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun 130021, Jilin, PR China
| | - Jingjing Luo
- Department of Respiratory Medicine, Center For Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun 130021, Jilin, PR China.
| | - Liping Peng
- Department of Respiratory Medicine, Center For Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun 130021, Jilin, PR China.
| | - Lei Song
- Department of Respiratory Medicine, Center For Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun 130021, Jilin, PR China.
| |
Collapse
|
35
|
Chen F, Yu Z, Wang X. Development of a UPLC-MS/MS method for the determination of narciclasine and 7-deoxynarciclasine in mouse blood and its application in pharmacokinetics. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1180:122899. [PMID: 34418798 DOI: 10.1016/j.jchromb.2021.122899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/30/2021] [Accepted: 08/12/2021] [Indexed: 11/29/2022]
Abstract
In this study, we used ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to measure the concentration of narciclasine and 7-deoxynarciclasine in mouse blood after intravenous (i.v.) and oral administration (p.o.), and we used this method to investigate their pharmacokinetics profiles in mice. Chromatographic separation of the analytes was achieved using a UPLC HSS T3 column (2.1 mm × 100 mm, 1.8 μm) with a mobile phase consisting of acetonitrile-water (0.1% formic acid) by gradient elution. Electrospray ionization (ESI positive-ion mode)-tandem mass spectrometry in multiple reaction monitoring (MRM) mode was employed for quantitative analysis of the analytes in mouse blood samples. Twelve mice were administered narciclasine and 7-deoxynarciclasine (2 mg/kg) intravenously (iv), while the other twelve mice were administered narciclasine and 7-deoxynarciclasine (10 mg/kg) orally. The mouse blood was withdrawn from the caudal vein to be processed, after which the blood was analyzed by UPLC-MS/MS, and the corresponding data were fitted using the Drug and Statistics (DAS) software. Standard curves of narciclasine and 7-deoxynarciclasine were generated over the concentration range of 5-5000 ng/mL. The intra-day accuracy of narciclasine and 7-deoxynarciclasine was 90-105%, and the corresponding inter-day accuracy was 87-108%. The intra-day precision was less than 13%, while the inter-day precision was less than 14%. Matrix effects were also observed (between 94% and 104%), and the recovery calculated was higher than 70%. The developed and validated UPLC-MS/MS method was then successfully applied in determining the mouse pharmacokinetics of narciclasine and 7-deoxynarciclasine. From this, thebioavailabilityofnarciclasine and 7-deoxynarciclasinewasdetermined to be 10.3%and35.4%, respectively.
Collapse
Affiliation(s)
- Fang Chen
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zheng Yu
- Analytical and testing Centre, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xianqin Wang
- Analytical and testing Centre, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
36
|
Yang L, Wang Z. Natural Products, Alone or in Combination with FDA-Approved Drugs, to Treat COVID-19 and Lung Cancer. Biomedicines 2021; 9:689. [PMID: 34207313 PMCID: PMC8234041 DOI: 10.3390/biomedicines9060689] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
As a public health emergency of international concern, the highly contagious coronavirus disease 2019 (COVID-19) pandemic has been identified as a severe threat to the lives of billions of individuals. Lung cancer, a malignant tumor with the highest mortality rate, has brought significant challenges to both human health and economic development. Natural products may play a pivotal role in treating lung diseases. We reviewed published studies relating to natural products, used alone or in combination with US Food and Drug Administration-approved drugs, active against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and lung cancer from 1 January 2020 to 31 May 2021. A wide range of natural products can be considered promising anti-COVID-19 or anti-lung cancer agents have gained widespread attention, including natural products as monotherapy for the treatment of SARS-CoV-2 (ginkgolic acid, shiraiachrome A, resveratrol, and baicalein) or lung cancer (daurisoline, graveospene A, deguelin, and erianin) or in combination with FDA-approved anti-SARS-CoV-2 agents (cepharanthine plus nelfinavir, linoleic acid plus remdesivir) and anti-lung cancer agents (curcumin and cisplatin, celastrol and gefitinib). Natural products have demonstrated potential value and with the assistance of nanotechnology, combination drug therapies, and the codrug strategy, this "natural remedy" could serve as a starting point for further drug development in treating these lung diseases.
Collapse
Affiliation(s)
- Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China;
| | - Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|