1
|
Mackiewicz J, Tomczak J, Lisek M, Sakowicz A, Guo F, Boczek T. NFATc4 Knockout Promotes Neuroprotection and Retinal Ganglion Cell Regeneration After Optic Nerve Injury. Mol Neurobiol 2024; 61:9383-9401. [PMID: 38639863 PMCID: PMC11496353 DOI: 10.1007/s12035-024-04129-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/19/2024] [Indexed: 04/20/2024]
Abstract
Retinal ganglion cells (RGCs), neurons transmitting visual information via the optic nerve, fail to regenerate their axons after injury. The progressive loss of RGC function underlies the pathophysiology of glaucoma and other optic neuropathies, often leading to irreversible blindness. Therefore, there is an urgent need to identify the regulators of RGC survival and the regenerative program. In this study, we investigated the role of the family of transcription factors known as nuclear factor of activated T cells (NFAT), which are expressed in the retina; however, their role in RGC survival after injury is unknown. Using the optic nerve crush (ONC) model, widely employed to study optic neuropathies and central nervous system axon injury, we found that NFATc4 is specifically but transiently up-regulated in response to mechanical injury. In the injured retina, NFATc4 immunolocalized primarily to the ganglionic cell layer. Utilizing NFATc4-/- and NFATc3-/- mice, we demonstrated that NFATc4, but not NFATc3, knockout increased RGC survival, improved retina function, and delayed axonal degeneration. Microarray screening data, along with decreased immunostaining of cleaved caspase-3, revealed that NFATc4 knockout was protective against ONC-induced degeneration by suppressing pro-apoptotic signaling. Finally, we used lentiviral-mediated NFATc4 delivery to the retina of NFATc4-/- mice and reversed the pro-survival effect of NFATc4 knockout, conclusively linking the enhanced survival of injured RGCs to NFATc4-dependent mechanisms. In summary, this study is the first to demonstrate that NFATc4 knockout may confer transient RGC neuroprotection and decelerate axonal degeneration after injury, providing a potent therapeutic strategy for optic neuropathies.
Collapse
Affiliation(s)
- Joanna Mackiewicz
- Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland
| | - Julia Tomczak
- Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland
| | - Malwina Lisek
- Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland
| | - Agata Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Lodz, Poland
| | - Feng Guo
- Department of Pharmaceutical Toxicology, China Medical University, Shenyang, China.
| | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
2
|
Siu MC, Voisey J, Zang T, Cuttle L. MicroRNAs involved in human skin burns, wound healing and scarring. Wound Repair Regen 2023; 31:439-453. [PMID: 37268303 DOI: 10.1111/wrr.13100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2023]
Abstract
MicroRNAs are small, non-coding RNAs that regulate gene expression, and consequently protein synthesis. Downregulation and upregulation of miRNAs and their corresponding genes can alter cell apoptosis, proliferation, migration and fibroproliferative responses following a thermal injury. This review summarises the evidence for altered human miRNA expression post-burn, and during wound healing and scarring. In addition, the most relevant miRNA targets and their roles in potential pathways are described. Previous studies using molecular techniques have identified 197 miRNAs associated with human wound healing, burn wound healing and scarring. Five miRNAs alter the expression of fibroproliferative markers, proliferation and migration of fibroblasts and keratinocytes post-burn: hsa-miR-21 and hsa-miR-31 are increased after wounding, and hsa-miR-23b, hsa-miR-200b and hsa-let-7c are decreased. Four of these five miRNAs are associated with the TGF-β pathway. In the future, large scale, in vivo, longitudinal human studies utilising a range of cell types, ethnicity and clinical healing outcomes are fundamental to identify burn wound healing and scarring specific markers. A comprehensive understanding of the underlying pathways will facilitate the development of clinical diagnostic or prognostic tools for better scar management and the identification of novel treatment targets for improved healing outcomes in burn patients.
Collapse
Affiliation(s)
- Man Ching Siu
- Faculty of Health, School of Biomedical Sciences, Centre for Children's Health Research, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- Centre for Genomics and Personalised Health Research, QUT, Brisbane, Queensland, Australia
| | - Joanne Voisey
- Centre for Genomics and Personalised Health Research, QUT, Brisbane, Queensland, Australia
| | - Tuo Zang
- Faculty of Health, School of Biomedical Sciences, Centre for Children's Health Research, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Leila Cuttle
- Faculty of Health, School of Biomedical Sciences, Centre for Children's Health Research, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| |
Collapse
|
3
|
Karras FS, Schreier J, Körber-Ferl K, Ullmann SR, Franke S, Roessner A, Jechorek D. Comparative analysis of miRNA expression in dedifferentiated and well-differentiated components of dedifferentiated chondrosarcoma. Pathol Res Pract 2023; 244:154414. [PMID: 36963273 DOI: 10.1016/j.prp.2023.154414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023]
Abstract
Dedifferentiated chondrosarcoma (DDCS) is a rare malignant cartilage tumor arising out of a low-grade chondrosarcoma, whereby the well-differentiated and the dedifferentiated components coexist in the same localization. DDCS has a massively increased metastatic potential in comparison to low-grade chondrosarcoma. So far, the underlying mechanisms of DDCS development and the increased malignancy are widely unknown. Targeted DNA sequencing revealed no genetic differences between both tissue components. Besides genetic events, alterations in epigenetic control may play a role in DDCS development. In this preliminary study, we have analyzed the differential miRNA expression in paired samples of both components of four primary DDCS cases and a rare lung metastasis with both components using the nCounter MAX analysis system from NanoString technologies. We identified 21 upregulated and two downregulated miRNAs in the dedifferentiated components of the primary cases. Moreover, three miRNAs were also significantly deregulated in the dedifferentiated component of the lung metastasis, supporting their possible role in DDCS development. Additionally, validated targets of the 23 deregulated miRNAs are involved in signaling pathways, like PI3K/Akt, Wnt/β-catenin, and TGF-β, as well as in cellular processes, like cell cycle regulation, apoptosis, and dedifferentiation. Further investigations are necessary to confirm and understand the role of the identified miRNAs in DDCS development.
Collapse
Affiliation(s)
- Franziska S Karras
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Julian Schreier
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Kerstin Körber-Ferl
- Institute of Human Genetics, Martin-Luther University Halle, Magdeburger Str. 2, 06112 Halle, Germany
| | - Sarah R Ullmann
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Sabine Franke
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Albert Roessner
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Dörthe Jechorek
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
4
|
Archer SL, Dasgupta A, Chen KH, Wu D, Baid K, Mamatis JE, Gonzalez V, Read A, Bentley RE, Martin AY, Mewburn JD, Dunham-Snary KJ, Evans GA, Levy G, Jones O, Al-Qazazi R, Ring B, Alizadeh E, Hindmarch CC, Rossi J, Lima PDA, Falzarano D, Banerjee A, Colpitts CC. SARS-CoV-2 mitochondriopathy in COVID-19 pneumonia exacerbates hypoxemia. Redox Biol 2022; 58:102508. [PMID: 36334378 PMCID: PMC9558649 DOI: 10.1016/j.redox.2022.102508] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022] Open
Abstract
RATIONALE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19 pneumonia. We hypothesize that SARS-CoV-2 causes alveolar injury and hypoxemia by damaging mitochondria in airway epithelial cells (AEC) and pulmonary artery smooth muscle cells (PASMC), triggering apoptosis and bioenergetic impairment, and impairing hypoxic pulmonary vasoconstriction (HPV), respectively. OBJECTIVES We examined the effects of: A) human betacoronaviruses, SARS-CoV-2 and HCoV-OC43, and individual SARS-CoV-2 proteins on apoptosis, mitochondrial fission, and bioenergetics in AEC; and B) SARS-CoV-2 proteins and mouse hepatitis virus (MHV-1) infection on HPV. METHODS We used transcriptomic data to identify temporal changes in mitochondrial-relevant gene ontology (GO) pathways post-SARS-CoV-2 infection. We also transduced AECs with SARS-CoV-2 proteins (M, Nsp7 or Nsp9) and determined effects on mitochondrial permeability transition pore (mPTP) activity, relative membrane potential, apoptosis, mitochondrial fission, and oxygen consumption rates (OCR). In human PASMC, we assessed the effects of SARS-CoV-2 proteins on hypoxic increases in cytosolic calcium, an HPV proxy. In MHV-1 pneumonia, we assessed HPV via cardiac catheterization and apoptosis using the TUNEL assay. RESULTS SARS-CoV-2 regulated mitochondrial apoptosis, mitochondrial membrane permeabilization and electron transport chain (ETC) GO pathways within 2 hours of infection. SARS-CoV-2 downregulated ETC Complex I and ATP synthase genes, and upregulated apoptosis-inducing genes. SARS-CoV-2 and HCoV-OC43 upregulated and activated dynamin-related protein 1 (Drp1) and increased mitochondrial fission. SARS-CoV-2 and transduced SARS-CoV-2 proteins increased apoptosis inducing factor (AIF) expression and activated caspase 7, resulting in apoptosis. Coronaviruses also reduced OCR, decreased ETC Complex I activity and lowered ATP levels in AEC. M protein transduction also increased mPTP opening. In human PASMC, M and Nsp9 proteins inhibited HPV. In MHV-1 pneumonia, infected AEC displayed apoptosis and HPV was suppressed. BAY K8644, a calcium channel agonist, increased HPV and improved SpO2. CONCLUSIONS Coronaviruses, including SARS-CoV-2, cause AEC apoptosis, mitochondrial fission, and bioenergetic impairment. SARS-CoV-2 also suppresses HPV by targeting mitochondria. This mitochondriopathy is replicated by transduction with SARS-CoV-2 proteins, indicating a mechanistic role for viral-host mitochondrial protein interactions. Mitochondriopathy is a conserved feature of coronaviral pneumonia that may exacerbate hypoxemia and constitutes a therapeutic target.
Collapse
Affiliation(s)
- Stephen L Archer
- Department of Medicine, Queen's University, Kingston, ON, Canada; Queen's Cardiopulmonary Unit (QCPU), Queen's University, Kingston, ON, Canada.
| | - Asish Dasgupta
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Kuang-Hueih Chen
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Danchen Wu
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Kaushal Baid
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - John E Mamatis
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Victoria Gonzalez
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan; Saskatoon, SK, Canada
| | - Austin Read
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | | | - Ashley Y Martin
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | | | - Kimberly J Dunham-Snary
- Department of Medicine, Queen's University, Kingston, ON, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Gerald A Evans
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Gary Levy
- University of Toronto, Toronto, ON, Canada
| | - Oliver Jones
- Queen's Cardiopulmonary Unit (QCPU), Queen's University, Kingston, ON, Canada
| | - Ruaa Al-Qazazi
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Brooke Ring
- Queen's Cardiopulmonary Unit (QCPU), Queen's University, Kingston, ON, Canada
| | - Elahe Alizadeh
- Queen's Cardiopulmonary Unit (QCPU), Queen's University, Kingston, ON, Canada
| | | | - Jenna Rossi
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Patricia DA Lima
- Queen's Cardiopulmonary Unit (QCPU), Queen's University, Kingston, ON, Canada
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan; Saskatoon, SK, Canada
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan; Saskatoon, SK, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Biology, University of Waterloo; Waterloo, ON, Canada
| | - Che C Colpitts
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
5
|
Wang Z, Qi H, Zhang Y, Sun H, Dong J, Wang H. PLPP2: Potential therapeutic target of breast cancer in PLPP family. Immunobiology 2022; 227:152298. [DOI: 10.1016/j.imbio.2022.152298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/10/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022]
|
6
|
Huang Y, Wang J, Zhang H, Xiang Y, Dai Z, Zhang H, Li J, Li H, Liao X. LncRNA TPTEP1 inhibits the migration and invasion of gastric cancer cells through miR-548d-3p/KLF9/PER1 axis. Pathol Res Pract 2022; 237:154054. [PMID: 35985238 DOI: 10.1016/j.prp.2022.154054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Despite the development of many methods and new therapeutic agents, the survival and prognosis of patients with gastric cancer are still poor. The role of TPTEP1 in gastric cancer has not been reported. METHODS Wound healing assay and transwell assay analysis TPTEP1/miR-548d-3p/KLF9/PER1 effect on migration and invasiveness of gastric cells. Western blot and RT-qPCR certificate TPTEP1/miR-548d-3p/KLF9/PER1transcription and expression of migration and invasion related genes. Luciferase assay was used to determine the adsorption of miR-548d-3p by TPTEP1 sponge, the targeting of miR-548d-3p to KLF9, and the binding of KLF9 to the promoter of PER1. immunohistochemical assay and H&E staining prove the function of TPTEP1 and miR-548d-3p in nude mice model of gastric cancer. RESULTS TPTEP1 inhibited its expression by sponge adsorption of miR-548d-3p. miR-548d-3p targets KLF9 3'UTR to inhibit its expression, and KLF9 binds to the PER1 promoter to promote its expression.TPTEP1/KLF9/PER1 inhibits gastric cancer cell migration and invasion, and miR-548d-3p does the opposite. CONCLUSIONS Our data suggest that TPTEP1 affects gastric cancer progression by regulating the miR-548d-3p/KLF9/PER1 axis. Targeting this pathway may provide new therapeutic opportunities for gastric cancer.
Collapse
Affiliation(s)
- You Huang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Jun Wang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Hangsheng Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Yuan Xiang
- Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430014, PR China
| | - Zhoutong Dai
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Huimin Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Jiapeng Li
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Hui Li
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Xinghua Liao
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China.
| |
Collapse
|
7
|
Yu S, Meng H, Shi S, Cao S, Bian T, Zhao H. miR-548d-3p inhibits the invasion and migration of gastric cancer cells by targeting GKN1. J Clin Lab Anal 2022; 36:e24520. [PMID: 35666636 PMCID: PMC9279950 DOI: 10.1002/jcla.24520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/07/2022] [Accepted: 05/03/2022] [Indexed: 12/15/2022] Open
Abstract
Background The aim of this study was to explore the function and mechanism of GKN1 in gastric cancer (GC) progression. Methods Firstly, we used GEO2R to perform differential gene analysis on GSE26942 and GSE79973 and constructed the protein–protein interaction network of differential genes by STRING. Next, the cytoHubba, Mcode plugins, and GEPIA were used to obtain our follow‐up research object GKN1. Then, the function of GKN1 in GC was verified by scratch and transwell assay in GC cells. We further analyzed the genes related to GKN1 through LinkedOmics, and exported top 100 genes positively or negatively correlated with GKN1. Meanwhile, Metascape was performed on these genes. Finally, we analyzed the miRNAs that bind to GKN1 through the miRDB and verified the correlation between miR‐548d‐3p and GKN1 using dual‐fluorescence and quantitative PCR experiments. Results Bioinformatics analysis showed that there were 52 differential genes on GSE26942 and GSE79973. In addition, the results of functional assays indicated that overexpressed GKN1 can inhibit GC cell migration and invasion, while GKN1 knockdown demonstrated the opposite effect. Additionally, Metascape analysis results showed that the 3′‐UTR region of mRNA is rich in AU sequences, based on which we infer that mRNA may be regulated by miRNA. Dual‐fluorescence and quantitative PCR assays clarified that miR‐548d‐3p may be one of the target miRNAs of GKN1, which was up‐regulated in GC tissues. Conclusions In summary, we clarified that miR‐548d‐3p regulates GKN1 to participate in GC cell migration and invasion, and provides a possible target for the prognostic diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Senlong Yu
- Department of Gastrointestinal Surgery, Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, China
| | - Hongjie Meng
- Department of Gastrointestinal Surgery, Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, China
| | - Shengguang Shi
- Department of Gastrointestinal Surgery, Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, China
| | - Shenghui Cao
- Department of General Surgery, Zhuji Chinese Traditional Medicine Hospital, Zhuji, China
| | - Tianhua Bian
- Department of General Surgery, Zhuji Chinese Traditional Medicine Hospital, Zhuji, China
| | - Haifeng Zhao
- Department of General Surgery, Zhuji Chinese Traditional Medicine Hospital, Zhuji, China
| |
Collapse
|
8
|
MacCuaig WM, Thomas A, Carlos-Sorto JC, Gomez-Gutierrez JG, Alexander AC, Wellberg EA, Grizzle WE, McNally LR. Differential expression of microRNA between triple negative breast cancer patients of African American and European American descent. Biotech Histochem 2022; 97:1-10. [PMID: 34979848 PMCID: PMC9047185 DOI: 10.1080/10520295.2021.2005147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
There are racial disparities in the outcome of triple negative breast cancer (TNBC) patients between women of African ancestry and women of European ancestry, even after accounting for lifestyle, socioeconomic and clinical factors. MicroRNA (miRNA) are non-coding molecules whose level of expression is associated with cancer suppression, proliferation and drug resistance; therefore, these have potential for biomarker applications in cancers including TNBC. Historically, miRNAs up-regulated in African American (AA) patients have received less attention than for patients of European ancestry. Using laser capture microdissection (LCM) to acquire ultrapure tumor cell samples, miRNA expression was evaluated in 15 AA and 15 European American (EA) TNBC patients. Tumor sections were evaluated using RNA extraction followed by miRNA analysis and profiling. Results were compared based on ethnicity and method of tissue fixation. miRNAs that showed high differential expression in AA TNBC patients compared to EA included: miR-19a, miR-192, miR-302a, miR-302b, miR-302c, miR-335, miR-520b, miR-520f and miR-645. LCM is a useful technique for isolation of tumor cells. We found a greater abundance of RNA in frozen samples compared to formalin fixed, paraffin embedded samples. miRNA appears to be a useful biomarker for TNBC to improve diagnosis and treatment.
Collapse
Affiliation(s)
- William M. MacCuaig
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, Oklahoma,Department of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma
| | - Alexandra Thomas
- Department of Hematology Oncology, Wake Forest Baptist Health, Winston-Salem, North Carolina
| | - Juan C. Carlos-Sorto
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, Oklahoma,Department of Surgery, University of Oklahoma, Oklahoma City, Oklahoma
| | | | - Adam C. Alexander
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, Oklahoma,Department of Family and Preventive Medicine, University of Oklahoma, Oklahoma City, Oklahoma
| | - Elizabeth A. Wellberg
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, Oklahoma,Department of Pathology, University of Oklahoma, Oklahoma City, Oklahoma
| | - William E. Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lacey R. McNally
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, Oklahoma,Department of Surgery, University of Oklahoma, Oklahoma City, Oklahoma
| |
Collapse
|
9
|
Gao L, Shao X, Yue Q, Wu W, Yang X, He X, Li L, Hou F, Zhang R. circAMOTL1L Suppresses Renal Cell Carcinoma Growth by Modulating the miR-92a-2-5p/KLLN Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9970272. [PMID: 34646428 PMCID: PMC8505055 DOI: 10.1155/2021/9970272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/28/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022]
Abstract
Accumulating evidence indicates that the dysregulation of circular RNAs (circRNAs) contributes to tumor progression; however, the regulatory functions of circRNAs in renal cell carcinoma (RCC) remain largely unknown. In this study, the function and underlying mechanism of circAMOTL1L in RCC progression were explored. qRT-PCR showed the downregulation of circAMOTL1L in RCC tissues and cell lines. The decrease in circAMOTL1L expression correlated with the tumor stage, metastasis, and poor prognosis in patients with RCC. Functional experiments revealed that circAMOTL1L inhibited cell proliferation and increased apoptosis in RCC cells. Subcutaneous implantation with circAMOTL1L-overexpressing cells in nude mice decreased the growth ability of the xenograft tumors. Mechanistically, circAMOTL1L served as a sponge for miR-92a-2-5p in upregulating KLLN (killin, p53-regulated DNA replication inhibitor) expression validated by bioinformatics analysis, oligo pull-down, and luciferase assays. Further, reinforcing the circAMOTL1L-miR-92a-2-5p-KLLN axis greatly reduced the growth of RCC in vivo. Conclusively, our findings demonstrate that circAMOTL1L has an antioncogenic role in RCC growth by modulating the miR-92a-2-5p-KLLN pathway. Thus, targeting the novel circAMOTL1L-miR-92a-2-5p-KLLN regulatory axis might provide a therapeutic strategy for RCC.
Collapse
Affiliation(s)
- Ling Gao
- Department of Oncology, Kaifeng Central Hospital, Kaifeng, Henan, China
| | - Xian Shao
- Department of Anesthesiology, The No. 4 Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Qingqing Yue
- School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Weifei Wu
- School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xuejuan Yang
- School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaolei He
- School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Limin Li
- Clinical Laboratory, Handan First Hospital, Handan, Hebei, China
| | - Fujun Hou
- Department of Foreign Nursing, Chengde Nursing Vocational College, Chengde, Hebei, China
| | - Ruonan Zhang
- School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
10
|
Afshari A, Yaghobi R, Karimi MH, Mowla J. Alterations in MicroRNA gene expression profile in liver transplant patients with hepatocellular carcinoma. BMC Gastroenterol 2021; 21:262. [PMID: 34118888 PMCID: PMC8199419 DOI: 10.1186/s12876-020-01596-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) can lead to liver failure which renders to liver transplant. miRNAs might be detected as biomarkers in subclinical stage of several hepatobiliary disorders like HCC. Therefore, in the present study, alterations in miRNAs as biomarkers were detected in LT patients with HCC. Methods Fourteen tissue samples composed of 5 rejected and 9 non-rejected ones were used for studying the miRNAs expression pattern using LNA-array probe assay and the result was evaluated by in house SYBR Green Real-time PCR protocols on 30 other tissue samples composed of 10 rejected and 20 non-rejected ones for the selected miRNAs. All samples were collected from liver transplanted patients with HCC. Results The study results revealed that in rejected patients compared to non-rejected ones, hsa-miR-3158-5p, -4449, -4511, and -4633-5p were up-regulated and hsa-miR-122-3p, -194-5p, 548as-3p, and -4284 were down-regulated. ROC curve analysis also confirmed that miR194-5p and -548as-3p in up-regulated and also, miR-3158-5p, -4449 in down-regulated microRNAs are significantly important molecules in rejection. Conclusion Finally, the tissue levels of specific miRNAs (especially hsa-miR-3158-5p, -4449, -194-5p and -548as-3p) significantly correlated with the development of HCC, which can be present as biomarkers after further completing studies. Supplementary information The online version contains supplementary material available at 10.1186/s12876-020-01596-2.
Collapse
Affiliation(s)
- Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Javad Mowla
- Genetic Department of Tarbiat, Modares University, Tehran, Iran
| |
Collapse
|
11
|
Souza MDA, Ramos-Sanchez EM, Muxel SM, Lagos D, Reis LC, Pereira VRA, Brito MEF, Zampieri RA, Kaye PM, Floeter-Winter LM, Goto H. miR-548d-3p Alters Parasite Growth and Inflammation in Leishmania (Viannia) braziliensis Infection. Front Cell Infect Microbiol 2021; 11:687647. [PMID: 34178725 PMCID: PMC8224172 DOI: 10.3389/fcimb.2021.687647] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022] Open
Abstract
American Tegumentary Leishmaniasis (ATL) is an endemic disease in Latin America, mainly caused in Brazil by Leishmania (Viannia) braziliensis. Clinical manifestations vary from mild, localized cutaneous leishmaniasis (CL) to aggressive mucosal disease. The host immune response strongly determines the outcome of infection and pattern of disease. However, the pathogenesis of ATL is not well understood, and host microRNAs (miRNAs) may have a role in this context. In the present study, miRNAs were quantified using qPCR arrays in human monocytic THP-1 cells infected in vitro with L. (V.) braziliensis promastigotes and in plasma from patients with ATL, focusing on inflammatory response-specific miRNAs. Patients with active or self-healed cutaneous leishmaniasis patients, with confirmed parasitological or immunological diagnosis, were compared with healthy controls. Computational target prediction of significantly-altered miRNAs from in vitro L. (V.) braziliensis-infected THP-1 cells revealed predicted targets involved in diverse pathways, including chemokine signaling, inflammatory, cellular proliferation, and tissue repair processes. In plasma, we observed distinct miRNA expression in patients with self-healed and active lesions compared with healthy controls. Some miRNAs dysregulated during THP-1 in vitro infection were also found in plasma from self-healed patients, including miR-548d-3p, which was upregulated in infected THP-1 cells and in plasma from self-healed patients. As miR-548d-3p was predicted to target the chemokine pathway and inflammation is a central to the pathogenesis of ATL, we evaluated the effect of transient transfection of a miR-548d-3p inhibitor on L. (V.) braziliensis infected-THP-1 cells. Inhibition of miR-548d-3p reduced parasite growth early after infection and increased production of MCP1/CCL2, RANTES/CCL5, and IP10/CXCL10. In plasma of self-healed patients, MCP1/CCL2, RANTES/CCL5, and IL-8/CXCL8 concentrations were significantly decreased and MIG/CXCL9 and IP-10/CXCL10 increased compared to patients with active disease. These data suggest that by modulating miRNAs, L. (V.) braziliensis may interfere with chemokine production and hence the inflammatory processes underpinning lesion resolution. Our data suggest miR-548d-3p could be further evaluated as a prognostic marker for ATL and/or as a host-directed therapeutic target.
Collapse
Affiliation(s)
- Marina de Assis Souza
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo (IMTSP/USP), São Paulo, Brazil
| | - Eduardo Milton Ramos-Sanchez
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo (IMTSP/USP), São Paulo, Brazil.,Departamento de Salud Publica, Facultad de Ciencias de La Salud, Universidad Nacional Toribio Rodriguez de Mendoza de Amazonas, Chachapoyas, Peru
| | | | - Dimitris Lagos
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Luiza Campos Reis
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo (IMTSP/USP), São Paulo, Brazil
| | | | | | | | - Paul Martin Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | | | - Hiro Goto
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo (IMTSP/USP), São Paulo, Brazil.,Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
WM Nor WMFSB, Chung I, Said NABM. MicroRNA-548m Suppresses Cell Migration and Invasion by Targeting Aryl Hydrocarbon Receptor in Breast Cancer Cells. Oncol Res 2021; 28:615-629. [PMID: 33109304 PMCID: PMC7962940 DOI: 10.3727/096504020x16037933185170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer among women and one of the leading causes of cancer mortality worldwide, in which the most severe form happens when it metastasizes to other regions of the body. Metastasis is responsible for most treatment failures in advanced breast cancer. Epithelialmesenchymal transition (EMT) plays a significant role in promoting metastatic processes in breast cancer. MicroRNAs (miRNAs) are highly conserved endogenous short noncoding RNAs that play a role in regulating a broad range of biological processes, including cancer initiation and development, by functioning as tumor promoters or tumor suppressors. Expression of miR-548m has been found in various types of cancers, but the biological function and molecular mechanisms of miR-548m in cancers have not been fully studied. Here we demonstrated the role of miR-548m in modulating EMT in the breast cancer cell lines MDA-MB-231 and MCF-7. Expression data for primary breast cancer obtained from NCBI GEO data sets showed that miR-548m expression was downregulated in breast cancer patients compared with healthy group. We hypothesize that miR-548m acts as a tumor suppressor in breast cancer. Overexpression of miR-548m in both cell lines increased E-cadherin expression and decreased the EMT-associated transcription factors SNAI1, SNAI2, ZEB1, and ZEB2, as well as MMP9 expression. Consequently, migration and invasion capabilities of both MDA-MB-231 and MCF-7 cells were significantly inhibited in miR-548m-overexpressing cells. Analysis of 1,059 putative target genes of miR-548m revealed common pathways involving both tight junction and the mTOR signaling pathway, which has potential impacts on cell migration and invasion. Furthermore, this study identified aryl hydrocarbon receptor (AHR) as a direct target of miR-548m in breast cancer cells. Taken together, our findings suggest a novel function of miR-548m in reversing the EMT of breast cancer by reducing their migratory and invasive potentials, at least in part via targeting AHR expression.
Collapse
Affiliation(s)
- WM Farhan Syafiq B. WM Nor
- *Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- †Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
| | - Ivy Chung
- ‡Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- §University of Malaya Cancer Research Institute, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nur Akmarina B. M. Said
- †Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Xiong Y, Chen ZH, Zhang FL, Yu ZY, Liu B, Zhang C, Zhao LN. A specific selenium-chelating peptide isolated from the protein hydrolysate of Grifola frondosa. RSC Adv 2021; 11:10272-10284. [PMID: 35423524 PMCID: PMC8695590 DOI: 10.1039/d0ra10886c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/26/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Grifola frondosa is a type of edible medicinal mushroom with abundant proteins. Selenium (Se) is an essential micronutrient for human. Many animal experiments and clinical studies had indicated that Se plays an important role in diverse physiologic actions. Most inorganic selenium compounds are toxic, and the lowest lethal dose is relatively small. Peptide-Se chelate can probably be dietary supplements in functional foods for humans with Se deficiency. Methods: In this study, a specific tripeptide Arg-Leu-Ala (RLA) with strong Se-chelating capacity was purified from Grifola frondosa through ultrafiltration, reversed-phase HPLC and gel filtration chromatography. The UV, SEM, XRD, 1H NMR spectra are shown to provide more information about characterization of RLA-Se chelates. The bioavailability of RLA-Se chelate in Caco-2 cell line was investigated by using human colon cancer Caco-2 cells as model. iTRAQ comparative proteomics approach were used to identify the differentially expressed proteins. Results: The Se binding capacity of RLA was 84.47 ± 1.21 mg g-1. The results of UV, X-ray diffraction (XRD), 1H NMR and SEM structure analysis showed that the binding of selenium in the hydrolysate of Grifola frondosa protein was successful, and the amino and carboxyl groups of RLA were involved in the coordination of Se, which was the main site of chelation. The results of absorption of RLA-Se chelate in Caco-2 cells showed that RLA-Se chelate could be used as selenium supplement source. Using iTRAQ comparative proteomics approach, 40 proteins found significant. RLA-Se treatment had been demonstrated to present a higher accumulation of Se compared with control treatment and show an effective absorption by Caco-2 with the result that E3 protein performed up regulation. RLA-Se may play roles in cell cycle and apoptosis as an essential micronutrient. To sum up, our research results show that Grifola polypeptide-Se chelate is a promising multifunctional organic selenium product, which can be used as a new functional supplement for selenium deficiency.
Collapse
Affiliation(s)
- Yu Xiong
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University No. 15, Shangxiadian rd, Cangshan District Fuzhou Fujian 350002 China
| | - Zi-Hong Chen
- College of Food Science, Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Feng-Li Zhang
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University No. 15, Shangxiadian rd, Cangshan District Fuzhou Fujian 350002 China
| | - Zhi-Ying Yu
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University No. 15, Shangxiadian rd, Cangshan District Fuzhou Fujian 350002 China
| | - Bin Liu
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University No. 15, Shangxiadian rd, Cangshan District Fuzhou Fujian 350002 China
- College of Food Science, Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Chong Zhang
- Institute of Emergency Medicine, Department of Emergency, Fujian Provincial Hospital Fuzhou Fujian 350001 China
| | - Li-Na Zhao
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University No. 15, Shangxiadian rd, Cangshan District Fuzhou Fujian 350002 China
| |
Collapse
|
14
|
Liang H, Hu C, Lin X, He Z, Lin Z, Dai J. MiR-548d-3p Promotes Gastric Cancer by Targeting RSK4. Cancer Manag Res 2020; 12:13325-13337. [PMID: 33380838 PMCID: PMC7769082 DOI: 10.2147/cmar.s278691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose Previous studies have demonstrated that RSK4 inhibits the proliferation of gastric cancer cells and the occurrence of tumors. However, to date, studies involving microRNAs (miRNAs) that target RSK4 have rarely been reported. Thus, this study aimed to investigate the miRNAs that target RSK4. Materials and Methods We screened miRNAs related to RSK4 in miRDB, microT-CDS, TargetScan, and mirDIP databases and found 18 miRNAs. We chose miR-548d-3p for follow-up research, identified the interaction site in RSK4 by comparing the sequence, and mutated it. Thereafter, we used the dual-luciferase reporter system, real-time PCR (RT-PCR), and Western blotting to assess the effect of miR-548d-3p on RSK4. The proliferation, apoptosis, migration, and invasion of gastric cancer cells were evaluated using MTT assay, propidium iodide (PI), EdU, annexin V-FITC/PI apoptosis detection kit, wound healing assay, and transwell assay after overexpression of miR-548d-3p and RSK4. Finally, a nude mouse tumorigenesis experiment was conducted to explore the role of RSK4-targeting miR-548d-3p in tumorigenesis. Results miR-548d-3p negatively regulated the expression of RSK4, resulting in suppressed apoptosis, enhanced proliferation, migration, and invasion of gastric cancer cells, and accelerated tumor growth. In addition, an increase in miR-548d-3p expression enhanced the mRNA levels of CDK2, cyclin A1, cyclin D1, Bax, Bcl-2, N-cadherin, and Vimentin, and decreased E-cadherin mRNA levels by targeting RSK4. Conclusion miR-548d-3p promotes gastric cancer by lowering the expression of RSK4.
Collapse
Affiliation(s)
- Hui Liang
- General Surgery Department, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, People's Republic of China
| | - Cong Hu
- General Surgery Department, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, People's Republic of China
| | - Xu Lin
- General Surgery Department, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, People's Republic of China
| | - Zhuocheng He
- General Surgery Department, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, People's Republic of China
| | - Zhiwen Lin
- General Surgery Department, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, People's Republic of China
| | - Jun Dai
- General Surgery Department, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, People's Republic of China
| |
Collapse
|
15
|
Li R, Li J, Yang H, Bai Y, Hu C, Wu H, Jiang H, Wang Q. Hepsin Promotes Epithelial-Mesenchymal Transition and Cell Invasion Through the miR-222/PPP2R2A/AKT Axis in Prostate Cancer. Onco Targets Ther 2020; 13:12141-12149. [PMID: 33268993 PMCID: PMC7701367 DOI: 10.2147/ott.s268025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose To determine the role and underlying mechanism of hepsin in epithelial–mesenchymal transition (EMT) and cell invasion in prostate cancer. Methods The expression of hepsin in prostate cancer tissue samples and cell lines was measured by immunohistochemical staining and Western blotting. The EMT and cell invasion abilities of prostate cancer cells were detected by Western blot and transwell assays. RNA transfection was used to inhibit or overexpress related genes. The expression of miR-222 was detected by RT-qPCR. A dual‑luciferase reporter gene assay was performed to determine the target of miR-222. Results Hepsin expression was upregulated in prostate cancer tissue samples and cell lines. Inhibition of hepsin attenuated EMT and cell invasion and downregulated the expression of miR-222. Decreased miR-222 expression enhanced the level of PPP2R2A, which in turn attenuated the AKT signaling. Activation of miR-222 or AKT could block the inhibitory effects on EMT and cell invasion induced by hepsin deficiency. Conclusion Hepsin promotes EMT and cell invasion through the miR-222/PPP2R2A/AKT axis in prostate cancer.
Collapse
Affiliation(s)
- Ruiqian Li
- Department of Urology, Third Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, People's Republic of China
| | - Jun Li
- Department of Urology, Third Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, People's Republic of China
| | - Hong Yang
- Department of Urology, Third Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, People's Republic of China
| | - Yu Bai
- Department of Urology, Third Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, People's Republic of China
| | - Chen Hu
- Department of Urology, Third Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, People's Republic of China
| | - Hongyi Wu
- Department of Urology, Third Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, People's Republic of China
| | - Haiyang Jiang
- Department of Urology, Third Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, People's Republic of China
| | - Qilin Wang
- Department of Urology, Third Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, People's Republic of China
| |
Collapse
|
16
|
Mir-30b-5p Promotes Proliferation, Migration, and Invasion of Breast Cancer Cells via Targeting ASPP2. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7907269. [PMID: 32420372 PMCID: PMC7210518 DOI: 10.1155/2020/7907269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/06/2020] [Accepted: 01/16/2020] [Indexed: 12/18/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtypes of breast cancer, which has few effective targeted therapies. Various sources of evidence confirm that microRNAs (miRNAs) contribute to the progression and metastasis of human breast cancer. However, the molecular mechanisms underlying the changes in miRNAs expression and the regulation of miRNAs functions have not been well clarified. In this study, we found that the expression of miR-30b-5p was upregulated in breast cancer tissues and breast cancer cell lines, compared to paracancer tissues and normal breast cell lines. Moreover, induced overexpression of miR-30b-5p promoted the MDA-MB-231 and HCC 1937 cell growth, migration, and invasion and reduced the cellular apoptosis. Further studies confirmed that miR-30b-5p could directly target ASPP2 and then activate the AKT signaling pathway. Our results suggested that miR-30b-5p could act as a tumor promoter in TNBC. The newly identified miR-30b-5p/ASPP2/AKT axis represents a novel therapeutic strategy for treating TNBC.
Collapse
|
17
|
Pang Y, Pan L, Zhang Y, Liu G. TP53BP2 decreases cell proliferation and induces autophagy in neuroblastoma cell lines. Oncol Lett 2019; 17:4976-4984. [PMID: 31186708 PMCID: PMC6507348 DOI: 10.3892/ol.2019.10148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 02/07/2019] [Indexed: 12/22/2022] Open
Abstract
Tumor protein p53-binding protein 2 (TP53BP2), a member of the apoptosis-stimulating protein of p53 (ASPP) family, has previously been reported to be associated with tumor development. However, to the best of our knowledge, the role of TP53BP2 in neuroblastoma has not been elucidated. The aim of the present study was to investigate the function of TP53BP2 in the proliferation and autophagy of neuroblastoma. An expression vector that expresses TP53BP2-specific short hairpin RNA (shTP53BP2) was used for the experimental group and green fluorescent protein short hairpin RNA was used as a control. Cell proliferation was measured using MTT assays, self-renewal was evaluated using soft agar assays, light chain 3 (LC3) II expression level was examined by western blot and immunofluorescence analysis, and the autophagy-related 3 homolog (ATG3), autophagy-related 5 homolog (ATG5) and autophagy-related 9 homolog (ATG7) expression levels were examined using the reverse transcription-quantitative polymerase chain reaction (RT-qPCR). A genomics analysis revealed that TP53BP2 expression was associated with the survival of patients with neuroblastoma. Western blot and RT-qPCR assays indicated that TP53BP2 could be implicated in neuroblastoma, as the proliferative ability of the experimental group decreased compared with that of the control group (P<0.001) and the expression levels of genes associated with autophagy, including LC3 II. ATG3, ATG5 and ATG7, increased in the experimental group. In conclusion, an increased expression of TP53BP2 in patients with neuroblastoma may be associated with poor survival and shTP53BP2 may decrease the proliferative abilities of neuroblastoma cells, including BE(2)C and SK-N-DZ cell lines. In addition, the LC3 II, ATG3, ATG5 and ATG7 expression levels increased and were associated with increased rates of autophagy following upregulation of TP53BP2.
Collapse
Affiliation(s)
- Yi Pang
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing 404110, P.R. China
| | - Lianhong Pan
- National Innovation and Attracting Talents '111' Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering Chongqing University, Chongqing 400030, P.R. China
| | - Yonghui Zhang
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing 404110, P.R. China
| | - Guiyuan Liu
- General Surgery Department, The Affiliated Hospital of Chongqing Three Gorges Medical College, Chongqing 404110, P.R. China
| |
Collapse
|
18
|
Tan J, Xiang L, Xu G. LncRNA MEG3 suppresses migration and promotes apoptosis by sponging miR-548d-3p to modulate JAK-STAT pathway in oral squamous cell carcinoma. IUBMB Life 2019; 71:882-890. [PMID: 30809930 DOI: 10.1002/iub.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/24/2018] [Accepted: 01/08/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Jiawei Tan
- Department of Stomatology; Zhejiang Hospital; Zhejiang Hangzhou China
| | - Lixin Xiang
- Department of Stomatology; Zhejiang Hospital; Zhejiang Hangzhou China
| | - Guochao Xu
- Department of Stomatology; Zhejiang Hospital; Zhejiang Hangzhou China
| |
Collapse
|
19
|
Zhao Z, Zhao Q, Zhu S, Huang B, Lv L, Chen T, Yan M, Han H, Dong H. iTRAQ-based comparative proteomic analysis of cells infected with Eimeria tenella sporozoites. ACTA ACUST UNITED AC 2019; 26:7. [PMID: 30789155 PMCID: PMC6383524 DOI: 10.1051/parasite/2019009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/11/2019] [Indexed: 12/03/2022]
Abstract
Eimeria tenella is an obligate intracellular parasite that actively invades cecal epithelial cells of chickens. When E. tenella infects a host cell, the host produces a corresponding change to deal with damage caused by this infection. To date, our knowledge on the mechanism of how the host cell responds to E. tenella infection is highly limited at both the molecular and cellular levels. In this study, isobaric tags for relative and absolute quantitation (iTRAQ) coupled with LC-MS/MS was used to screen the differentially expressed proteins (DEPs) in BHK-21 cells infected with E. tenella sporozoites for 24 h post infection. In total, 6139 non-redundant distinct proteins were identified and 195 of these were found to have a fold change ratio ≥1.3 or ≤0.7 and p < 0.05, including 151 up-regulated proteins and 44 down-regulated proteins. The reliability of the proteomic data was further validated with qPCR and western blot. Gene Ontology enrichment indicated that the up-regulated DEPs were mainly involved in binding and catalytic activity, whereas the down-regulated DEPs were catalytic activity and molecular function regulators. Furthermore, KEGG pathway analysis showed that the DEPs participated in the PI3K-Akt, chemokine, Ras, Wnt, and p53 signaling pathways and so on, and the up-regulated and down-regulated DEPs mainly related to the ribosome and mRNA surveillance pathway, respectively. The data in this study provide an important basis to further analyze E. tenella host cell interactions.
Collapse
Affiliation(s)
- Zongping Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Shanghai 200241, PR China
| | - Qiping Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Shanghai 200241, PR China
| | - Shunhai Zhu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Shanghai 200241, PR China
| | - Bing Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Shanghai 200241, PR China
| | - Ling Lv
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Shanghai 200241, PR China
| | - Ting Chen
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Shanghai 200241, PR China
| | - Ming Yan
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Shanghai 200241, PR China
| | - Hongyu Han
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Shanghai 200241, PR China
| | - Hui Dong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Shanghai 200241, PR China
| |
Collapse
|
20
|
Kashyap D, Tuli HS, Garg VK, Goel N, Bishayee A. Oncogenic and Tumor-Suppressive Roles of MicroRNAs with Special Reference to Apoptosis: Molecular Mechanisms and Therapeutic Potential. Mol Diagn Ther 2018; 22:179-201. [PMID: 29388067 DOI: 10.1007/s40291-018-0316-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are the non-coding class of minute RNA molecules that negatively control post-transcriptional regulation of various functional genes. These miRNAs are transcribed from the loci present in the introns of functional or protein-coding genes, exons of non-coding genes, or even in the 3'-untranslated region (3'-UTR). They have potential to modulate the stability or translational efficiency of a variety of target RNA [messenger RNA (mRNA)]. The regulatory function of miRNAs has been elucidated in several pathological conditions, including neurological (Alzheimer's disease and Parkinson's disease) and cardiovascular conditions, along with cancer. Importantly, miRNA identification in cancer progression and invasion has evolved as an incipient era in cancer treatment. Several studies have shown the influence of miRNAs on various cancer processes, including apoptosis, invasion, metastasis and angiogenesis. In particular, apoptosis induction in tumor cells through miRNA has been extensively studied. The biphasic mode (up- and down-regulation) of miRNA expression in apoptosis and other cancer processes has already been determined. The findings of these studies could be utilized to develop potential therapeutic strategies for the management of various cancers. The present review critically describes the oncogenic and tumor suppressor role of miRNAs in apoptosis and other cancer processes, therapy resistance, and use of their presence in the body fluids as biomarkers.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, Punjab, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana-Ambala, 133207, Haryana, India.
| | - Vivek Kumar Garg
- Department of Biochemistry, Government Medical College and Hospital, Chandigarh, 160030, Punjab, India
| | - Neelam Goel
- Department of Information Technology, University Institute of Engineering and Technology, Panjab University, Chandigarh, 160014, Punjab, India
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, 33169, USA.
| |
Collapse
|
21
|
Wu T, Song H, Xie D, Zhao B, Xu H, Wu C, Hua K, Deng Y, Ji C, Hu J, Fang L. Silencing of ASPP2 promotes the proliferation, migration and invasion of triple-negative breast cancer cells via the PI3K/AKT pathway. Int J Oncol 2018; 52:2001-2010. [PMID: 29568874 DOI: 10.3892/ijo.2018.4331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/08/2018] [Indexed: 11/06/2022] Open
Abstract
Apoptosis-stimulating p53 protein 2 (ASPP2) is an apoptosis inducer that acts via binding with p53 and then enhancing the transcriptional activities toward pro‑apoptosis genes. ASPP2 has recently been reported to serve a major role in p53‑independent pathways. Triple‑negative breast cancer (TNBC) is a type of breast cancer that is more aggressive and highly lethal when p53 is mutated. In the present study, the mRNA level of ASPP2 was found to be suppressed in breast tumors compared with that in adjacent normal breast tissues, and the expression of ASPP2 was also decreased in a series of breast cancer cell lines compared with that in MCF‑10A normal breast cells. Downregulation of ASPP2 by specific small interfering RNA (siRNA) transfection was able to promote cell growth, reduce cell apoptosis, and contribute to cell migration and invasion. Furthermore, downregulation of ASPP2 promoted cell epithelial‑mesenchymal transition (EMT) in MDA‑MB‑231 and HCC‑1937 TNBC cells. Furthermore, it was found that when ASPP2 siRNA was transfected into MDA‑MB‑231 and HCC‑1937 cells, the expression of phosphoinositide‑3‑kinase regulatory subunit 1 (p85α) decreased and phosphorylation of protein kinase B (AKT) increased, which are key molecular regulators in the phosphatidylinositol 3-kinase (PI3K)/AKT pathway. In conclusion, the present data indicated that ASPP2 had a crucial influence on the proliferation and metastasis in TNBC, and that the functional mechanism may be p53‑independent to a great extent. ASPP2 and its link with the PI3K/AKT pathway deserve further investigation and may provide novel insights into therapeutic targets for TNBC.
Collapse
Affiliation(s)
- Tianqi Wu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Hongming Song
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Dan Xie
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Bingkun Zhao
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Hui Xu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Chenyang Wu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Kaiyao Hua
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yijun Deng
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Changle Ji
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Jiashu Hu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Lin Fang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
22
|
Xie S, Shen C, Tan M, Li M, Song X, Wang C. Systematic analysis of gene expression alterations and clinical outcomes of adenylate cyclase-associated protein in cancer. Oncotarget 2018; 8:27216-27239. [PMID: 28423713 PMCID: PMC5432330 DOI: 10.18632/oncotarget.16111] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 02/20/2017] [Indexed: 12/21/2022] Open
Abstract
Adenylate Cyclase-associated protein (CAP) is an evolutionarily conserved protein that regulates actin dynamics. Our previous study indicates that CAP1 is overexpressed in NSCLC tissues and correlated with poor clinical outcomes, but CAP1 in HeLa cells actually inhibited migration and invasion, the role of CAP was discrepancy in different cancer types. The present study aims to determine whether CAP can serve as a prognostic marker in human cancers. The CAP expression was assessed using Oncomine database to determine the gene alteration during carcinogenesis, the copy number alteration, or mutations of CAP using cBioPortal, International Cancer Genome Consortium, and Tumorscape database investigated, and the association between CAP expression and the survival of cancer patient using Kaplan-Meier plotter and PrognoScan database evaluated. Therefore, the functional correlation between CAP expression and cancer phenotypes can be established; wherein CAP might serve as a diagnostic marker or therapeutic target for certain types of cancers.
Collapse
Affiliation(s)
- Shuanshuan Xie
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Changxing Shen
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Min Tan
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Ming Li
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Xiaolian Song
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Changhui Wang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| |
Collapse
|
23
|
Evaluation of Anti-Metastatic Potential of the Combination of Fisetin with Paclitaxel on A549 Non-Small Cell Lung Cancer Cells. Int J Mol Sci 2018; 19:ijms19030661. [PMID: 29495431 PMCID: PMC5877522 DOI: 10.3390/ijms19030661] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/07/2018] [Accepted: 02/17/2018] [Indexed: 12/21/2022] Open
Abstract
The identification and development of new agents with a therapeutic potential as well as novel drug combinations are gaining the attention of scientists and clinicians as a plausible approach to improve therapeutic regimens for chemoresistant tumors. We have recently reported that the flavonoid fisetin (FIS), at physiologically attainable concentrations, acts synergistically with clinically achievable doses of paclitaxel (PTX) to produce growth inhibitory and pro-death effects on A549 human non-small cell lung cancer (NSCLC) cells. To further investigate a potential therapeutic efficacy of the combination of fisetin with paclitaxel, we decided to assess its impact on metastatic capability of A549 cells as well as its toxicity toward normal human lung fibroblast. Cell viability, cell migration, and invasion were measured by thiazolyl blue tetrazolium bromide (MTT) assay, wound healing assay, and Transwell chamber assay, respectively. The expression of metastasis-related genes was assessed with quantitative reverse transcriptase real-time polymerase chain reaction (qRT-PCR). Actin and vimentin filaments were examined under the fluorescence microscope. The combination of FIS and PTX significantly reduced cancer cell migration and invasion, at least partially, through a marked rearrangement of actin and vimentin cytoskeleton and the modulation of metastasis-related genes. Most of these effects of the combination treatment were significantly greater than those of individual agents. Paclitaxel alone was even more toxic to normal cells than the combination of this drug with the flavonoid, suggesting that FIS may provide some protection against PTX-mediated cytotoxicity. The combination of FIS and PTX is expected to have a synergistic anticancer efficacy and a significant potential for the treatment of NSCLC, however, further in vitro and in vivo studies are required to confirm this preliminary evidence.
Collapse
|
24
|
Nagy ZB, Barták BK, Kalmár A, Galamb O, Wichmann B, Dank M, Igaz P, Tulassay Z, Molnár B. Comparison of Circulating miRNAs Expression Alterations in Matched Tissue and Plasma Samples During Colorectal Cancer Progression. Pathol Oncol Res 2017; 25:97-105. [PMID: 28980150 DOI: 10.1007/s12253-017-0308-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/12/2017] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) have been found to play a critical role in colorectal adenoma-carcinoma sequence. MiRNA-specific high-throughput arrays became available to detect promising miRNA expression alterations even in biological fluids, such as plasma samples, where miRNAs are stable. The purpose of this study was to identify circulating miRNAs showing altered expression between normal colonic (N), tubular adenoma (ADT), tubulovillous adenoma (ADTV) and colorectal cancer (CRC) matched plasma and tissue samples. Sixteen peripheral plasma and matched tissue biopsy samples (N n = 4; ADT n = 4; ADTV n = 4; CRC n = 4) were selected, and total RNA including miRNA fraction was isolated. MiRNAs from plasma samples were extracted using QIAamp Circulating Nucleic Acid Kit (Qiagen). Matched tissue-plasma miRNA microarray experiments were conducted by GeneChip® miRNA 3.0 Array (Affymetrix). RT-qPCR (microRNA Ready-to-use PCR Human Panel I + II; Exiqon) was used for validation. Characteristic miRNA expression alterations were observed in comparison of AD and CRC groups (miR-149*, miR-3196, miR-4687) in plasma samples. In the N vs. CRC comparison, significant overexpression of miR-612, miR-1296, miR-933, miR-937 and miR-1207 was detected by RT-PCR (p < 0.05). Similar expression pattern of these miRNAs were observed using microarray in tissue pairs, as well. Although miRNAs were also found in circulatory system in a lower concentration compared to tissues, expression patterns slightly overlapped between tissue and plasma samples. Detected circulating miRNA alterations may originate not only from the primer tumor but from other cell types including immune cells.
Collapse
Affiliation(s)
- Zsófia Brigitta Nagy
- Molecular Gastroenterology Laboratory, 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi street 46, Budapest, 1088, Hungary.
| | - Barbara Kinga Barták
- Molecular Gastroenterology Laboratory, 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi street 46, Budapest, 1088, Hungary
| | - Alexandra Kalmár
- Molecular Gastroenterology Laboratory, 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi street 46, Budapest, 1088, Hungary
| | - Orsolya Galamb
- Molecular Gastroenterology Laboratory, 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi street 46, Budapest, 1088, Hungary
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Barnabás Wichmann
- Molecular Gastroenterology Laboratory, 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi street 46, Budapest, 1088, Hungary
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Magdolna Dank
- Department of Clinical Oncology, Semmelweis University, Budapest, Hungary
| | - Péter Igaz
- Molecular Gastroenterology Laboratory, 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi street 46, Budapest, 1088, Hungary
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zsolt Tulassay
- Molecular Gastroenterology Laboratory, 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi street 46, Budapest, 1088, Hungary
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Béla Molnár
- Molecular Gastroenterology Laboratory, 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi street 46, Budapest, 1088, Hungary
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
25
|
Fagerholm R, Khan S, Schmidt MK, GarcClosas M, Heikkilä P, Saarela J, Beesley J, Jamshidi M, Aittomäki K, Liu J, Raza Ali H, Andrulis IL, Beckmann MW, Behrens S, Blows FM, Brenner H, Chang-Claude J, Couch FJ, Czene K, Fasching PA, Figueroa J, Floris G, Glendon G, Guo Q, Hall P, Hallberg E, Hamann U, Holleczek B, Hooning MJ, Hopper JL, Jager A, Kabisch M, Investigators KC, Keeman R, Kosma VM, Lambrechts D, Lindblom A, Mannermaa A, Margolin S, Provenzano E, Shah M, Southey MC, Dennis J, Lush M, Michailidou K, Wang Q, Bolla MK, Dunning AM, Easton DF, Pharoah PD., Chenevix-Trench G, Blomqvist C, Nevanlinna H. TP53-based interaction analysis identifies cis-eQTL variants for TP53BP2, FBXO28, and FAM53A that associate with survival and treatment outcome in breast cancer. Oncotarget 2017; 8:18381-18398. [PMID: 28179588 PMCID: PMC5392336 DOI: 10.18632/oncotarget.15110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/01/2017] [Indexed: 01/13/2023] Open
Abstract
TP53 overexpression is indicative of somatic TP53 mutations and associates with aggressive tumors and poor prognosis in breast cancer. We utilized a two-stage SNP association study to detect variants associated with breast cancer survival in a TP53-dependent manner. Initially, a genome-wide study (n = 575 cases) was conducted to discover candidate SNPs for genotyping and validation in the Breast Cancer Association Consortium (BCAC). The SNPs were then tested for interaction with tumor TP53 status (n = 4,610) and anthracycline treatment (n = 17,828). For SNPs interacting with anthracycline treatment, siRNA knockdown experiments were carried out to validate candidate genes.In the test for interaction between SNP genotype and TP53 status, we identified one locus, represented by rs10916264 (p(interaction) = 3.44 × 10-5; FDR-adjusted p = 0.0011) in estrogen receptor (ER) positive cases. The rs10916264 AA genotype associated with worse survival among cases with ER-positive, TP53-positive tumors (hazard ratio [HR] 2.36, 95% confidence interval [C.I] 1.45 - 3.82). This is a cis-eQTL locus for FBXO28 and TP53BP2; expression levels of these genes were associated with patient survival specifically in ER-positive, TP53-mutated tumors. Additionally, the SNP rs798755 was associated with survival in interaction with anthracycline treatment (p(interaction) = 9.57 × 10-5, FDR-adjusted p = 0.0130). RNAi-based depletion of a predicted regulatory target gene, FAM53A, indicated that this gene can modulate doxorubicin sensitivity in breast cancer cell lines.If confirmed in independent data sets, these results may be of clinical relevance in the development of prognostic and predictive marker panels for breast cancer.
Collapse
Affiliation(s)
- Rainer Fagerholm
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Sofia Khan
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Marjanka K. Schmidt
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Montserrat GarcClosas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Päivi Heikkilä
- Department of Pathology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Jani Saarela
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland
| | - Jonathan Beesley
- Department of Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Maral Jamshidi
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Kristiina Aittomäki
- Department of Clinical Genetics, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Jianjun Liu
- Human Genetics Division, Genome Institute of Singapore, Singapore, Singapore
| | - H. Raza Ali
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Irene L. Andrulis
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Matthias W. Beckmann
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fiona M. Blows
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fergus J. Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Peter A. Fasching
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
- David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jonine Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh Medical School, Edinburgh, UK
| | - Giuseppe Floris
- Leuven Multidisciplinary Breast Center, Department of Oncology, KULeuven, Leuven Cancer Institute, University Hospitals Leuven
| | - Gord Glendon
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Canada
| | - Qi Guo
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Emily Hallberg
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Maartje J. Hooning
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global health, The University of Melbourne, Melbourne, Australia
| | - Agnes Jager
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Maria Kabisch
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Renske Keeman
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Veli-Matti Kosma
- Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Diether Lambrechts
- Vesalius Research Center, VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Leuven, Belgium
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Arto Mannermaa
- Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Sara Margolin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Elena Provenzano
- Department of Oncology, University of Cambridge, Addenbrookes Hospital, Cambridge, UK
- Department of Histopathology, Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Cambridge Experimental Cancer Medicine Centre and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Melissa C. Southey
- Department of Pathology, The University of Melbourne, Melbourne, Australia
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Michael Lush
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Manjeet K. Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Alison M. Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Paul D.P . Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Carl Blomqvist
- Department of Oncology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Oncology, University of Örebro, Örebro, Sweden
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| |
Collapse
|
26
|
Song Q, Song J, Wang Q, Ma Y, Sun N, Ma J, Chen Q, Xia G, Huo Y, Yang L, Li B. miR-548d-3p/TP53BP2 axis regulates the proliferation and apoptosis of breast cancer cells. Cancer Med 2015; 5:315-24. [PMID: 26663100 PMCID: PMC4735782 DOI: 10.1002/cam4.567] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 09/16/2015] [Accepted: 09/23/2015] [Indexed: 02/06/2023] Open
Abstract
Fast growth and hardly any apoptosis are important characteristics of breast cancer, which assure the spread via invasion and metastasis of breast cancer cells. Inhibition of fast proliferation and induction of apoptosis are critical way to cure this cancer. microRNAs (miRNAs) had been increasingly reported to be the critical regulator of tumorigenesis. In our study, we found that increasing copy number of miR-548d-2-3p is critically involved poor prognosis. We overexpressed miR-548d-3p in MDA-MB-231cells and found that the proliferation was promoted significantly, whereas the inhibition of miR-548d-3p repressed the proliferation of MDA-MB-231 cells and also induced the increase in apoptosis. Additionally, we found that miR-548d-3p downregulated the expression of TP53BP2 by directly targeting the 3'UTR. We also found that knockdown of TP53BP2 significantly resorted the proliferation and apoptosis regulated by miR-548d-3p inhibitor. Our study showed that miR-548d-3p/TP53BP2 pathway is critically involved in the proliferation and apoptosis of breast cancer cells and may be new therapeutic target of breast cancer cells.
Collapse
Affiliation(s)
- Qiong Song
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 195 Tongbai Road, Zhengzhou, Henan, 450007, China
| | - Jiangqiang Song
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 195 Tongbai Road, Zhengzhou, Henan, 450007, China
| | - Qimin Wang
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 195 Tongbai Road, Zhengzhou, Henan, 450007, China
| | - Yanling Ma
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 195 Tongbai Road, Zhengzhou, Henan, 450007, China
| | - Nai Sun
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 195 Tongbai Road, Zhengzhou, Henan, 450007, China
| | - Jieyu Ma
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 195 Tongbai Road, Zhengzhou, Henan, 450007, China
| | - Qiu Chen
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 195 Tongbai Road, Zhengzhou, Henan, 450007, China
| | - Guishan Xia
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 195 Tongbai Road, Zhengzhou, Henan, 450007, China
| | - Yanping Huo
- Department of Galactophore, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 195 Tongbai Road, Zhengzhou, Henan, 450007, China
| | - Longqiu Yang
- Department of Anesthesiology, Huangshi Central Hospita, Affiliated Hospital of Hubei Polytechnic University, Huangshi, 435000, China
| | - Baolin Li
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 195 Tongbai Road, Zhengzhou, Henan, 450007, China
| |
Collapse
|