1
|
Nepote A, Poletto S, Bertaglia V, Carnio S, Piumatti C, Lanzetta C, Cantale O, Saba G, Bironzo P, Novello S, Tralongo AC. Role of osimertinib plus brain radiotherapy versus osimertinib single therapy in EGFR-mutated non-small-cell lung cancer with brain metastases: A meta-analysis and systematic review. Crit Rev Oncol Hematol 2025; 205:104540. [PMID: 39486561 DOI: 10.1016/j.critrevonc.2024.104540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024] Open
Abstract
Single-agent osimertinib has improved outcomes in EGFR-mutated lung cancer patients with brain metastases (BMs), but still, 40 % of them will experience an intracranial progression. We performed a systematic review to evaluate the role of brain radiotherapy upfront plus osimertinib. We evaluated articles comparing the use of osimertinib versus osimertinib plus brain radiotherapy. We included 897 patients from nine retrospective studies. Patients treated with combination therapy had an improvement in intracranial progression-free survival (HR 0.76; 95 % CI 0.61-0.94) and overall survival (HR 0.56; 95 % CI 0.36-0.87) with an acceptable safety profile. Osimertinib with upfront brain radiotherapy may be a suitable first-line treatment option for EGFR mutated patients with BMs at diagnosis. The main limitations of this analysis are the retrospective nature and the inability to control for a single variable of interest. Despite that, the combination of osimertinib and upfront brain radiotherapy is a treatment strategy that deserves further prospective trials.
Collapse
Affiliation(s)
- Alessandro Nepote
- Oncology Unit, San Luigi Gonzaga Hospital, Department of Oncology, University of Turin, Regione Gonzole 10, Orbassano 10043, Italy
| | - Stefano Poletto
- Oncology Unit, San Luigi Gonzaga Hospital, Department of Oncology, University of Turin, Regione Gonzole 10, Orbassano 10043, Italy
| | - Valentina Bertaglia
- Oncology Unit, San Luigi Gonzaga Hospital, Department of Oncology, University of Turin, Regione Gonzole 10, Orbassano 10043, Italy.
| | - Simona Carnio
- Oncology Unit, San Luigi Gonzaga Hospital, Department of Oncology, University of Turin, Regione Gonzole 10, Orbassano 10043, Italy
| | - Carlo Piumatti
- Oncology Unit, San Luigi Gonzaga Hospital, Department of Oncology, University of Turin, Regione Gonzole 10, Orbassano 10043, Italy
| | - Cristina Lanzetta
- Oncology Unit, San Luigi Gonzaga Hospital, Department of Oncology, University of Turin, Regione Gonzole 10, Orbassano 10043, Italy
| | - Ornella Cantale
- Oncology Unit, San Luigi Gonzaga Hospital, Department of Oncology, University of Turin, Regione Gonzole 10, Orbassano 10043, Italy
| | - Giorgio Saba
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari 09042, Italy
| | - Paolo Bironzo
- Oncology Unit, San Luigi Gonzaga Hospital, Department of Oncology, University of Turin, Regione Gonzole 10, Orbassano 10043, Italy
| | - Silvia Novello
- Oncology Unit, San Luigi Gonzaga Hospital, Department of Oncology, University of Turin, Regione Gonzole 10, Orbassano 10043, Italy
| | - Antonino Carmelo Tralongo
- Medical Oncology Unit, Umberto I Hospital, Azienda Sanitaria Provinciale (ASP) Siracusa, Siracusa 96100, Italy
| |
Collapse
|
2
|
Tong Y, Wan X, Yin C, Lei T, Gao S, Li Y, Du X. In-depth exploration of the focus issues of TKI combined with radiotherapy for EGFR-mutant lung adenocarcinoma patients with brain metastasis: a systematic analysis based on literature metrology, meta-analysis, and real-world observational data. BMC Cancer 2024; 24:1305. [PMID: 39443874 PMCID: PMC11515526 DOI: 10.1186/s12885-024-13071-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND There is a growing interest in utilizing a combination of brain radiotherapy (RT) and tyrosine kinase inhibitors (TKIs) for patients diagnosed with brain metastases (BM) in epidermal growth factor receptor (EGFR) mutation-positive lung adenocarcinoma (LAC). The current status of this treatment strategy remains a subject of debate. METHODS We initiated our study by conducting a comprehensive literature search using the SCI-expanded database of Web of Science Core Collection (WoSCC). We utilized the VOSPviewer software to analyze various aspects of the research, including the year of publication, authorship, keywords, and country.Subsequently, we performed an extensive and systematic literature search on popular online databases. Our primary outcome measures were overall survival (OS) and intracranial progression-free survival (iPFS), both quantified by hazard ratios (HRs). Additionally, for data verification, we included data from patients in non-small cell lung cancer with brain metastasis who underwent therapeutic intervention at the Cancer Prevention and Treatment Center of Sun Yat-sen University and the Radiotherapy Department of Hanzhong Central Hospital between August 2012 and November 2021. RESULTS The bibliometric analysis revealed an increasing trend in research focused on the combination of RT and TKIs for the management of lung cancer brain metastases over the previous decade. Then, nine studies consistent with the research direction were included for meta-analysis. The meta-analysis showed that the OS (HR = 0.81, 95% confidence interval: 0.69-0.94; P = 0.007) and iPFS (HR = 0.71, 95% confidence interval: 0.61-0.82; P < 0.001) of the combination therapy were significantly prolonged. Finally, 168 EGFR-mutated BM advanced LAC patients in the real world were verified, and the median iPFS of the combination therapy (n = 88 and EGFR-TKIs alone (n = 80) were 16.0 and 9.0 months, respectively, (P < 0.001). The median OS was 29.0 and 27.0 months, respectively, with no dramatic difference (P = 0.188). CONCLUSIONS Research on EGFR-mutant LAC brain metastasis has turned towards exploring optimal treatment strategies for this condition. Our meta-analysis and real-world data analysis consistently demonstrate that combination therapy offers a substantial improvement in patient survival compared to EGFR-TKI monotherapy. Notably, among patients undergoing salvage radiotherapy (RT), our subgroup analysis reveals that those initially treated with third-generation TKIs experience more significant benefits than those treated with first- or second-generation TKIs.
Collapse
Affiliation(s)
- Yalan Tong
- Radiotherapy Department, Hanzhong Central Hospital, Hanzhong, Shanxi, 723000, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Xiaosha Wan
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110000, People's Republic of China
| | - Chang Yin
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110000, People's Republic of China
| | - Ting Lei
- Oncology Department, The Second Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People's Republic of China
| | - Shan Gao
- Radiotherapy Department, Hanzhong Central Hospital, Hanzhong, Shanxi, 723000, People's Republic of China.
| | - Yinghua Li
- Oncology Department, The Second Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People's Republic of China.
| | - Xiaojing Du
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
3
|
Shen M, Lin Q, Zou X, Wu Y, Lin Z, Shao L, Hong J, Chen J. The Effect of Intracranial Control After Intracranial Local Therapy on the Prognosis of Patients with Brain Metastasis of Lung Adenocarcinoma. Cancer Manag Res 2024; 16:977-988. [PMID: 39099763 PMCID: PMC11294678 DOI: 10.2147/cmar.s476837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/20/2024] [Indexed: 08/06/2024] Open
Abstract
Purpose The aim of the present study was to assess the clinical outcomes and prognostic factors of lung adenocarcinoma patients with brain metastases (BMs) after intracranial local therapy. Patients and Methods A total of 83 lung adenocarcinoma patients with BMs who underwent craniotomy combined with radiotherapy or intracranial radiotherapy alone were retrospectively analyzed. The intracranial tumor response was determined according to the Response Assessment in Neuro-Oncology of Brain Metastases (RANO-BM) criteria. The median overall survival (OS), intracranial progression-free survival (iPFS), and related prognostic factors were analyzed with the Kaplan‒Meier estimator method and Cox proportional hazards regression model. Results Among 83 patients, 20 patients received craniotomy combined with radiotherapy, and 63 patients received intracranial radiotherapy alone. Following intracranial local therapy, 11 patients (13.3%) achieved complete response (CR); among them, 8 patients underwent neurosurgical resection. In addition, 32 patients (38.55%) achieved partial response (PR), 32 patients (38.55%) experienced stable disease (SD), and 8 (9.6%) experienced progressive disease (PD). The median follow-up period was 25.4 months (range 0.8-49.6 months). The median follow-up time for the iPFS was 16.2 months (range 0.6-41.2 months). The median OS, iPFS were 28.2 months and 24.7 months. Epidermal growth factor receptor (EGFR) / anaplastic lymphoma kinase (ALK) mutations (HR 3.216, 95% confidence interval (CI) 1.269-8.150, p = 0.014) and iPFS (HR 0.881, 95% CI 0.836-0.929, p < 0.001) were found to be beneficial factors for OS. An intracranial-tumor CR was associated with a longer iPFS (PR: HR 0.052, 95% CI 0.009-0.297, p = 0.001; SD: HR 0.081, 95% CI 0.025-0.259, p < 0.001; PD: HR 0.216, 95% CI 0.077-0.606, p = 0.004). Conclusion Prolonged iPFS was associated with better OS in lung adenocarcinoma patients with BMs following intracranial local therapy, and mutations of EGFR / ALK or an intracranial-tumor CR are independent prognostic factors for prolonged survival.
Collapse
Affiliation(s)
- Minmin Shen
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People’s Republic of China
- Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People’s Republic of China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Qiaojing Lin
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People’s Republic of China
- Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People’s Republic of China
| | - Xi Zou
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People’s Republic of China
- Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People’s Republic of China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Yufan Wu
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People’s Republic of China
- Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People’s Republic of China
| | - Zhihong Lin
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People’s Republic of China
- Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People’s Republic of China
| | - Linglong Shao
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People’s Republic of China
- Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People’s Republic of China
| | - JinSheng Hong
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People’s Republic of China
- Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People’s Republic of China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Jinmei Chen
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People’s Republic of China
- Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People’s Republic of China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| |
Collapse
|
4
|
Wang Y, Wu S, Li J, Liang X, Zhou X. Effect of Different Timing of Local Brain Radiotherapy on Survival of EGFR-Mutated NSCLC Patients with Limited Brain Metastases. Brain Sci 2023; 13:1280. [PMID: 37759881 PMCID: PMC10527103 DOI: 10.3390/brainsci13091280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/04/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have been the first line therapy for EGFR-mutant lung adenocarcinoma (LAC) patients with brain metastases (BMs). However, the role and the optimal time of brain radiotherapy remains controversial. We aimed to investigate the role of upfront brain stereotactic radiotherapy (SRS) and the impact of deferral radiotherapy on patients' clinical outcomes. (2) Methods: We retrospectively studied 53 EGFR-mutant LAC patients with limited synchronous BMs between 2014 and 2020 at our institute. The limited BMs was defined with one to four BM lesions, with a maximal size of ≤4 cm. Patients were categorized into two groups: upfront brain SRS (upfront RT) and upfront TKIs. The intracranial progression-free survival (iPFS), progression-free survival (PFS), and overall survival (OS) between groups were analyzed. (3) Results: The median iPFS (21.0 vs. 12.0 months, p = 0.002) and PFS (20.0 vs. 11.0 months, p = 0.004) of the upfront RT group was longer than that of the upfront TKI group. There were no significant differences in median OS (30.0 vs. 26.0 months, p = 0.552) between the two groups. The upfront RT group is less likely to suffer from intracranial progression of the original sites than that of upfront TKIs during the disease course (36.1% vs. 0.0%, p = 0.025). Multivariate analysis showed that the Karnofsky Performance Scale and the presence of synchronous meningeal metastases were associated with overall survival. (4) Conclusions: Compared with upfront TKI, the combination of upfront SRS with TKIs can improve the iPFS and PFS in EGFR-mutant LAC with synchronous BMs. The addition of upfront brain SRS was useful for the original intracranial metastatic lesions.
Collapse
Affiliation(s)
- Yu Wang
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai 200040, China (X.L.)
| | - Shenghong Wu
- Department of Medical Oncology, Fengxian District Central Hospital, Shanghai 201499, China
| | - Jing Li
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai 200040, China (X.L.)
| | - Xiaohua Liang
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai 200040, China (X.L.)
| | - Xinli Zhou
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai 200040, China (X.L.)
| |
Collapse
|
5
|
Kuan AS, Chiang CL, Wu HM, Yang HC, Chen CJ, Lin CJ, Guo WY, Pan DHC, Chung WY, Lee CC. Improved survival and intracranial tumor control of EGFR-mutated NSCLC patients with newly developed brain metastases following stereotactic radiosurgery and EGFR-TKI: a large retrospective cohort study and meta-analyses. J Neurooncol 2023; 164:729-739. [PMID: 37721662 DOI: 10.1007/s11060-023-04452-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
PURPOSE To examine the differential effects of SRS and TKI on EGFR-mutated NSCLC patients with brain metastases (BMs) and outcomes following continuation of the same TKI agent in case of new BMs. METHODS This study included 608 NSCLC patients (2,274 BMs) while meta-analyses included 1,651 NSCLC patients (> 3,944 BMs). Overall survival (OS) and intracranial progression free survival (iPFS) were estimated using Kaplan-Meier methods. Hazard ratios (95% CI) of prognostic factors were estimated using Cox regression models. RESULTS The median OS/iPFS (95% CI) (months) for patients with wildtype EGFR/ALK, EGFR mutations, and ALK rearrangements were 17.7 (12.9-23.6)/12.1 (9.8-15.6), 28.9 (23.8-33.3)/17.7 (14.8-21.2), and 118.0 (not reached)/71.7 (15.1-not reached), respectively. In EGFR-mutated patients, meta-analyses combining our data showed significantly improved OS and iPFS of patients who received SRS and TKI (OS:35.1 months, iPFS:20.0 months) when compared to those who have SRS alone (OS:20.8 months, iPFS:11.8 months) or TKI alone (OS:24.3 months, iPFS:13.8 months). Having SRS for newly diagnosed BMs while keeping the existing TKI agent yielded OS (30.0 vs. 32.1 months, p = 0.200) non-inferior to patients who started combined SRS and TKI therapy for their newly diagnosed NSCLC with BMs. Multivariable analyses showed that good performance score and TKI therapy were associated with improved outcomes. CONCLUSIONS Combined SRS and TKI resulted in favorable outcomes in EGFR-mutated NSCLC patients with newly diagnosed BMs. Continuation of the same TKI agent plus SRS in case of new brain metastases yielded good clinical outcomes and may be considered a standard-of-care treatment.
Collapse
Affiliation(s)
- Ai Seon Kuan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Public Health, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-Lu Chiang
- Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiu-Mei Wu
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Huai-Che Yang
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Jen Chen
- Department of Neurosurgery, The University of Texas Health Science Center, Houston, TX, USA
| | - Chung-Jung Lin
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wan-Yuo Guo
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - David Hung-Chi Pan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wen-Yuh Chung
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Chia Lee
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
6
|
Arrieta O, Hernández-Pedro N, Maldonado F, Ramos-Ramírez M, Yamamoto-Ramos M, López-Macías D, Lozano F, Zatarain-Barrón ZL, Turcott JG, Barrios-Bernal P, Orozco-Morales M, Flores-Estrada D, Cardona AF, Rolfo C, Cacho-Díaz B. Nitroglycerin Plus Whole Intracranial Radiation Therapy for Brain Metastases in Patients With Non-Small Cell Lung Cancer: A Randomized, Open-Label, Phase 2 Clinical Trial. Int J Radiat Oncol Biol Phys 2023; 115:592-607. [PMID: 35157994 DOI: 10.1016/j.ijrobp.2022.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE Hypoxia has been associated with chemoradioresistance secondary to vascular endothelial growth factor receptor induced by hypoxia-induced factor (HIF). Nitroglycerin (NTG) can reduce HIF-1 in tissues, and this may have antiangiogenic, proapoptotic, and antiefflux effects. Particularly, epidermal growth factor-mutated (EGFRm) tumor cell lines have been shown to overexpress both vascular endothelial growth factor and HIF. In this phase 2 study, we evaluated the effect of transdermal NTG plus whole brain radiation therapy (WBRT) in patients with non-small cell lung cancer (NSCLC) with brain metastases (BM). METHODS This was an open-label, phase 2 clinical trial with 96 patients with NSCLC and BM. Patients were randomized 1:1 to receive NTG plus WBRT (30 Gy in 10 fractions) or WBRT alone. The primary endpoint was intracranial objective response rate (iORR) evaluated 3 months posttreatment. NTG was administered using a transdermal 36-mg patch from Monday through Friday throughout WBRT administration (10 days). The protocol was retrospectively registered at ClinicalTrials.gov (NCT04338867). RESULTS Fifty patients were allocated to the control group, and 46 were allocated to the experimental group (NTG); among these, 26 (52%) had EGFRm in the control group and 21 (45.7%) had EGFRm in the NTG arm. In terms of the iORR, patients in the NTG group had a significantly higher response compared with controls (56.5% [n = 26/46 evaluable patients] vs 32.7% [n = 16/49 evaluable patients]; relative risk, 1.73; 95% confidence interval [CI], 1.08-2.78; P = .024). Additionally, patients who received NTG + WBRT had an independently prolonged intracranial progression-free survival (ICPFS) compared with those who received WBRT alone (27.7 vs 9.6; hazard ratio [HR], 0.5; 95% CI, 0.2-0.9; P = .020); this positively affected overall progression-free survival among patients who received systemic therapy (n = 88; HR, 0.5; 95% CI, 0.2-0.9; P = .043). The benefit of ICPFS (HR, 0.4; 95% CI, 0.2-0.9; P = .030) was significant in the EGFRm patient subgroup. No differences were observed in overall survival. A significantly higher rate of vomiting presented in the NTG arm of the study (P = .016). CONCLUSIONS The concurrent administration of NTG and radiation therapy improves iORR and ICPFS among patients with NSCLC with BM. The benefit in ICPFS is significant in the EGFRm patient subgroup.
Collapse
Affiliation(s)
- Oscar Arrieta
- Thoracic Oncology Unit and Laboratory of Personalized Medicine.
| | - Norma Hernández-Pedro
- Thoracic Oncology Unit and Laboratory of Personalized Medicine; Personalized Medicine Laboratory
| | - Federico Maldonado
- Department of Radio-Oncology, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | | | | | | | - Francisco Lozano
- Department of Radio-Oncology, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | | | - Jenny G Turcott
- Thoracic Oncology Unit and Laboratory of Personalized Medicine
| | | | | | | | - Andrés F Cardona
- Clinical and Translational Oncology Group, Fundación Santa Fe de Bogotá, Bogotá, Colombia; Clinical and Translational Oncology Group, Clínica del Country, Bogotá, Colombia
| | - Christian Rolfo
- Marlene and Stewart Greenbaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | | |
Collapse
|
7
|
Liu Y, Jiang S, Lin Y, Yu H, Yu L, Zhang X. Research landscape and trends of lung cancer radiotherapy: A bibliometric analysis. Front Oncol 2022; 12:1066557. [PMID: 36439443 PMCID: PMC9685815 DOI: 10.3389/fonc.2022.1066557] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/26/2022] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND radiotherapy is one of the major treatments for lung cancer and has been a hot research area for years. This bibliometric analysis aims to present the research trends on lung cancer radiotherapy. METHOD On August 31, 2022, the authors identified 9868 articles on lung cancer radiotherapy by the Web of Science (Science Citation Indexing Expanded database) and extracted their general information and the total number of citations. A bibliometric analysis was carried out to present the research landscape, demonstrate the research trends, and determine the most cited papers (top-papers) as well as top-journals on lung cancer radiotherapy. After that, the authors analyzed the recent research hotspots based on the latest publications in top-journals. RESULTS These 9868 papers were cited a total of 268,068 times. "Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer" published in 2017 by Antonia et al.was the most cited article (2110 citations). Among the journals, New England Journal of Medicine was most influential. Moreover, J. Clin. Oncol. and Int. J. Radiat. Oncol. Biol. Phys. was both influential and productive. Corresponding authors represented the USA (2610 articles) and China mainland (2060 articles) took part in most publications and articles with corresponding authors from Netherlands were most cited (46.12 citations per paper). Chemoradiotherapy was the hottest research area, and stereotactic body radiotherapy has become a research hotspot since 2006. Radiotherapy plus immunotherapy has been highly focused since 2019. CONCLUSIONS This bibliometric analysis comprehensively and quantitatively presents the research trends and hotspots based on 9868 relevant articles, and further suggests future research directions. The researchers can benefit in selecting journals and in finding potential collaborators. This study can help researchers gain a comprehensive picture of the research landscape, historical development, and recent hotspots in lung cancer radiotherapy and can provide inspiration for future research.
Collapse
Affiliation(s)
- Yanhao Liu
- Department of Radiation Oncology, The Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China
| | | | | | | | | | - Xiaotao Zhang
- Department of Radiation Oncology, The Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Marampon F, Gelibter AJ, Cicco PR, Parisi M, Serpone M, De Felice F, Bulzonetti N, Musio D, Cortesi E, Tombolini V. Safety and efficacy of combining afatinib and whole-brain radiation therapy in treating brain metastases from EGFR-mutated NSCLC: a case report and literature review. BJR Case Rep 2022; 8:20200134. [PMID: 36211614 PMCID: PMC9518736 DOI: 10.1259/bjrcr.20200134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 04/11/2022] [Accepted: 05/24/2022] [Indexed: 11/29/2022] Open
Abstract
Combining EGFR-tyrosine kinase inhibitors (TKIs) to whole brain radiation therapy (WBRT) has been shown to be more effective than EGFR-TKIs or WBRT alone in treating brain metastases (BMs) from EGFR-mutated Non Small-Cell Lung Cancer (NSCLC). However, despite the combination results well tolerated, EGFR-TKIs are often discontinued before WBRT, to reduce the risk of possible side effects, potentially resulting in reduced treatment efficacy and possible progression of intra- and extra-cranial disease. Afatinib, an irreversible inhibitor of EGFR-TK, has been shown to radiosensitize NSCLC in pre-clinical models and, compared to the other EGFR-TKIs, more efficiently penetrates the blood-brain barrier. However, nowadays, only two case reports describe the therapeutic efficiency and safety of combining afatinib with WBRT. Herein, we report on a 58-year-old woman patient with symptomatic BMs from NSLCL, treated with afatinib and concomitant WBRT, 30 Gy in 10 fractions. Treatment induced a remarkable and persistent radiological regression of BMs and the disappearance of neurological symptoms. However, the patient experienced severe skin toxicity of G3, corresponding to the irradiation area. Toxicity was successfully treated pharmacologically, and the patient did not experience any BMs-related symptoms for the next 10 months. She died of COVID-19-related respiratory failure. The association of afatinib with WBRT appears to be a successful strategy in the control of BMs from EGFR-mutated NSCLC. However, it should be considered that the combination could be responsible for serious dermatological toxicity.
Collapse
Affiliation(s)
- Francesco Marampon
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza, University of Rome, Rome, Italy
| | - Alain J Gelibter
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza, University of Rome, Rome, Italy
| | - Pier Rodolfo Cicco
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza, University of Rome, Rome, Italy
| | - Martina Parisi
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza, University of Rome, Rome, Italy
| | - Maria Serpone
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza, University of Rome, Rome, Italy
| | - Francesca De Felice
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza, University of Rome, Rome, Italy
| | - Nadia Bulzonetti
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza, University of Rome, Rome, Italy
| | - Daniela Musio
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza, University of Rome, Rome, Italy
| | - Enrico Cortesi
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza, University of Rome, Rome, Italy
| | - Vincenzo Tombolini
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza, University of Rome, Rome, Italy
| |
Collapse
|
9
|
Jiang A, Ni M, Li L, Zhao F, Yao Y, Ding X, Yu Q, Zhang L, Yuan S. Upfront brain radiotherapy improves intracranial progression-free survival but not overall survival in lung adenocarcinoma patients with brain metastases: a retrospective, single-institutional analysis from China. J Cancer 2022; 13:602-609. [PMID: 35069906 PMCID: PMC8771513 DOI: 10.7150/jca.64335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/02/2021] [Indexed: 11/05/2022] Open
Abstract
Aims: The optimal timing of brain radiotherapy (BRT) for lung adenocarcinoma patients with brain metastases (BM) remains controversial. In this retrospective study, we performed a retrospective review to investigate the differential benefit of upfront versus deferred BRT for lung adenocarcinoma patients with BM. Methods: A total of 354 lung adenocarcinoma patients with BM treated in the Affiliated Cancer Hospital of Shandong University met the inclusion criteria for the study. Patients were divided into two groups: upfront BRT and deferred BRT. Intracranial progression-free survival (PFS) and overall survival (OS) were measured from the date of brain metastases. Subgroup analyses according to gene mutation status were also performed. Results: Among the entire cohort, the median intracranial PFS with upfront BRT (16.3 months) was longer than that with deferred BRT (11.3 months, p=0.001). However, the median OS did not differ significantly between patients who received upfront BRT and deferred BRT (27.6 and 31.5 months, respectively, p=0.813). Subgroup analyses indicated that upfront BRT yielded a significantly longer intracranial PFS than deferred BRT (p=0.003) for patients without EGFR (19 or 21) mutation. In both subgroups, the median OS showed no significant difference between upfront BRT and deferred BRT. Conclusion: This single-institutional retrospective study showed that in lung adenocarcinoma patients with brain metastases, upfront BRT was associated with a significantly longer intracranial PFS but not improvement in OS compared with deferred BRT. Considering the neurocognitive toxicities of BRT previously reported in the literature, deferred BRT might be considered as an acceptable therapeutic option for the treatment of patients with lung adenocarcinoma and BM.
Collapse
Affiliation(s)
- Aijun Jiang
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jinan, 250117, Shandong, China
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Meng Ni
- Department of Radiation Oncology, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China
| | - Li Li
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jinan, 250117, Shandong, China
| | - Fen Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jinan, 250117, Shandong, China
| | - Yuanhu Yao
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Xin Ding
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Qingxi Yu
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jinan, 250117, Shandong, China
| | - Longzhen Zhang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Shuanghu Yuan
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jinan, 250117, Shandong, China
| |
Collapse
|
10
|
McKay MJ. Brain metastases: increasingly precision medicine-a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1629. [PMID: 34926673 PMCID: PMC8640905 DOI: 10.21037/atm-21-3665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022]
Abstract
Objective To broadly review the modern management of brain metastases. Background Brain metastases are the commonest neurological manifestation of cancer and a major cause of morbidity in cancer patients. Brain metastases are increasing in frequency, as a result of longer life expectancy of cancer patients, more sensitive methods for brain metastasis detection and an ageing population. The proportional incidence of brain metastases according to cancer of origin, from greatest to least, is lung cancer, melanoma, renal, breast and colorectal cancers. Patients with lung cancer and melanoma are most likely to have brain metastases at diagnosis. Brain metastases cause a variety of symptoms, depending on their size and location, whether they cause mass effect and oedema, compression of the brain parenchyma, or focal neurological deficits. The major differential diagnoses of brain metastases include primary tumours and vascular/inflammatory lesions. Prognosis is dependent on the site, number and volume of lesions, the patients’ performance status, age and the activity and extent of extracranial disease. Methods English literature articles in PubMed from 1950 to June 2021 were reviewed. Article bibliographies provided further references. Conclusions Treatment of brain metastasis patients has moved from considering them as a homogenous population of patients, to individualised treatment. In those brain metastases patients of satisfactory performance status with a solitary lesion, especially one in a non-eloquent/accessible area causing significant mass effect and/or raised intracranial pressure or for whom the diagnosis is in doubt (histology needed), surgical resection is usually the treatment of choice. For multiple brain metastases, radiotherapy with or without systemic therapies are usually employed. For relatively fit patients with limited numbers of brain metastases (e.g., 4 or less), stereotactic radiosurgery is standard of care. Current clinical trials are testing the efficacy of stereotactic treatment alone for >4 brain metastases (although it is increasingly used for such patients in many centres) as well as integration of local therapies with targeted and immunological therapies in appropriately selected cases. In certain circumstances, cranial irradiation can be omitted.
Collapse
Affiliation(s)
- Michael Jerome McKay
- Northern Cancer Service, North West Cancer Centre, Burnie, Tasmania, Australia.,The University of Tasmania, Rural Clinical School, Northwest Regional Hospital, Burnie, Tasmania, Australia
| |
Collapse
|
11
|
Taslimi S, Brar K, Ellenbogen Y, Deng J, Hou W, Moraes FY, Glantz M, Zacharia BE, Tan A, Ahluwalia MS, Khasraw M, Zadeh G, Mansouri A. Comparative Efficacy of Systemic Agents for Brain Metastases From Non-Small-Cell Lung Cancer With an EGFR Mutation/ALK Rearrangement: A Systematic Review and Network Meta-Analysis. Front Oncol 2021; 11:739765. [PMID: 34950579 PMCID: PMC8691653 DOI: 10.3389/fonc.2021.739765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Brain metastases (BM) from non-small-cell lung cancer (NSCLC) are frequent and carry significant morbidity, and current management options include varying local and systemic therapies. Here, we performed a systematic review and network meta-analysis to determine the ideal treatment regimen for NSCLC BMs with targetable EGFR-mutations/ALK-rearrangements. METHODS We searched MEDLINE, EMBASE, Web of Science, ClinicalTrials.gov, CENTRAL and references of key studies for randomized controlled trials (RCTs) published from inception until June 2020. Comparative RCTs including ≥10 patients were selected. We used a frequentist random-effects model for network meta-analysis (NMA) and assessed the certainty of evidence using the GRADE approach. Our primary outcome of interest was intracranial progression-free survival (iPFS). RESULTS We included 24 studies representing 19 trials with 1623 total patients. Targeted tyrosine kinase inhibitors (TKIs) significantly improved iPFS, with second-and third- generation TKIs showing the greatest benefit (HR=0.25, 95%CI 0.15-0.40). Overall PFS was also improved compared to conventional chemotherapy (HR=0.47, 95%CI 0.36-0.61). In EGFR-mutant patients, osimertinib showed the greatest benefit in iPFS (HR=0.32, 95%CI 0.15-0.69) compared to conventional chemotherapy, while gefitinib + chemotherapy showed the greatest overall PFS benefit (HR=0.26, 95%CI 0.10-0.70). All ALKi improved overall PFS compared to conventional chemotherapy, with alectinib having the greatest benefit (HR=0.13, 95%CI 0.07-0.24). CONCLUSIONS In patients with NSCLC BMs and EGFR/ALK mutations, targeted TKIs improve intracranial and overall PFS compared to conventional modalities such as chemotherapy, with greater efficacy seen using newer generations of TKIs. This data is important for treatment selection and patient counseling, and highlights areas for future RCT research. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=179060.
Collapse
Affiliation(s)
- Shervin Taslimi
- Division of Neurosurgery, Department of Surgery, Queen’s University, Kingston, ON, Canada
| | - Karanbir Brar
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Yosef Ellenbogen
- Division of Neurosurgery, Department of Surgery, Queen’s University, Kingston, ON, Canada
| | - Jiawen Deng
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Winston Hou
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Fabio Y. Moraes
- Department of Oncology, Queen’s University, Kingston, ON, Canada
| | - Michael Glantz
- Department of Neurosurgery, Penn State Health, Hershey, PA, United States
- Penn State Cancer Institute, Hershey, PA, United States
| | - Brad E. Zacharia
- Department of Neurosurgery, Penn State Health, Hershey, PA, United States
- Penn State Cancer Institute, Hershey, PA, United States
| | - Aaron Tan
- Division of Medical Oncology, National Cancer Center Singapore, Singapore, Singapore
| | - Manmeet S. Ahluwalia
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Hematology/Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Mustafa Khasraw
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, United States
| | - Gelareh Zadeh
- Division of Neurosurgery, Department of Surgery, Queen’s University, Kingston, ON, Canada
| | - Alireza Mansouri
- Department of Neurosurgery, Penn State Health, Hershey, PA, United States
- Penn State Cancer Institute, Hershey, PA, United States
| |
Collapse
|
12
|
Chien YN, Lin YC, Chang CL, Lin WC, Wu SY. Thoracic surgery improved overall survival in patients with stage IIIB-IV epidermal growth factor receptor-mutant lung adenocarcinoma who received and responded to tyrosine kinase inhibitor treatment. Lung Cancer 2021; 162:29-35. [PMID: 34662782 DOI: 10.1016/j.lungcan.2021.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/20/2021] [Accepted: 10/07/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE No large-scale, prospective, randomized study has evaluated the effect of thoracic surgery on patients with unresectable stage IIIB-IV epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma who received and responded to EGFR tyrosine kinase inhibitor (TKI) treatment. Therefore, we designed a propensity-score-matched, nationwide, population-based, cohort study to investigate the effects of thoracic surgery on patients with EGFR-mutant lung adenocarcinoma. PATIENTS AND METHODS We included patients with unresectable stage IIIB-IV EGFR-mutant lung adenocarcinoma and categorized them into two groups according to their treatment modalities and compared their outcomes: the case group consisted of patients who underwent thoracic surgery for lung tumors after receiving and responding to EGFR-TKI treatment and the comparison group consisted of patients who received EGFR-TKI treatment alone until tumor progression. Patients in both groups were matched at a ratio of 1:4. RESULTS The matching process yielded a final cohort of 1395 patients (279 and 1,116 in the case and comparison groups, respectively) who were eligible for further analysis. According to multivariable Cox regression analyses, the adjusted hazard ratio (aHR; 95% confidence interval [CI]) for thoracic surgery for lung tumors after EGFR-TKI use and tumor response (group 2) compared with EGFR-TKI treatment alone (group 1) was 0.445 (0.351-0.564). CONCLUSIONS Thoracic surgery prolonged overall survival in patients with unresectable stage IIIB-IV EGFR-mutant lung adenocarcinoma who received and responded to EGFR-TKI treatment.
Collapse
Affiliation(s)
- Yu-Ning Chien
- Master Program of Big Data Analysis in Biomedicine, College of Medicine, Fu Jen Catholic University, Taipei, Taiwan
| | - Yi-Chun Lin
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Chia-Lun Chang
- Department of Hemato-Oncology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chun Lin
- Division of Chest Medicine, Department of Internal Medicine, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan.
| | - Szu-Yuan Wu
- Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Big Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan; Division of Radiation Oncology, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan; Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan; Cancer Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan; Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan; Centers for Regional Anesthesia and Pain Medicine, Taipei Municipal Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
13
|
Hulsbergen AFC, Abunimer AM, Ida F, Kavouridis VK, Cho LD, Tewarie IA, Mekary RA, Schucht P, Phillips JG, Verhoeff JJC, Broekman MLD, Smith TR. Neurosurgical resection for locally recurrent brain metastasis. Neuro Oncol 2021; 23:2085-2094. [PMID: 34270740 DOI: 10.1093/neuonc/noab173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND In patients with locally recurrent brain metastases (LRBMs), the role of (repeat) craniotomy is controversial. This study aimed to analyze long-term oncological outcomes in this heterogeneous population. METHODS Craniotomies for LRBM were identified from a tertiary neuro-oncological institution. First, we assessed overall survival (OS) and intracranial control (ICC) stratified by molecular profile, prognostic indices, and multimodality treatment. Second, we compared LRBMs to propensity score-matched patients who underwent craniotomy for newly diagnosed brain metastases (NDBM). RESULTS Across 180 patients, median survival after LRBM resection was 13.8 months and varied by molecular profile, with >24 months survival in ALK/EGFR+ lung adenocarcinoma and HER2+ breast cancer. Furthermore, 102 patients (56.7%) experienced intracranial recurrence; median time to recurrence was 5.6 months. Compared to NDBMs (n = 898), LRBM patients were younger, more likely to harbor a targetable mutation and less likely to receive adjuvant radiation (p < 0.05). After 1:3 propensity matching stratified by molecular profile, LRBM patients generally experienced shorter OS (hazard ratio 1.67 and 1.36 for patients with or without a mutation, p < 0.05) but similar ICC (hazard ratio 1.11 in both groups, p > 0.20) compared to NDBM patients with similar baseline. Results across specific molecular subgroups suggested comparable effect directions of varying sizes. CONCLUSIONS In our data, patients with LRBMs undergoing craniotomy comprised a subgroup of brain metastasis patients with relatively favorable clinical characteristics and good survival outcomes. Recurrent status predicted shorter OS but did not impact ICC. Craniotomy could be considered in selected, prognostically favorable patients.
Collapse
Affiliation(s)
- Alexander F C Hulsbergen
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States.,Departments of Neurosurgery, Haaglanden Medical Center and Leiden University Medical Center, Leiden University, The Hague/Leiden, Zuid-Holland, The Netherlands
| | - Abdullah M Abunimer
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Fidelia Ida
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States.,Department of Pharmaceutical Business and Administrative Sciences, School of Pharmacy, MCPHS University, Boston, Massachusetts, United States
| | - Vasileios K Kavouridis
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States.,Department of Neurosurgery, St. Olavs Hospital, Trondheim, Norway
| | - Logan D Cho
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States.,Icahn School of Medicine at Mount Sinai, New York City, New York, United States
| | - Ishaan A Tewarie
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States.,Departments of Neurosurgery, Haaglanden Medical Center and Leiden University Medical Center, Leiden University, The Hague/Leiden, Zuid-Holland, The Netherlands
| | - Rania A Mekary
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States.,Department of Pharmaceutical Business and Administrative Sciences, School of Pharmacy, MCPHS University, Boston, Massachusetts, United States
| | - Philippe Schucht
- Department of Neurosurgery, University Hospital Bern, Kanton Bern, Switzerland
| | - John G Phillips
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States.,Department of Radiation Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Joost J C Verhoeff
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, Utrecht, The Netherlands
| | - Marike L D Broekman
- Departments of Neurosurgery, Haaglanden Medical Center and Leiden University Medical Center, Leiden University, The Hague/Leiden, Zuid-Holland, The Netherlands.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Timothy R Smith
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
14
|
Lee EJ, Choi KS, Park ES, Cho YH. Single- and hypofractionated stereotactic radiosurgery for large (> 2 cm) brain metastases: a systematic review. J Neurooncol 2021; 154:25-34. [PMID: 34268640 DOI: 10.1007/s11060-021-03805-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/05/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Since frameless stereotactic radiosurgery (SRS) techniques have been recently introduced, hypofractionated SRS (HF-SRS) for large brain metastases (BMs) is gradually increasing. To verify the efficacy and safety of HF-SRS for large BMs, we aimed to perform a systematic review and compared them with SF-SRS. METHODS We systematically searched the studies regarding SF-SRS or HF-SRS for large (> 2 cm) BM from databases including PubMed, Embase, and the Cochrane Library on July 31, 2018. Biologically effective dose with the α/β ratio of 10 (BED10), 1-year local control (LC), and radiation necrosis (RN) were compared between the two groups, with the studies being weighted by the sample size. RESULTS The 15 studies with 1049 BMs that described 1-year LC and RN were included. HF-SRS tended to be performed in larger tumors; however, higher mean BED10 (50.1 Gy10 versus 40.4 Gy10, p < 0.0001) was delivered in the HF-SRS group, which led to significantly improved 1-year LC (81.6 versus 69.0%, p < 0.0001) and 1-year overall survival (55.1 versus 47.2%, p < 0.0001) in the HF-SRS group compared to the SF-SRS group. In contrast, the incidence of radiation toxicity was significantly decreased in the HF-SRS group compared to the SF-SRS group (8.0 versus 15.6%, p < 0.0001). CONCLUSION HF-SRS results in better LC of large BMs while simultaneously reducing RN compared to SF-SRS. Thus, HF-SRS should be considered a priority for SF-SRS in patients with large BMs who are not suitable to undergo surgical resection.
Collapse
Affiliation(s)
- Eun Jung Lee
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Kyu-Sun Choi
- Department of Neurosurgery, College of Medicine, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Eun Suk Park
- Department of Neurosurgery, Ulsan University Hospital, University of Ulsan College of Medicine, 877, Bangeojinsunhwando-ro, Dong-gu, Ulsan, 44033, Republic of Korea
| | - Young Hyun Cho
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympicro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
15
|
Elsayed M, Christopoulos P. Therapeutic Sequencing in ALK + NSCLC. Pharmaceuticals (Basel) 2021; 14:ph14020080. [PMID: 33494549 PMCID: PMC7912146 DOI: 10.3390/ph14020080] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/17/2022] Open
Abstract
Anaplastic lymphoma kinase-rearranged non-small-cell lung cancer (ALK+ NSCLC) is a model disease for the use of targeted pharmaceuticals in thoracic oncology. Due to higher systemic and intracranial efficacy, the second-generation ALK tyrosine kinase inhibitors (TKI) alectinib and brigatinib have irrevocably displaced crizotinib as standard first-line treatment, based on the results of the ALEX and ALTA-1L trials. Besides, lorlatinib and brigatinib are the preferred second-line therapies for progression under second-generation TKI and crizotinib, respectively, based on the results of several phase II studies. Tissue or liquid rebiopsies at the time of disease progression, even though not mandated by the approval status of any ALK inhibitor, are gaining importance for individualization and optimization of patient management. Of particular interest are cases with off-target resistance, for example MET, HER2 or KRAS alterations, which require special therapeutic maneuvers, e.g., inclusion in early clinical trials or off-label administration of respectively targeted drugs. On the other hand, up to approximately half of the patients failing TKI, develop anatomically restricted progression, which can be initially tackled with local ablative measures without switch of systemic therapy. Among the overall biologically favorable ALK+ tumors, with a mean tumor mutational burden uniquely below 3 mutations per Mb and the longest survival among NSCLC currently, presence of the EML4-ALK fusion variant 3 and/or TP53 mutations identify high-risk cases with earlier treatment failure and a need for more aggressive surveillance and treatment strategies. The potential clinical utility of longitudinal ctDNA assays for earlier detection of disease progression and improved guidance of therapy in these patients is a currently a matter of intense investigation. Major pharmaceutical challenges for the field are the development of more potent, fourth-generation TKI and effective immuno-oncological interventions, especially ALK-directed cell therapies, which will be essential for further improving survival and achieving cure of ALK+ tumors.
Collapse
Affiliation(s)
- Mei Elsayed
- Department of Thoracic Oncology, Thoraxklinik and National Center for Tumor Diseases (NCT) at Heidelberg University Hospital, 69126 Heidelberg, Germany;
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik and National Center for Tumor Diseases (NCT) at Heidelberg University Hospital, 69126 Heidelberg, Germany;
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), 69126 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-396-1371
| |
Collapse
|
16
|
Liu L, Chen W, Zhang R, Wang Y, Liu P, Lian X, Zhang F, Wang Y, Ma W. Radiotherapy in combination with systemic therapies for brain metastases: current status and progress. Cancer Biol Med 2020; 17:910-922. [PMID: 33299643 PMCID: PMC7721093 DOI: 10.20892/j.issn.2095-3941.2020.0109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/09/2020] [Indexed: 12/25/2022] Open
Abstract
Brain metastases (BMs) are the most common cause of intracranial neoplasms in adults with poor prognosis. Most BMs originate from lung cancer, breast cancer, or melanoma. Radiotherapy (RT), including whole brain radiotherapy (WBRT) and stereotactic radiation surgery (SRS), has been widely explored and is considered a mainstay anticancer treatment for BMs. Over the past decade, the advent of novel systemic therapies has revolutionized the treatment of BMs. In this context, there is a strong rationale for using a combination of treatments based on RT, with the aim of achieving both local disease control and extracranial disease control. This review focuses on describing the latest progress in RT as well as the synergistic effects of the optimal combinations of RT and systemic treatment modalities for BMs, to provide perspectives on current treatments.
Collapse
Affiliation(s)
- Lei Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wanqi Chen
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Ruopeng Zhang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuekun Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Penghao Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xin Lian
- Department of Radiotherapy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Fuquan Zhang
- Department of Radiotherapy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
17
|
Chen XR, Hou X, Dinglin XX, Liu YD, Li Y, Zheng W, Li DL, Chen J, Wu XL, Wang KC, Ma SX, Zeng YD, Chen LK. Treatment Patterns and Survival Outcomes of Non-Small Cell Lung Cancer Patients Initially Diagnosed With Brain Metastases in Real-World Clinical Practice. Front Oncol 2020; 10:581729. [PMID: 33163410 PMCID: PMC7581726 DOI: 10.3389/fonc.2020.581729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022] Open
Abstract
Background This study aimed to comprehensively analyze the characteristics, treatment patterns, and survival outcomes of non-small-cell lung cancer (NSCLC) patients initially diagnosed with brain metastases (BMs) in real-world practice. Methods We enrolled NSCLC patients initially diagnosed with BMs between Jan 2004 and Jan 2018 in our institution. Patient demographics, treatment modalities, and survival outcomes were then analyzed. Brain localized treatment (BLT) included early brain radiotherapy (EBR), deferred brain radiotherapy (DBR), and surgery. Results A total of 954 patients were identified. Concerning initial treatment, 525 patients (55.0%) received systemic medication (SM)+BLT, 400 patients (41.9%) received SM only, and 29 patients received BLT only (3.0%). SM+BLT cohort was associated with longer median overall survival (mOS) than the SM only and the BLT only cohorts both in epidermal growth factor receptor (EGFR)/anaplastic lymphoma kinase (ALK)-negative/unknown patients (15.3 months, 95% confidence interval [CI], 14.2–16.4; 11.1 months, 9.0–13.2; 7.0 months, 5.4–8.6; p<0.001) and in EGFR/ALK-positive patients (33.7 months, 28.5–38.9; 22.1 months, 17.8–26.4; 4.0 months, 3.6–4.4; p < 0.001). As for timing of radiotherapy, SM+EBR (14.1 months, 12.7–15.5) was associated with inferior mOS than SM+DBR (19.4 months, 14.2–24.6) in EGFR/ALK-negative/unknown patients. No significant difference was found in EGFR/ALK-positive patients (28.3 months, 19.1–37.5; 33.3 months, 28.1–38.5). Patients in the EGFR/ALK-negative/unknown cohort treated with first-line pemetrexed with platinum (PP) (15.8 months, 14.0–17.6, p<0.001) had longer mOS than those received non-PP regimens (13.1 months, 11.6–14.6). However, no difference was observed among EGFR/ALK-positive patients who were treated with tyrosine kinase inhibitors (TKIs) (29.5 months, 21.1–37.9; p = 0.140), PP (27.2 months, 21.6–32.8) and non-PP regimens (25.0 months, 16.0–34.0). Conclusions Our study confirmed that the use of SM+BLT is associated with superior mOS than those treated with SM only and BLT only. SM+DBR might be a better radiotherapeutic strategy for this patient population. EGFR/ALK-negative/unknown patients showed a survival benefit with PP treatment.
Collapse
Affiliation(s)
- Xin-Ru Chen
- State Key Laboratory of Oncology in South, China Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xue Hou
- State Key Laboratory of Oncology in South, China Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xiao-Xiao Dinglin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yong-Dong Liu
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yin Li
- Department of Endoscopy, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wei Zheng
- Department of Endoscopy, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - De-Lan Li
- Department of Chemotherapy, Zhongshan City People's Hospital, Zhongshan, China
| | - Jing Chen
- State Key Laboratory of Oncology in South, China Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xiao-Liang Wu
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Kai-Cheng Wang
- State Key Laboratory of Oncology in South, China Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shu-Xiang Ma
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yin-Duo Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li-Kun Chen
- State Key Laboratory of Oncology in South, China Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
18
|
Khan M, Arooj S, Li R, Tian Y, Zhang J, Lin J, Liang Y, Xu A, Zheng R, Liu M, Yuan Y. Tumor Primary Site and Histology Subtypes Role in Radiotherapeutic Management of Brain Metastases. Front Oncol 2020; 10:781. [PMID: 32733787 PMCID: PMC7358601 DOI: 10.3389/fonc.2020.00781] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Randomized controlled trials have failed to report any survival advantage for WBRT combined with SRS in the management of brain metastases, despite the enhanced local and distant control in comparison to each treatment alone. Literature review have revealed important role of primary histology of the tumor when dealing with brain metastases. NSCLC responds better to combined approach even when there was only single brain metastasis present while breast cancer has registered better survival with SRS alone probably due to better response of primary tumor to advancement in surgical and chemotherapeutic agents. Furthermore, mutation status (EGFR/ALK) in lung cancer and receptor status (ER/PR/HER2) in breast cancer also exhibit diversity in their response to radiotherapy. Radioresistant tumors like renal cell carcinoma and melanoma brain metastases have achieved better results when treated with SRS alone. Secondly, single brain metastasis may benefit from local and distant brain control achieved with combined treatment. These diverse outcomes suggest a primary histology-based analysis of the radiotherapy regimens (WBRT, SRS, or their combination) would more ideally establish the role of radiotherapy in the management of brain metastases. Molecularly targeted therapeutic and immunotherapeutic agents have revealed synergism with radiation therapy particularly SRS in treating cancer patients with brain metastases. Clinical updates in this regard have also been reviewed.
Collapse
Affiliation(s)
- Muhammad Khan
- Department of Radiation Oncology, State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.,Department of Oncology, First affiliated Hospital of Anhui Medical University, Hefei, China
| | - Sumbal Arooj
- Department of Radiation Oncology, State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.,Department of Oncology, First affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Biochemistry, University of Sialkot, Sialkot, Pakistan
| | - Rong Li
- Department of Radiation Oncology, State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yunhong Tian
- Department of Radiation Oncology, State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Radiation Oncology, State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jie Lin
- Department of Radiation Oncology, State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yingying Liang
- Department of Radiation Oncology, State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Anan Xu
- Department of Radiation Oncology, State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ronghui Zheng
- Department of Radiation Oncology, State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Mengzhong Liu
- Department of Radiation Oncology, State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yawei Yuan
- Department of Radiation Oncology, State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
19
|
Furuhata H, Araki K, Ogawa T. Causation between Pathway Completion and Reduced Hospital Stay in Patients with Lung Cancer: a Retrospective Cohort Study Using Propensity Score Matching. J Med Syst 2020; 44:105. [PMID: 32318867 PMCID: PMC7174433 DOI: 10.1007/s10916-020-01570-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/31/2020] [Indexed: 12/19/2022]
Abstract
We have previously demonstrated that clinical pathway completion helps reduce hospital stays. However, our previous results showed only a correlation, not causation. Therefore, the current study’s aim was to analyze the causation between clinical pathway completion and reduced hospital stays for patients with lung cancer. Data were collected from April 2013 to March 2018 from the electronic medical records of the University of Miyazaki Hospital. We used propensity score matching to extract records from 227 patients. Patients were further divided into a pathway completed group and a pathway not completed group; 74 patients in each group were available for data analysis. Our main analysis involved estimating the discharge curve, which was comprised of the in-hospital rate and hospital stay. Additional analyzes were performed to compare the frequency of medical treatments registered in the clinical pathway but not implemented (termed deviated medical treatments). The occurrence of these treatments meant that the clinical pathway was not completed. The main results indicated a decrease in the in-hospital rate of the completion group, compared with the not completed group. The p value of the log-rank test was <0.001 for total patients and patients who underwent resection, and 0.017 for patients who did not undergo resection. Additional results indicated that a number of intravenous drips were not implemented, despite their registration on clinical pathways. Our results indicate that clinical pathway completion contributes to improved efficiency and safety. This simplified procedure is expected to be applicable to other diseases and clinical indicators.
Collapse
Affiliation(s)
- Hiroki Furuhata
- Department of Hospital Institutional Research, University of Miyazaki Hospital, 5200 Kibara Kiyotake-cho, Miyazaki, 8891692, Japan.
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 5200 Kibara Kiyotake-cho, Miyazaki, 8891692, Japan.
| | - Kenji Araki
- Department of Hospital Institutional Research, University of Miyazaki Hospital, 5200 Kibara Kiyotake-cho, Miyazaki, 8891692, Japan
| | - Taisuke Ogawa
- Department of Hospital Institutional Research, University of Miyazaki Hospital, 5200 Kibara Kiyotake-cho, Miyazaki, 8891692, Japan
| |
Collapse
|
20
|
Jiang W, Hou L, Wei J, Du Y, Zhao Y, Deng X, Lin X. Hsa-miR-217 Inhibits the Proliferation, Migration, and Invasion in Non-small Cell Lung Cancer Cells Via Targeting SIRT1 and P53/KAI1 Signaling. Balkan Med J 2020; 37:208-214. [PMID: 32267139 PMCID: PMC7285661 DOI: 10.4274/balkanmedj.galenos.2020.2019.9.91] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Brain metastasis is a major cause of cancer death in patients with lung cancer. Sirtuin 1 and hsa-miR-217 have been identified to mediate the development of non-small cell lung cancer. Aims: To investigate the roles of hsa-miR-217, its target sirtuin 1, and the P53/KAI1 axis in the brain metastasis from non-small cell lung cancer. Study Design: Cell culture study. Methods: Human pulmonary adenocarcinoma brain metastasis cell line PC-14/B were incubated and treated with constructed lentiviral plasmids expressing miR-217 and/or sirtuin 1. BEAS-2B cell line was used as a control. The targeted regulation of miR-217 to sirtuin 1was examined using a dual-luciferase reporter assay. Cell proliferation, migration, invasion, and related protein expression were detected to examine the effect of the miR-217/sirtuin 1 expression on metastasis. Results: PC-14/B cells expressed higher sirtuin 1 and lower P53 and KAI1 compared with BEAS-2B control cells (p<0.05). Sirtuin 1 was a direct target of miR-217. MiR-217 expression suppressed PC-14/B cell invasion (p=0.004), migration (p=0.001), and proliferation (p<0.05), whereas sirtuin 1 overexpression reversed all processes. sirtuin 1 expression inhibited P53, KAI1/CD82, matrix metalloproteinase-9, and β-catenin but upregulated E-cadherin protein. MiR-217 overexpression induced reverse changes. Conclusion: Hsa-miR-217 and its target sirtuin 1 acted as metastasis suppressor and promoter gene in non-small cell lung cancer, respectively. The hsa-miR-217/sirtuin 1/P53/KAI1 metastasis regulatory pathway showed novel and crucial roles in brain metastasis from non-small cell lung cancer. This axis might be a potential target for the treatment of brain metastasis of lung cancer.
Collapse
Affiliation(s)
- Wenxia Jiang
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, China,Experimental Centre of Medicine and Life Science, Tongji University, Shanghai, China
| | - Likun Hou
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Juan Wei
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, China
| | - Yifeng Du
- Experimental Centre of Medicine and Life Science, Tongji University, Shanghai, China
| | - Yan Zhao
- Experimental Centre of Medicine and Life Science, Tongji University, Shanghai, China
| | - Xue Deng
- Tongji University School of Medicine, Shanghai, China
| | - Xiangdong Lin
- Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Shetty V, Babu S. Management of CNS metastases in patients with EGFR mutation-positive NSCLC. Indian J Cancer 2020; 56:S31-S37. [PMID: 31793440 DOI: 10.4103/ijc.ijc_455_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Central nervous system (CNS) metastases are a frequent and severe complication associated with epidermal growth factor receptor (EGFR)-mutated non-small cell lung cancer (NSCLC). The first- and second-generation EGFR tyrosine kinase inhibitors (TKIs) have shown considerable efficacy in EGFR-mutated NSCLC. However, their limited potential to cross the blood-brain barrier (BBB) renders them less effective in the management of CNS metastases in NSCLC. Osimertinib, a third-generation irreversible EGFR-TKI with good potential to cross the BBB, has shown significant clinical activity and acceptable safety profile in patients with EGFR-positive NSCLC brain and leptomeningeal metastases. The progression-free survival (PFS) of up to 15.2 months in CNS metastases patients in the FLAURA trial and the CNS objective response rates (ORRs) of 54% and 43% in the AURA/AURA2 and BLOOM trials, respectively, have established the role of osimertinib in patients with NSCLC with CNS metastases. The AURA3 trial also reported a PFS of 8.5 months and overall ORR of 71%. These data have supported osimertinib to be recognized as a "preferred" first-line treatment for EGFR-positive metastatic NSCLC by the National Comprehensive Cancer Network (NCCN). With limited treatment options available, upfront administration of osimertinib in patients with NSCLC irrespective of EGFR T790M and CNS metastases may improve the overall response rate and potentially reduce the adverse effects of radiotherapy. Our review focuses on the management of EGFR-mutated NSCLC CNS metastases in the context of recent NCCN guidelines.
Collapse
Affiliation(s)
- Vijith Shetty
- Department of Medical Oncology, K.S. Hegde Medical Academy, Mangalore, Karnataka, India
| | - Suresh Babu
- Medical Oncologist, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
| |
Collapse
|
22
|
Complete Remission of Multiple Brain Metastases in a Patient with EGFR-Mutated Non-Small-Cell Lung Cancer Treated with First-Line Osimertinib without Radiotherapy. Case Rep Oncol Med 2020; 2020:9076168. [PMID: 32257480 PMCID: PMC7109584 DOI: 10.1155/2020/9076168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 03/07/2020] [Indexed: 11/18/2022] Open
Abstract
Osimertinib has demonstrated efficacy against stable or asymptomatic central nervous system (CNS) metastases of epidermal growth factor receptor (EGFR) mutation-positive non-small-cell lung cancer (NSCLC) in phase 2 and 3 clinical trials that allowed prior CNS radiotherapy. However, the efficacy of osimertinib only or the optimal treatment combination or sequence of radiotherapy has not been investigated. A 74-year-old woman diagnosed with T4N1M1c Stage IVB lung adenocarcinoma with EGFR mutation presented with a left upper lobe mass and multiple bilateral lung metastases. A total of more than 20 asymptomatic multiple brain metastases with a maximum diameter of 12 mm were diagnosed simultaneously. Osimertinib was administered as first-line treatment. Whole brain radiotherapy was deferred because she had no neurological symptoms. After 5 weeks, the multiple brain metastases disappeared completely, together with the response in the lung lesions. This case demonstrated that first-line treatment with osimertinib could even achieve complete remission of multiple brain metastases comprising as many as twenty lesions of EGFR-mutated NSCLC without radiation therapy. Radiation therapy for brain metastases can be deferred or even withheld. A new treatment strategy for EGFR mutated NSCLC with CNS metastases should be investigated using osimertinib, especially regarding optimal combination or sequence of radiotherapy.
Collapse
|
23
|
Lah TT, Novak M, Breznik B. Brain malignancies: Glioblastoma and brain metastases. Semin Cancer Biol 2020; 60:262-273. [DOI: 10.1016/j.semcancer.2019.10.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023]
|
24
|
Xu H, Zhou L, Lu Y, Su X, Cheng P, Li D, Gao H, Li H, Yuan W, Zhang L, Zhang T. Dual Targeting of the Epidermal Growth Factor Receptor Using Combination of Nimotuzumab and Erlotinib in Advanced Non-Small-Cell Lung Cancer with Leptomeningeal Metastases: A Report of Three Cases. Onco Targets Ther 2020; 13:647-656. [PMID: 32021306 PMCID: PMC6982442 DOI: 10.2147/ott.s230399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/16/2019] [Indexed: 02/05/2023] Open
Abstract
Leptomeningeal metastases (LM) occur in 3-5% of patients with advanced non-small-cell lung cancer (NSCLC) and are associated with a dismal prognosis. We report three cases of NSCLC with LM who were treated with the combination of nimotuzumab and erlotinib. Magnetic Resonance Imaging (MRI) evaluation during follow-up showed significant improvement in cancer symptoms and decreased tumor size in all three patients. Grade 3 and 4 toxicities were rarely seen. Based on apparent efficacy of the regimen and fewer side effects, we suggest that nimotuzumab in combination with erlotinib may be a promising option for the treatment of NSCLC with LM.
Collapse
Affiliation(s)
- Hongyu Xu
- Department of Oncology, The General Hospital of Western Theater Command, Chengdu, People's Republic of China
| | - Lin Zhou
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - You Lu
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaomei Su
- Department of Oncology, The General Hospital of Western Theater Command, Chengdu, People's Republic of China
| | - Peng Cheng
- Department of Oncology, The General Hospital of Western Theater Command, Chengdu, People's Republic of China
| | - Dong Li
- Department of Oncology, The General Hospital of Western Theater Command, Chengdu, People's Republic of China
| | - Hui Gao
- Department of Oncology, The General Hospital of Western Theater Command, Chengdu, People's Republic of China
| | - Hua Li
- Department of Oncology, The General Hospital of Western Theater Command, Chengdu, People's Republic of China
| | - Weiwei Yuan
- Department of Oncology, The General Hospital of Western Theater Command, Chengdu, People's Republic of China
| | - Ling Zhang
- Department of Oncology, The General Hospital of Western Theater Command, Chengdu, People's Republic of China
| | - Tao Zhang
- Department of Oncology, The General Hospital of Western Theater Command, Chengdu, People's Republic of China
| |
Collapse
|
25
|
Gu L, Qing S, Zhu X, Ju X, Cao Y, Jia Z, Shen Y, Cao F, Fang F, Zhang H. Stereotactic Radiation Therapy (SRT) for Brain Metastases of Multiple Primary Tumors: A Single Institution Retrospective Analysis. Front Oncol 2020; 9:1352. [PMID: 31921625 PMCID: PMC6914765 DOI: 10.3389/fonc.2019.01352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/15/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose: To evaluate the efficiency and side effects of stereotactic radiation therapy (SRT) with or without other treatments for brain metastases (BM) from various primary tumors. Methods: This was a retrospective analysis of 161 patients with brain metastases treated with SRT. Clinical data, EGFR mutation status and survival data were collected. Follow-up data was analyzed until December 2018. Kaplan-Meier and Cox proportional hazards regression analyses were used for the survival analysis. Results: The median overall survival (OS) was 19 months. No difference was observed in OS between SRT group and SRT + whole brain radiation therapy (WBRT) groups (p = 0.717). Statistically significant factors of better OS after univariable analysis were no extracranial metastases (p = 0.016), BED10-SRT≥50Gy (p = 0.049), oligometastases (1–3 brain metastases) (p < 0.001), GPA score≥2.5 (p = 0.003), RPA class I (p = 0.026), NSCLC tumor type (p = 0.006), targeted therapy (p < 0.001) and controlled extracranial disease (p = 0.011). Multivariate analysis indicated that higher BED10-SRT (≥50Gy, HR = 0.504, p = 0.027), controlled extracranial disease (HR = 0.658, p = 0.039) and targeted therapy (HR = 0.157, <0.001) were independent favorable predictors for OS. Besides that, we also find that the median overall survival (OS) was 22 months in NSCLC patients and controlled extracranial disease (HR = 0.512, p = 0.012) and targeted therapy (HR = 0.168, < 0.001) were independent favorable predictors for OS. Conclusion: For patients with brain metastases, stable extracranial disease, higher BED10-SRT (≥50Gy) and targeted therapy may predict a favorable prognosis.
Collapse
Affiliation(s)
- Lei Gu
- Department of Radiation Oncology, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Shuiwang Qing
- Department of Radiation Oncology, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Xiaofei Zhu
- Department of Radiation Oncology, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Xiaoping Ju
- Department of Radiation Oncology, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Yangsen Cao
- Department of Radiation Oncology, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Zhen Jia
- Department of Radiation Oncology, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Yuxin Shen
- Department of Radiation Oncology, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Fei Cao
- Department of Radiation Oncology, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Fang Fang
- Department of Radiation Oncology, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Huojun Zhang
- Department of Radiation Oncology, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, China
| |
Collapse
|
26
|
Li W, Yu H. Separating or combining immune checkpoint inhibitors (ICIs) and radiotherapy in the treatment of NSCLC brain metastases. J Cancer Res Clin Oncol 2019; 146:137-152. [PMID: 31813004 DOI: 10.1007/s00432-019-03094-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023]
Abstract
With the advancement of imaging technology, systemic disease control rate and survival rate, the morbidity of brain metastases (BMs) from non-small cell lung cancer (NSCLC) has been riding on a steady upward trend (40%), but management of BMs from NSCLC remains obscure. Systemic therapy is anticipated to offer novel therapeutic avenues in the management of NSCLC BMs, and radiotherapy (RT) and immunotherapy have their own advantages. Recently, it was confirmed that immune checkpoint inhibitors (ICIs) and RT could mutually promote the efficacy in the treatment of BMs from NSCLC. In this paper, we provide a review on current understandings and practices of separating or combining ICIs and RT, which could provide a reference for the coming laboratory and clinical studies and contribute to the development of new approaches in NSCLC BMs.
Collapse
Affiliation(s)
- Wang Li
- Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Hong Yu
- Radiation Oncology Department of Thoracic cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, People's Republic of China.
| |
Collapse
|
27
|
Singh R, Lehrer EJ, Ko S, Peterson J, Lou Y, Porter AB, Kotecha R, Brown PD, Zaorsky NG, Trifiletti DM. Brain metastases from non-small cell lung cancer with EGFR or ALK mutations: A systematic review and meta-analysis of multidisciplinary approaches. Radiother Oncol 2019; 144:165-179. [PMID: 31812932 DOI: 10.1016/j.radonc.2019.11.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND PURPOSE To analyze outcomes of non-small cell lung cancer (NSCLC) patients with brain metastases harboring EGFR or ALK mutations and examine for differences between tyrosine kinase inhibitors (TKIs) alone, radiotherapy (RT) alone (either whole brain radiation therapy (WBRT) or stereotactic radiosurgery (SRS)), or combined TKIs and RT. MATERIALS AND METHODS Thirty studies were identified. PATIENTS with brain metastases from NSCLC. INTERVENTION initial TKIs alone with optional salvage RT, RT alone, or TKIs and RT. CONTROL wild-type NSCLC and TKIs alone for mutational and treatment analysis, respectively. OUTCOMES overall survival (OS) and intracranial progression-free survival (PFS). SETTING studies with mutation information. RESULTS A total of 2649 patients were included. Patients with ALK and EGFR mutations had significantly higher median OS (48.5 months, p < 0.0001; and 20.9 months; p = 0.0006, respectively) compared to wild-type patients (9.9 months). Similar median OS was noted between TKIs and RT (28.3 months), RT alone (32.2 months; p = 0.22), or TKIs alone (23.9 months; p = 0.2). Patients treated with TKIs and RT had higher median PFS (18.6 months; p = 0.06) compared to TKIs alone (13.6 months) with no difference between TKIs and RT vs. RT alone (16.9 months; p = 0.72). No PFS difference was found between WBRT and TKI (23.2 months; p = 0.72) vs. WBRT alone (24 months) or SRS and TKI (16.7 months; p = 0.56) vs. SRS alone (13.6 months). CONCLUSION NSCLC patients with brain metastases harboring EGFR or ALK mutations have superior OS compared to wild-type patients. No PFS or OS benefit was found with the addition of TKIs to RT.
Collapse
Affiliation(s)
- Raj Singh
- Department of Radiation Oncology, Virginia Commonwealth University Health System, Richmond, USA.
| | - Eric J Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Stephen Ko
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, USA.
| | | | - Yanyan Lou
- Department of Medical Oncology, Mayo Clinic, Jacksonville, USA.
| | | | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, USA.
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, USA.
| | - Nicholas G Zaorsky
- Department of Radiation Oncology, Penn State Cancer Institute, Hershey, USA.
| | | |
Collapse
|
28
|
Epidermal Growth Factor Receptor (EGFR)-Tyrosine Kinase Inhibitors (TKIs) Combined with Chemotherapy Delay Brain Metastasis in Patients with EGFR-Mutant Lung Adenocarcinoma. Target Oncol 2019; 14:423-431. [PMID: 31270661 DOI: 10.1007/s11523-019-00649-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Whether epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) combined with chemotherapy can delay the occurrence of brain metastasis (BM) is unclear. OBJECTIVE This retrospective study aimed to evaluate whether EGFR-TKIs combined with chemotherapy can delay BM and decrease the incidence of BM as initial progression. PATIENTS AND METHODS The data of 100 patients with EGFR-mutant advanced lung adenocarcinoma were retrospectively reviewed. The patients had no BM at initial diagnosis, and BM occurred during the treatment. Patients received EGFR-TKI only or EGFR-TKI combined with chemotherapy. Intracranial progression-free survival (iPFS), systemic progression-free survival (PFS), and overall survival (OS) were evaluated. RESULTS The overall median OS was 39 months (95% confidence interval (CI), 35.6-42.4 months). The median OS of EGFR-TKI combined with chemotherapy and EGFR-TKI only are 41 months (95% CI 35.5-46.5 months) and 39 months (95% CI 36.8-41.2 months), respectively. Patients in the combination treatment group had longer PFS (16 vs. 10 months; P = 0.030) and iPFS (21 vs. 14 months; P = 0.026). Further, as initial progression, fewer patients developed BM in the combined treatment group compared with the EGFR-TKI-only group (30.6% vs. 52.9%, P = 0.002) with a hazard ratio of 0.64 (95% CI 0.43-0.96). After controlling for significant covariables in a multivariable model, the different treatment strategies were independently associated with improved iPFS. CONCLUSIONS In this retrospective analysis, EGFR-TKIs combined with chemotherapy could improve PFS. Further, the combined treatment could delay BM occurrence and decrease the incidence of BM as initial progression.
Collapse
|
29
|
Ponce S, Bruna J, Juan O, López R, Navarro A, Ortega AL, Puente J, Verger E, Bartolomé A, Nadal E. Multidisciplinary expert opinion on the treatment consensus for patients with EGFR mutated NSCLC with brain metastases. Crit Rev Oncol Hematol 2019; 138:190-206. [PMID: 31092376 DOI: 10.1016/j.critrevonc.2019.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/09/2019] [Accepted: 03/26/2019] [Indexed: 12/14/2022] Open
Abstract
The presence of an epidermal growth factor receptor (EGFR) mutation is associated with higher incidence of brain metastases in patients with non-small cell lung cancer (NSCLC); however, patients with synchronous brain metastases at diagnosis have generally been excluded from clinical trials. As there is limited clinical evidence for managing this patient population, a multidisciplinary group of Spanish medical and radiation oncologists, and neuro-oncologist with expertise treating brain metastases in lung cancer patients met with the aim of reaching and developing an expert opinion consensus on the management of patients with EGFR mutated NSCLC with brain metastases. This consensus contains 26 recommendations and 20 conclusion statements across 21 questions in 7 areas, as well as a first-line treatment algorithm.
Collapse
Affiliation(s)
- Santiago Ponce
- Lung Cancer Clinical Research Unit, Hospital Universitario 12 de Octubre, Av. Cordoba, s/n, 28041 Madrid, Spain.
| | - Jordi Bruna
- Neuro-Oncology Unit, Bellvitge University Hospital-ICO, Carrer de la Feixa Llarga, s/n, 08907, L'Hospitalet de Llobregat, Barcelona, Spain; Clinical Research in Solid Tumors (CReST) and Neuro-Oncology Group. Oncobell, IDIBELL, Avda Gran Via 199-203, 08907, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Oscar Juan
- Medical Oncology Service, Hospital Universitario y Politécnico La Fe, Valencia, Avda. de Fernando Abril Martorell, nº 106, 46026, Valencia, Spain.
| | - Rafael López
- Medical Oncology Unit. Hospital Clínico Universitario de Valladolid, Av. Ramón y Cajal, 3, 47003, Valladolid, Spain.
| | - Alejandro Navarro
- Medical Oncology. Hospital Vall d'Hebron, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain.
| | - Ana Laura Ortega
- Oncology Research Unit, Complejo Hospitalario de Jaén, Av. del Ejército Español, 10, 23007, Jaén, Spain.
| | - Javier Puente
- GU, Thoracic and Melanoma Cancer Unit, Medical Oncology Department, Assistant Professor of Medicine, Complutense University. Hospital Clinico Universitario San Carlos, Calle del Prof Martín Lagos, s/n, 28040, Madrid, Spain.
| | - Eugènia Verger
- Radiation Oncology Department, Hospital Clínic de Barcelona, Carrer de Villarroel, 170, 08036, Barcelona, Spain.
| | - Adela Bartolomé
- Radiotherapy Oncology Department. Hospital Universitario 12 de Octubre, Av. Cordoba, s/n, 28041, Madrid, Spain.
| | - Ernest Nadal
- Clinical Research in Solid Tumors (CReST) and Neuro-Oncology Group. Oncobell, IDIBELL, Avda Gran Via 199-203, 08907, L'Hospitalet de Llobregat, Barcelona, Spain; Thoracic Oncology Unit, Department of Medical Oncology, Catalan Institute of Oncology. Avda Gran Via 199-203, 08907, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
30
|
Dong K, Liang W, Zhao S, Guo M, He Q, Li C, Song H, He J, Xia X. EGFR-TKI plus brain radiotherapy versus EGFR-TKI alone in the management of EGFR-mutated NSCLC patients with brain metastases. Transl Lung Cancer Res 2019; 8:268-279. [PMID: 31367540 DOI: 10.21037/tlcr.2019.06.12] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background It has been confirmed that epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) presented better efficacy than brain radiotherapy (brain RT) in the treatment of brain metastasis (BM) in EGFR mutated NSCLC patients. However, whether the combination of EGFR-TKIs and brain RT is better than EGFR-TKIs alone remains unclear. We aim to compare the outcomes of adding brain RT to EGFR-TKIs and to screen for the beneficial population by a meta-analysis of currently available data. Methods A systematic search for relevant articles was conducted in six databases. The outcomes were overall survival (OS) and intracranial progression-free survival (iPFS) between groups, both were measured as hazard ratios (HRs). Meta-regression and dominant subgroup analysis were used to explore advantageous subgroups. Results A total of 12 retrospective studies involving 1,553 EGFR mutated patients with BM at the first diagnosis were included. EGFR-TKIs plus brain RT showed a significant prolonged OS (HR =0.64, 95% CI: 0.52-0.78; P<0.001) and iPFS (HR =0.62, 95% CI: 0.50-0.78; P<0.001) compared to EGFR-TKIs alone. Meta-regression analyses showed that potential factors contributed to the heterogeneity were the proportion of ECOG performance score (2+ vs. 0-1, P=0.070) and brain symptomatic patients (no vs. yes, P=0.077) regarding iPFS and was age (younger vs. older, P=0.075) for OS. Dominant subgroup analyses suggested that symptomatic patients (HR 0.46 vs. 0.74, interaction P=0.01) for iPFS, and older patients (HR 0.55 vs. 0.75, interaction P=0.03) and 19Del mutation (HR 0.55 vs. 0.74, interaction P=0.04) for OS, seemed to benefit more from the combination therapy than their counterparts. However, direct subgroup results based on only two studies did not show significant difference in iPFS benefit between age, mutation type and sex subgroup. Conclusions EGFR-TKIs plus brain RT is superior to EGFR-TKIs alone in the management of EGFR-mutated NSCLC patients with BM, of which the benefits might be influenced by age, BM-related symptoms and mutation type.
Collapse
Affiliation(s)
- Kai Dong
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100000, China
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,State Key Laboratory of Respiratory Disease & National Clinical Research Center of Respiratory Disease, Guangzhou 510120, China
| | - Shen Zhao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Minzhang Guo
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,State Key Laboratory of Respiratory Disease & National Clinical Research Center of Respiratory Disease, Guangzhou 510120, China
| | - Qihua He
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,State Key Laboratory of Respiratory Disease & National Clinical Research Center of Respiratory Disease, Guangzhou 510120, China
| | - Caichen Li
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,State Key Laboratory of Respiratory Disease & National Clinical Research Center of Respiratory Disease, Guangzhou 510120, China
| | - Haiqing Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100000, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,State Key Laboratory of Respiratory Disease & National Clinical Research Center of Respiratory Disease, Guangzhou 510120, China
| | - Xiaojun Xia
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,State Key Laboratory of Respiratory Disease & National Clinical Research Center of Respiratory Disease, Guangzhou 510120, China
| |
Collapse
|
31
|
Giraud N, Abdiche S, Trouette R. Stereotactic radiotherapy in targeted therapy treated oligo-metastatic oncogene-addicted (non-small-cell) lung cancer. Cancer Radiother 2019; 23:346-354. [PMID: 31130373 DOI: 10.1016/j.canrad.2019.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/23/2018] [Accepted: 01/08/2019] [Indexed: 02/07/2023]
Abstract
While the prognosis of metastatic non-small-cell lung cancer has shown significant progress these last years, notably with the discovery of oncogen-driven subtypes and the development of targeted therapies, significant improvements are still needed. More recently, numerous authors studied the oligo-metastasis concept, where the metastasis are limited in number and sites involved, and that could benefit from an aggressive approach of these lesions, for instance with the help of stereotactic radiotherapy. Nevertheless, there is no clear consensus existing for the time being for the treatment of these tumors. Three main clinical situations can be distinguished: oligo-metastasis state de novo at diagnosis (synchronous) or as first metastatic event of an initially locally limited affection (metachronous); oligo-progression during systemic treatment of a pluri-metastatic disease; and finally oligo-persistence of some remaining metastatic lesions at the nadir of the systemic therapy effect. In this review, we will discuss the place of stereotactic radiotherapy in the treatment of non-small-cell oligo-metastatic oncogene-addicted cancers treated with targeted therapies, differentiating these three main clinical situations. In all these indications, this technique could provide a benefit in terms of local control, possibly even in specific survival, when associated with targeted therapy continuation, related to local control of the oligo-metastatic cerebral or extracerebral lesions.
Collapse
Affiliation(s)
- N Giraud
- Service d'oncologie-radiothérapie, hôpital Haut-Lévêque, CHU de Bordeaux, avenue de Magellan, 33604 Pessac cedex, France.
| | - S Abdiche
- Service d'oncologie-radiothérapie, hôpital Robert-Boulin, 112, rue de la Marne, 33500 Libourne cedex, France
| | - R Trouette
- Service d'oncologie-radiothérapie, hôpital Haut-Lévêque, CHU de Bordeaux, avenue de Magellan, 33604 Pessac cedex, France
| |
Collapse
|
32
|
Lu F, Hou Y, Xia Y, Li L, Wang L, Cao K, Chen H, Chang L, Li W. Survival and intracranial control outcomes of whole-brain radiotherapy (WBRT) alone versus WBRT plus a radiotherapy boost in non-small-cell lung cancer with brain metastases: a single-institution retrospective analysis. Cancer Manag Res 2019; 11:4255-4272. [PMID: 31190992 PMCID: PMC6512646 DOI: 10.2147/cmar.s203461] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose: To compare the differences in survival and intracranial local control between patients treated with whole-brain radiotherapy (WBRT) and WBRT plus a radiotherapy boost (RTB) in non-small-cell lung cancer (NSCLC) patients with brain metastases (BMs). Patients and methods: Between May 2010 and October 2017, 206 NSCLC patients with BMs were treated with brain radiotherapy; among these patients, 140 patients underwent WBRT alone (group A) and 66 patients underwent WBRT plus RTB (group B). The endpoints included intracranial local progression-free survival and regional progression-free survival time (iLPFS and iRPFS, respectively) and overall survival (OS). Results: Between the two groups, not all baseline clinical factors were well-balanced. The median iLPFS was 17.9 months in group A and 22.3 months in group B. The 2-year iLPFS rates were significantly lower in group A than in group B (34.5% vs 49.3%, P=0.041); however, no significant differences were observed in OS or iRPFS. Multivariate analyses revealed that epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) therapy was significantly associated with good OS, iLPFS, and iRPFS. Among the patients treated with TKIs (n=62), there were no differences in OS (P=0.190), iLPFS (P=0.334), or iRPFS (P=0.338) between groups A and B. In the patients without TKI treatment (n=102), the median iLPFS was significantly longer in group B than in group A (16.7 vs 12.0 months, P=0.032), but no significant differences were found in OS (p=0.182) or iRPFS (P=0.837) between the two groups. Conclusion: WBRT plus RTB significantly improved iLPFS compared with WBRT alone, especially in patients without EGFR-TKI treatment. However,there were no significant differences in iRPFS or OS between the two groups. Patients treated with EGFR-TKIs may not benefit from WBRT plus RTB.
Collapse
Affiliation(s)
- Fei Lu
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan, People's Republic of China.,Department of Oncology and Hematology, The First People's Hospital of Honghe State, Mengzi, Yunnan, People's Republic of China
| | - Yu Hou
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan, People's Republic of China
| | - Yaoxiong Xia
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan, People's Republic of China
| | - Lan Li
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan, People's Republic of China
| | - Li Wang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan, People's Republic of China
| | - Ke Cao
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan, People's Republic of China
| | - Haixia Chen
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan, People's Republic of China
| | - Li Chang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan, People's Republic of China
| | - Wenhui Li
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
33
|
Zheng L, Wang Y, Xu Z, Yang Q, Zhu G, Liao XY, Chen X, Zhu B, Duan Y, Sun J. Concurrent EGFR-TKI and Thoracic Radiotherapy as First-Line Treatment for Stage IV Non-Small Cell Lung Cancer Harboring EGFR Active Mutations. Oncologist 2019; 24:1031-e612. [PMID: 31040256 PMCID: PMC6693693 DOI: 10.1634/theoncologist.2019-0285] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 04/06/2019] [Indexed: 12/20/2022] Open
Abstract
LESSONS LEARNED This single-arm, phase II study shows that concurrent EGFR-tyrosine kinase inhibitor plus thoracic radiotherapy as the first-line treatment for stage IV non-small cell lung cancer harboring EGFR active mutations provides long-term control for the primary lung lesion, and 1-year progression-free survival (PFS) rate and median PFS are numerically higher than those of the erlotinib monotherapy.Serious adverse events are acceptable, although grade >3 radiation pneumonitis occurred in 20% of patients. BACKGROUND Studies show effective local control by EGFR-tyrosine kinase inhibitor (TKI) combined with radiotherapy at metastatic sites in advanced lung cancer harboring EGFR active mutations. Salvage local radiotherapy is associated with prolonged progression-free survival (PFS) in local disease during EGFR-TKI treatment. However, no prospective study has been reported on concurrent EGFR-TKI and radiotherapy for primary lung lesions. This study investigated the efficacy and safety of first-line EGFR-TKI combined with thoracic radiotherapy in treating stage IV non-small cell lung cancer (NSCLC) harboring EGFR active mutations. METHODS We conducted a single-arm, phase II clinical trial. Each patient received EGFR-TKI (erlotinib 150 mg or gefitinib 250 mg per day) plus thoracic radiotherapy (54-60 Gy/27-30 F/5.5-6 w) within 2 weeks of beginning EGFR-TKI therapy until either disease progression or intolerable adverse events (AEs) appeared. RESULTS From January 2015 to March 2018, 401 patients were screened, and 10 patients (5 male and 5 female) were eligible. These patients had a median age of 55 years (40-75) and median follow-up of 19.8 months (5.8-34). The 1-year PFS rate was 57.1%, median PFS was 13 months, and median time to progression of irradiated lesion (iTTP) was 20.5 months. Objective response rate (ORR), was 50% and disease control rate (DCR) was 100%. The most common grade ≥3 AEs were radiation pneumonitis (20%) and rash (10%). One patient died after rejecting treatment for pneumonitis. The others received a full, systematic course of glucocorticoid therapy. Pneumonitis was all well controlled and did not relapse. CONCLUSION Concurrent EGFR-TKI plus thoracic radiotherapy as the first-line treatment for stage IV NSCLC harboring EGFR active mutations shows a long-term control of primary lung lesion. The 1-year PFS rate and median PFS of this combined therapy are numerically higher than those of the erlotinib monotherapy. The risk of serious adverse events is acceptable.
Collapse
Affiliation(s)
- LinPeng Zheng
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Yanmei Wang
- Department of Oncology, Ya'an People's Hospital, Ya'an, Sichuan, People's Republic of China
| | - Zihan Xu
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Qiao Yang
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Guangkuo Zhu
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Xing-Yun Liao
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Xiewan Chen
- Medical English Department, College of Basic Medicine, Army Medical University, Chongqing, People's Republic of China
| | - Bo Zhu
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Yuzhong Duan
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Jianguo Sun
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
34
|
Li C, Guo J, Zhao L, Hu F, Nie W, Wang H, Zheng X, Shen Y, Gu P, Zhang Y, Zhang X. Upfront whole brain radiotherapy for multiple brain metastases in patients with EGFR-mutant lung adenocarcinoma. Cancer Manag Res 2019; 11:3433-3443. [PMID: 31114377 PMCID: PMC6497873 DOI: 10.2147/cmar.s196881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/15/2019] [Indexed: 12/25/2022] Open
Abstract
Purpose: This study aimed to evaluate the efficacy of upfront whole-brain radiotherapy (WBRT) in EGFR-mutant lung adenocarcinoma patients with multiple brain metastases (BM). Methods: In this study, 195 patients with EGFR mutations who had multiple BM at preliminary diagnosis were included and retrospectively reviewed. Patients were admitted to receive the following treatments in a multi-disciplinary setting: upfront WBRT followed by EGFR-TKI, concurrent EGFR-TKI and WBRT and upfront EGFR-TKI followed by WBRT. A disease-specific graded prognostic assessment (DS-GPA) was performed for all the patients. The treatment response and overall survival (OS) were assessed as well. Results: The median OS of these patients was 27 months. Objective response rate (ORR) was significantly better in upfront WBRT group than other two groups (P=0.004). Moreover, patients who received upfront WBRT (n=67) had longer OS than the concomitant group (36 vs 25 months; P=0.006) and the upfront EGFR-TKI group (36 vs 25 months; P<0.0001). The prognosis of patients with different DS-GPA scores significantly differed (P<0.0001). In concomitant group and upfront EGFR-TKIs group, patients with higher DS-GPA scores of 2-3 had more favorable prognosis compared with those with lower DS-GPA scores of 0-1.5 (27 vs 25 months; P=0.023). Patients who received EGFR-TKIs concurrently with WBRT had longer OS than those received upfront EGFR-TKIs with high DS-GPA scores. (37 vs 17 months; P=0.023). Conclusion: The use of upfront WBRT for EGFR-mutated lung adenocarcinoma patients with multiple BM can improve ORR and OS. More importantly, patients with high DS-GPA scores are recommended to receive WBRT immediately after EGFR-TKIs therapy.
Collapse
Affiliation(s)
- Changhui Li
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai200030, People’s Republic of China
| | - Jindong Guo
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai200030, People’s Republic of China
| | - Lei Zhao
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai200030, People’s Republic of China
| | - Fang Hu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai200030, People’s Republic of China
| | - Wei Nie
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai200030, People’s Republic of China
| | - Huimin Wang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai200030, People’s Republic of China
| | - Xiaoxuan Zheng
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai200030, People’s Republic of China
| | - Yinchen Shen
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai200030, People’s Republic of China
| | - Ping Gu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai200030, People’s Republic of China
| | - Yujun Zhang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai200030, People’s Republic of China
| | - Xueyan Zhang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai200030, People’s Republic of China
| |
Collapse
|
35
|
Mizuno T, Takada K, Hasegawa T, Yoshida T, Murotani K, Kobayashi H, Sakurai T, Yamashita Y, Akazawa N, Kojima E. Comparison between stereotactic radiosurgery and whole-brain radiotherapy for 10-20 brain metastases from non-small cell lung cancer. Mol Clin Oncol 2019; 10:560-566. [PMID: 30967951 DOI: 10.3892/mco.2019.1830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 03/08/2019] [Indexed: 11/05/2022] Open
Abstract
The efficacy and safety of stereotactic radiosurgery (SRS) in comparison with whole brain radiotherapy (WBRT) for brain metastases (BMs) remains unclear. The present study retrospectively reviewed 44 patients who received SRS or WBRT as an initial treatment for 10-20 BMs from non-small cell lung cancer between 2009 and 2016. Of the patients, 24 (54.5%) were treated with SRS and 20 (45.5%) were treated with WBRT. Overall survival (OS), time to intracranial progression (TTIP), neurological survival (NS), and prognostic factors were examined. OS did not significantly differ between the two groups: 7.3 months in the SRS group vs. 7.2 months in the WBRT group (P=0.502). Median TTIP was significantly shorter in the SRS group than in the WBRT group (7.1 vs. 19.1 months, P=0.009). In contrast, there were no significant differences in NS between the two groups (14.5 months in the SRS group vs. 12.9 months in the WBRT group, P=0.346). Univariate and multivariate analysis revealed that the type of initial treatment for BMs (WBRT or SRS) was not a significant prognostic factor (hazard ratio=0.80, 95% confidence interval: 0.42-1.52, P=0.502). However, histology, performance status, subsequent molecular targeted drugs, subsequent chemotherapy and salvage treatment were independent prognostic factors. There were no significant differences in OS and NS between treatment with SRS and treatment with WBRT in patients with 10-20 BMs, although TTIP was improved with WBRT. As an upfront treatment for 10-20 BMs, SRS may delay WBRT and the adverse events associated with WBRT.
Collapse
Affiliation(s)
- Takaaki Mizuno
- Department of Respiratory Medicine, Komaki City Hospital, Gamma Knife Center, Komaki, Aichi 485-8520, Japan
| | - Kazuto Takada
- Department of Respiratory Medicine, Komaki City Hospital, Gamma Knife Center, Komaki, Aichi 485-8520, Japan
| | - Toshinori Hasegawa
- Department of Neurosurgery, Komaki City Hospital, Gamma Knife Center, Komaki, Aichi 485-8520, Japan
| | - Tatsuya Yoshida
- Department of Thoracic Oncology, Aichi Cancer Center Hospital, Nagoya, Aichi 464-0021, Japan
| | - Kenta Murotani
- Division of Biostatistics, Clinical Research Center, Aichi Medical University Hospital, Nagakute, Aichi 480-1103, Japan
| | - Hironori Kobayashi
- Department of Respiratory Medicine, Komaki City Hospital, Gamma Knife Center, Komaki, Aichi 485-8520, Japan
| | - Tsutomu Sakurai
- Department of Respiratory Medicine, Komaki City Hospital, Gamma Knife Center, Komaki, Aichi 485-8520, Japan
| | - Yuuki Yamashita
- Department of Respiratory Medicine, Komaki City Hospital, Gamma Knife Center, Komaki, Aichi 485-8520, Japan
| | - Nana Akazawa
- Department of Respiratory Medicine, Komaki City Hospital, Gamma Knife Center, Komaki, Aichi 485-8520, Japan
| | - Eiji Kojima
- Department of Respiratory Medicine, Komaki City Hospital, Gamma Knife Center, Komaki, Aichi 485-8520, Japan
| |
Collapse
|
36
|
Li J, Wang L, Qiu Z, Su Y. Time profile of nimotuzumab for enhancing radiosensitivity of the Eca109 cell line. Oncol Lett 2019; 17:2763-2769. [PMID: 30854050 PMCID: PMC6365957 DOI: 10.3892/ol.2019.9897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/16/2018] [Indexed: 12/29/2022] Open
Abstract
The aim of the present study was to investigate the ability of Nimotuzumab to increase radiosensitivity at different delivery times in the mixed cancer cell line Eca109, to determine the optimal delivery time. Cultured Eca109 cells were classified into five groups: Control with no treatment (O group); irradiation without Nimotuzumab treatment (R group); treatment with Nimotuzumab 24 h prior to or after irradiation (24NR or 24RN group, respectively); and Nimotuzumab combined with irradiation simultaneously (NR group). Following cells reaching the logarithmic-growth phase, cell survival after exposure to Nimotuzumab was evaluated using an MTT assay; thereafter, the 50% inhibitory concentration (IC50) of the cell line was calculated. Cell-survival curves were generated using a colony-forming assay. Flow cytometry analysis was used to detect apoptosis rates and cell-cycle distribution. The expression level of epidermal growth factor receptor was measured in Eca109 cells with western blotting. Growth inhibition was only observed 72 h after exposure to Nimotuzumab. The IC50 was 768 µg/ml. At a dose of 0.2 IC50 or 0.3 IC50, the sensitization enhancement ratio of radiosensitivity was highest in the 24NR group. Nimotuzumab enhanced radiation-induced apoptosis in Eca109 cells, with the optimal delivery time at 24 h prior to irradiation (P=0.035). The concentration of Nimotuzumab administered was directly proportional to the increase in radiosensitivity of the cells.
Collapse
Affiliation(s)
- Jiancheng Li
- Department of Radiation Oncology, Fujian Provincial Tumor Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, Fujian 350014, P.R. China
| | - Linghua Wang
- Department of Radiation Oncology, Fujian Provincial Tumor Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, Fujian 350014, P.R. China
| | - Zidan Qiu
- Department of Radiation Oncology, Fujian Provincial Tumor Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, Fujian 350014, P.R. China
| | - Ying Su
- Department of Radiation Oncology, Fujian Provincial Tumor Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, Fujian 350014, P.R. China
| |
Collapse
|
37
|
Jackson RK, Liew LP, Hay MP. Overcoming Radioresistance: Small Molecule Radiosensitisers and Hypoxia-activated Prodrugs. Clin Oncol (R Coll Radiol) 2019; 31:290-302. [PMID: 30853148 DOI: 10.1016/j.clon.2019.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/12/2019] [Indexed: 12/25/2022]
Abstract
The role of hypoxia in radiation resistance is well established and many approaches to overcome hypoxia in tumours have been explored, with variable success. Two small molecule strategies for targeting hypoxia have dominated preclinical and clinical efforts. One approach has been the use of electron-affinic nitroheterocycles as oxygen-mimetic sensitisers. These agents are best exemplified by the 5-nitroimidazole nimorazole, which has limited use in conjunction with radiotherapy in head and neck squamous cell carcinoma. The second approach seeks to leverage tumour hypoxia as a tumour-specific address for hypoxia-activated prodrugs. These prodrugs are selectively activated by reductases under hypoxia to release cytotoxins, which in some instances may diffuse to kill surrounding oxic tumour tissue. A number of these hypoxia-activated prodrugs have been examined in clinical trial and the merits and shortcomings of recent examples are discussed. There has been an evolution from delivering DNA-interactive cytotoxins to molecularly targeted agents. Efforts to implement these strategies clinically continue today, but success has been elusive. Several issues have been identified that compromised these clinical campaigns. A failure to consider the extravascular transport and the micropharmacokinetic properties of the prodrugs has reduced efficacy. One key element for these 'targeted' approaches is the need to co-develop biomarkers to identify appropriate patients. Hypoxia-activated prodrugs require biomarkers for hypoxia, but also for appropriate activating reductases in tumours, as well as markers of intrinsic sensitivity to the released drug. The field is still evolving and changes in radiation delivery and the impact of immune-oncology will provide fertile ground for future innovation.
Collapse
Affiliation(s)
- R K Jackson
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - L P Liew
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - M P Hay
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
38
|
Du XJ, Pan SM, Lai SZ, Xu XN, Deng ML, Wang XH, Yao DC, Wu SX. Upfront Cranial Radiotherapy vs. EGFR Tyrosine Kinase Inhibitors Alone for the Treatment of Brain Metastases From Non-small-cell Lung Cancer: A Meta-Analysis of 1465 Patients. Front Oncol 2018; 8:603. [PMID: 30619745 PMCID: PMC6299879 DOI: 10.3389/fonc.2018.00603] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/27/2018] [Indexed: 12/14/2022] Open
Abstract
Background: Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is revolutionizing the management of brain metastases (BMs). This study was to explore the value of upfront cranial radiotherapy (RT) in EGFR-mutated non-small cell lung cancer (NSCLC) with BMs compared with EGFR-TKIs alone. Methods: We searched all topic-related comparative articles in public databases (MEDLINE, EMBASE, Cochrane Library, and Web of Science) and conference proceedings. Outcomes of interest were intracranial objective response rate (ORR), overall survival (OS), and intracranial progression-free survival (PFS). Statistical analyses were calculated using Review Manager 5.3 software. Results: Thirteen comparative studies that included a total of 1,456 patients were eligible. Upfront brain RT had significantly higher OS (HR = 0.78, 95% CI = 0.65-0.93, P = 0.005) than EGFR-TKI alone. Upfront RT plus TKI had superior OS (HR = 0.71, 95% CI = 0.58-0.86, P = 0.0005) and intracranial PFS (HR = 0.69, 95% CI = 0.49-0.99, P = 0.04). The pooled data favored upfront whole brain RT (WBRT) plus TKI in terms of intracranial PFS (HR = 0.64, 95% CI = 0.48-0.85, P = 0.002) and OS (HR = 0.75, 95% CI = 0.57-1, P = 0.05). Upfront stereotactic radiosurgery (SRS) was associated with better OS (HR = 0.37, 95% CI = 0.26-0.54, P < 0.00001). Similar results were observed when analysis was restricted to the use of erlotinib or geftinib. Conclusions: The upfront use of brain RT seemed critical, especially for SRS. Upfront administration of upfront WBRT plus EGFR-TKI had better survival outcomes and seemed superior to EGFR-TKI alone.
Collapse
Affiliation(s)
- Xiao-Jing Du
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Su-Ming Pan
- Department of Radiation Oncology, Yue Bei People's Hospital, Shaoguan, China
| | - Shu-Zhen Lai
- Department of Radiation Oncology, Yue Bei People's Hospital, Shaoguan, China
| | - Xiao-Nan Xu
- Department of Radiation Oncology, Yue Bei People's Hospital, Shaoguan, China
| | - Mei-Ling Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Hui Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dun-Chen Yao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shao-Xiong Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
39
|
Wrona A, Dziadziuszko R, Jassem J. Management of brain metastases in non-small cell lung cancer in the era of tyrosine kinase inhibitors. Cancer Treat Rev 2018; 71:59-67. [DOI: 10.1016/j.ctrv.2018.10.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 10/11/2018] [Accepted: 10/19/2018] [Indexed: 01/16/2023]
|
40
|
Mathis T, Jardel P, Loria O, Delaunay B, Nguyen AM, Lanza F, Mosci C, Caujolle JP, Kodjikian L, Thariat J. New concepts in the diagnosis and management of choroidal metastases. Prog Retin Eye Res 2018; 68:144-176. [PMID: 30240895 DOI: 10.1016/j.preteyeres.2018.09.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 12/17/2022]
Abstract
The most frequent site of ocular metastasis is the choroid. The occurrence of choroidal metastases has increased steadily due to the longer survival of metastatic patients and the improvement of diagnostic tools. Fundoscopy, ultrasonography, and fluorescein angiography are now complemented by indocyanine green angiography and optical coherence tomography. Choroidal tumor biopsy may also confirm the metastatic nature of the tumor and help to determine the site of the primary malignancy. There is currently no consensus on the treatment strategy. Most patients have a limited life expectancy and for these complex treatments are generally not recommended. However, recent advances in systemic therapy have significantly improved survival of certain patients who may benefit from an aggressive ocular approach that could preserve vision. Although external beam radiation therapy is the most widely used treatment, more advanced forms of radiotherapy that are associated with fewer side effects can be proposed in select cases. In patients with a shorter life expectancy, systemic therapies such as those targeting oncogenic drivers, or immunotherapy can induce a regression of the choroidal metastases, and may be sufficient to temporarily decrease visual symptoms. However, they often acquire resistance to systemic treatment and ocular relapse usually requires radiotherapy for durable control. Less invasive office-based treatments, such as photodynamic therapy and intravitreal injection of anti-VEGF, may also help to preserve vision while reducing time spent in medical settings for patients in palliative care. The aim of this review is to summarize the current knowledge on choroidal metastases, with emphasis on the most recent findings in epidemiology, pathogenesis, diagnosis and treatment.
Collapse
Affiliation(s)
- Thibaud Mathis
- Department of Ophthalmology, Croix-Rousse University Hospital, Hospices Civils de Lyon, 69317, Lyon, France; UMR-CNRS 5510 Matéis, 69100, Villeurbane, France
| | - Pauline Jardel
- Department of Radiation Oncology, Chicoutimi Hospital, Saguenay, QC, Canada
| | - Olivier Loria
- Department of Ophthalmology, Croix-Rousse University Hospital, Hospices Civils de Lyon, 69317, Lyon, France
| | - Benoit Delaunay
- Department of Ophthalmology, Croix-Rousse University Hospital, Hospices Civils de Lyon, 69317, Lyon, France
| | - Anh-Minh Nguyen
- Department of Ophthalmology, Croix-Rousse University Hospital, Hospices Civils de Lyon, 69317, Lyon, France
| | - Francesco Lanza
- Department of Ophthalmology, Ocular Oncology Center, E.O. Ospedali Galliera, Genoa, Italy
| | - Carlo Mosci
- Department of Ophthalmology, Ocular Oncology Center, E.O. Ospedali Galliera, Genoa, Italy
| | | | - Laurent Kodjikian
- Department of Ophthalmology, Croix-Rousse University Hospital, Hospices Civils de Lyon, 69317, Lyon, France; UMR-CNRS 5510 Matéis, 69100, Villeurbane, France
| | - Juliette Thariat
- Department of Radiation Therapy, Centre François Baclesse - ARCHADE, Unicaen - Normandie University, 14000, Caen, France.
| |
Collapse
|
41
|
Borghetti P, Bonù ML, Roca E, Pedretti S, Salah E, Baiguini A, Greco D, Triggiani L, Maddalo M, Levra NG, Alongi F, Magrini SM, Buglione M. Radiotherapy and Tyrosine Kinase Inhibitors in Stage IV Non-small Cell Lung Cancer: Real-life Experience. ACTA ACUST UNITED AC 2018; 32:159-164. [PMID: 29275314 DOI: 10.21873/invivo.11219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/08/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022]
Abstract
AIM To investigate the role of conventional radiotherapy (RT) and stereotactic body radiotherapy (SBRT) in patients with epidermal growth factor (EGFR)-mutant or anaplastic lymphoma kinase (ALK) rearrangement-positive metastatic non-small cell lung cancer (NSCLC). PATIENTS AND METHODS Fifty patients with EGFR-mutated or ALK rearrangement-positive NSCLC were treated at our Institution. Radiotherapy was delivered before, after or concomitantly with tyrosine kinase inhibitors (TKIs). Acute toxicities and overall survival (OS) were assessed. RESULTS Radiotherapy was performed within 30 days before TKI, concomitantly with TKI and within 30 days after TKI in eight (16%), 33 (66%) and 9 (18%) cases, respectively. The median duration of TKI therapy in the whole series was 11.9 months. The median OS was 19.3 months and 1- and 2-year OS was 71.5% and 36.5%, respectively. The group treated with SBRT had a significant benefit in terms of OS (p=0.043). Only two grade 3 toxicities were reported. CONCLUSION RT concomitantly or close to TKI administration in stage IV NSCLC was shown to be feasible and safe. Intriguing data on OS were also reported.
Collapse
Affiliation(s)
- Paolo Borghetti
- Department of Radiation Oncology, Olindo Alberti Radiotherapy Institute, Brescia, Italy
| | | | - Elisa Roca
- Department of Medical Oncology, Spedali Civili Hospital, Brescia, Italy
| | - Sara Pedretti
- Department of Radiation Oncology, Olindo Alberti Radiotherapy Institute, Brescia, Italy
| | - Emiliano Salah
- Department of Radiation Oncology, Brescia University, Brescia, Italy
| | - Anna Baiguini
- Department of Radiation Oncology, Brescia University, Brescia, Italy
| | - Diana Greco
- Department of Radiation Oncology, Brescia University, Brescia, Italy
| | - Luca Triggiani
- Department of Radiation Oncology, Brescia University, Brescia, Italy
| | - Marta Maddalo
- Department of Radiation Oncology, Olindo Alberti Radiotherapy Institute, Brescia, Italy
| | | | - Filippo Alongi
- Department of Radiation Oncology, Sacro Cuore Hospital, Negrar, Italy
| | - Stefano Maria Magrini
- Department of Radiation Oncology, Olindo Alberti Radiotherapy Institute, Brescia, Italy
| | - Michela Buglione
- Department of Radiation Oncology, Olindo Alberti Radiotherapy Institute, Brescia, Italy
| |
Collapse
|
42
|
Abstract
Brain metastases (BM) are the most commonly diagnosed type of central nervous system tumor in the United States. Estimates of the frequency of BM vary significantly, as there is no nationwide reporting system for metastases. BM may be the first sign of a previously undiagnosed cancer, or occur years or decades after the primary cancer was diagnosed. Incidence of BM varies significantly by primary cancer site. Lung, breast, and melanoma continue to be the leading cause of BM. These tumors are increasingly more common as new therapeutics, advanced imaging, and improved screening have led to lengthened survival after primary diagnosis for cancer patients. BM are difficult to treat, and for most individuals the diagnosis of BM generally portends a poor prognosis.
Collapse
Affiliation(s)
- Quinn T Ostrom
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Christina Huang Wright
- Brain Tumor and Neuro-oncology Center, Department of Neurosurgery, University Hospitals Case Medical Center, Case Western Reserve School of Medicine, Cleveland, OH, United States
| | - Jill S Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States.
| |
Collapse
|
43
|
Wang X, Xu Y, Tang W, Liu L. Efficacy and Safety of Radiotherapy Plus EGFR-TKIs in NSCLC Patients with Brain Metastases: A Meta-Analysis of Published Data. Transl Oncol 2018; 11:1119-1127. [PMID: 30032006 PMCID: PMC6074003 DOI: 10.1016/j.tranon.2018.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 12/09/2022] Open
Abstract
Background: The role of radiotherapy (RT) combined with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) in non-small cell lung cancer (NSCLC) patients with brain metastasis (BM) remains controversial. Therefore, we conducted a meta-analysis to comprehensively evaluate the efficacy and safety of RT plus EGFR-TKIs in those patients. Materials and Methods: Relevant literatures published between 2012 and 2017 were searched. Objective response rate(ORR), disease control rate (DCR), overall survival (OS), intracranial progression-free survival (I-PFS) and adverse events (AEs) were extracted. The combined hazard ratios (HRs) and relative risks (RRs) were calculated using random effects models. Results: Twenty-four studies (2810 patients) were included in the analysis. Overall, RT plus EGFR-TKIs had higher ORR (RR = 1.32, 95%CI: 1.13–1.55), DCR (RR = 1.12, 95%CI: 1.04–1.22), and longer OS (HR = 0.72, 95%CI: 0.59–0.89), I-PFS (HR = 0.64, 95%CI: 0.50–0.82) than monotherapy, although with higher overall AEs (20.2% vs 11.8%, RR = 1.34, 95% CI: 1.11–1.62). Furthermore, subgroup analyses found concurrent RT plus EGFR-TKIs could prolong OS (HR = 0.69, 95%CI: 0.55–0.86) and I-PFS (HR = 0.57, 95%CI: 0.44–0.75). Asian ethnicity and lung adenocarcinoma (LAC) patients predicted a more favorable prognosis (HR = 0.69,95%CI: 0.54–0.88, HR = 0.66, 95%CI: 0.53–0.83, respectively). Conclusion: RT plus EGFR-TKIs had higher response rate, longer OS and I-PFS than monotherapy in NSCLC patients with BM. Asian LAC patients with EGFR mutation had a better prognosis with concurrent treatment. The AEs of RT plus EGFR-TKIs were tolerated.
Collapse
Affiliation(s)
- Xueyan Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Ye Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Weiqing Tang
- Division of Surgery, Guilin Medical University, Guilin, Guangxi, 541000, China
| | - Lingxiang Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
44
|
Kelly WJ, Shah NJ, Subramaniam DS. Management of Brain Metastases in Epidermal Growth Factor Receptor Mutant Non-Small-Cell Lung Cancer. Front Oncol 2018; 8:208. [PMID: 30018881 PMCID: PMC6037690 DOI: 10.3389/fonc.2018.00208] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/22/2018] [Indexed: 01/26/2023] Open
Abstract
Lung cancer remains a leading cause of mortality with 1.69 million deaths worldwide. Activating mutations in epidermal growth factor receptor (EGFR), predominantly exon 19 deletions and exon 21 L858R mutations, are known oncogenic drivers identified in 20-40% of non-small-cell lung cancers (NSCLC). 70% of EGFR-mutant NSCLC patients develop brain metastases (BM), compared to 38% in EGFR wild-type patients. First-generation tyrosine kinase inhibitors (TKIs), such as erlotinib and gefitinib have proven to be superior to chemotherapy in the front-line treatment of EGFR-mutant NSCLC, as has afatinib, a second-generation TKI. The most common acquired resistance mechanism is the development of a gatekeeper mutation in exon 20 T790M. Osimertinib has emerged as a third-generation EGFR TKI with proven activity in the front-line setting as well as in patients with a T790M acquired resistance mutation with remarkable CNS activity. As long-term survival outcomes in EGFR-mutant NSCLC continue to improve, the burden of BM becomes a greater challenge. Here, we review the literature related to the management of BM in EGFR-mutant NSCLC including the role of the three generations of EGFR TKIs, immunotherapy, and brain radiation.
Collapse
Affiliation(s)
| | | | - Deepa S. Subramaniam
- Division of Hematology-Oncology, Georgetown University, Washington, DC, United States
| |
Collapse
|
45
|
O'Kane GM, Leighl NB. Systemic Therapy of Lung Cancer CNS Metastases Using Molecularly Targeted Agents and Immune Checkpoint Inhibitors. CNS Drugs 2018; 32:527-542. [PMID: 29799091 DOI: 10.1007/s40263-018-0526-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Central nervous system (CNS) metastases most commonly arise from lung cancer, with the majority of patients affected during their disease course. The prognosis for patients with untreated brain metastases is poor, with surgical resection and/or radiotherapy as classic therapeutic options. However, the value of systemic therapy in the management of CNS metastases from lung cancer is growing. Novel targeted agents for the treatment of non-small cell lung cancer (NSCLC) have demonstrated activity in treating patients with CNS involvement, and are potential alternatives to radiation and surgery. These agents include anaplastic lymphoma kinase (ALK) inhibitors such as alectinib, crizotinib, ceritinib, lorlatinib, and others; epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors, including the recently developed third-generation inhibitor osimertinib, and even immune checkpoint inhibitors such as nivolumab, pembrolizumab, and atezolizumab. This review summarizes current activity of systemic agents in the management of CNS metastases from NSCLC, as well as potential mechanisms of action of these small and large molecules.
Collapse
Affiliation(s)
- Grainne M O'Kane
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 7W-389, 700 University Avenue, Toronto, ON, M5G 1Z5, Canada. Grainne.O'
| | - Natasha B Leighl
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 7W-389, 700 University Avenue, Toronto, ON, M5G 1Z5, Canada
| |
Collapse
|
46
|
Franchino F, Rudà R, Soffietti R. Mechanisms and Therapy for Cancer Metastasis to the Brain. Front Oncol 2018; 8:161. [PMID: 29881714 PMCID: PMC5976742 DOI: 10.3389/fonc.2018.00161] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Advances in chemotherapy and targeted therapies have improved survival in cancer patients with an increase of the incidence of newly diagnosed brain metastases (BMs). Intracranial metastases are symptomatic in 60–70% of patients. Magnetic resonance imaging (MRI) with gadolinium is more sensitive than computed tomography and advanced neuroimaging techniques have been increasingly used in the detection, treatment planning, and follow-up of BM. Apart from the morphological analysis, the most effective tool for characterizing BM is immunohistochemistry. Molecular alterations not always reflect those of the primary tumor. More sophisticated methods of tumor analysis detecting circulating biomarkers in fluids (liquid biopsy), including circulating DNA, circulating tumor cells, and extracellular vesicles, containing tumor DNA and macromolecules (microRNA), have shown promise regarding tumor treatment response and progression. The choice of therapeutic approaches is guided by prognostic scores (Recursive Partitioning Analysis and diagnostic-specific Graded Prognostic Assessment-DS-GPA). The survival benefit of surgical resection seems limited to the subgroup of patients with controlled systemic disease and good performance status. Leptomeningeal disease (LMD) can be a complication, especially in posterior fossa metastases undergoing a “piecemeal” resection. Radiosurgery of the resection cavity may offer comparable survival and local control as postoperative whole-brain radiotherapy (WBRT). WBRT alone is now the treatment of choice only for patients with single or multiple BMs not amenable to surgery or radiosurgery, or with poor prognostic factors. To reduce the neurocognitive sequelae of WBRT intensity modulated radiotherapy with hippocampal sparing, and pharmacological approaches (memantine and donepezil) have been investigated. In the last decade, a multitude of molecular abnormalities have been discovered. Approximately 33% of patients with non-small cell lung cancer (NSCLC) tumors and epidermal growth factor receptor mutations develop BMs, which are targetable with different generations of tyrosine kinase inhibitors (TKIs: gefitinib, erlotinib, afatinib, icotinib, and osimertinib). Other “druggable” alterations seen in up to 5% of NSCLC patients are the rearrangements of the “anaplastic lymphoma kinase” gene TKI (crizotinib, ceritinib, alectinib, brigatinib, and lorlatinib). In human epidermal growth factor receptor 2-positive, breast cancer targeted therapies have been widely used (trastuzumab, trastuzumab-emtansine, lapatinib-capecitabine, and neratinib). Novel targeted and immunotherapeutic agents have also revolutionized the systemic management of melanoma (ipilimumab, nivolumab, pembrolizumab, and BRAF inhibitors dabrafenib and vemurafenib).
Collapse
Affiliation(s)
- Federica Franchino
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Roberta Rudà
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| |
Collapse
|
47
|
Tallet AV, Dhermain F, Le Rhun E, Noël G, Kirova YM. Combined irradiation and targeted therapy or immune checkpoint blockade in brain metastases: toxicities and efficacy. Ann Oncol 2018; 28:2962-2976. [PMID: 29045524 DOI: 10.1093/annonc/mdx408] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Targeted therapies (TT) and immune checkpoint inhibitors (ICI) are currently modifying the landscape of metastatic cancer management and are increasingly used over the course of many cancers treatment. They allow long-term survival with controlled extra-cerebral disease, contributing to the increasing incidence of brain metastases (BMs). Radiation therapy remains the cornerstone of BMs treatment (either whole brain irradiation or stereotactic radiosurgery), and investigating the safety profile of radiation therapy combined with TT or ICI is of high interest. Discontinuing an efficient systemic therapy, when BMs irradiation is considered, might allow systemic disease progression and, on the other hand, the mechanisms of action of these two therapeutic modalities might lead to unexpected toxicities and/or greater efficacy, when combined. Patients and methods We carried out a systematic literature review focusing on the safety profile and the efficacy of BMs radiation therapy combined with targeted agents or ICI, emphasizing on the role (if any) of the sequence of combination scheme (drug given before, during, and/or after radiation therapy). Results Whereas no relevant toxicity has been noticed with most of these drugs, the concomitant use of some other drugs with brain irradiation requires caution. Conclusion Most of available studies appear to advocate for TT or ICI combination with radiation therapy, without altering the clinical safety profiles, allowing the maintenance of systemic treatments when stereotactic radiation therapy is considered. Cognitive functions, health-related quality of life and radiation necrosis risk remain to be assessed. The results of prospective studies are awaited in order to complete and validate the above discussed retrospective data.
Collapse
Affiliation(s)
- A V Tallet
- Department of Radiation Oncology, Institut Paoli Calmettes, Marseille
| | - F Dhermain
- Department of Radiation Oncology, Gustave Roussy University Hospital, Cancer Campus Grand Paris, Villejuif
| | - E Le Rhun
- University U-1192, INSERM U-1192, Department of General and Stereotactic Neurosurgery, University Hospital, Department of Medical Oncology, Oscar Lambret center, Lille
| | - G Noël
- Department of Radiation Oncology, Centre Paul Strauss, Strasbourg
| | - Y M Kirova
- Department of Radiation Oncology, Institut Curie, Paris, France
| |
Collapse
|
48
|
Wang H, Yu X, Fan Y, Jiang Y. Multiple treatment modalities for brain metastasis in patients with EGFR-mutant non-small-cell lung cancer. Onco Targets Ther 2018; 11:2149-2155. [PMID: 29713183 PMCID: PMC5907894 DOI: 10.2147/ott.s156570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background There are many controversies concerning the best management of epidermal growth factor receptor (EGFR)-mutant non-small-cell lung cancer (NSCLC) patients with brain metastases (BMs). The use of upfront EGFR tyrosine kinase inhibitors (TKIs) and the withholding of local therapies or upfront radiation therapies (RTs) remain controversial. Available treatment options include local therapies such as whole-brain radiation therapy (WBRT), stereotactic radiosurgery (SRS) and surgery, EGFR-TKIs, and chemotherapy. However, the optimal management of combination therapies is still under consideration. Patients and methods A total of 45 EGFR-mutated NSCLC patients with BMs were included. All patients successively received EGFR-TKIs, RT (WBRT or SRS), and chemotherapy between 2010 and 2015 at Zhejiang Cancer Hospital. Patient follow-up was conducted by telephone until February 2017. The treatment response was evaluated, and survival data were collected and analyzed by Kaplan–Meier analysis and the Cox regression method. Results The median overall survival (OS) was 28 months. Patients with the exon 19 deletion showed the strongest trend toward a longer median OS compared to patients with the exon 21 L858R mutation (not reached vs 26.5 months, P=0.0969). There was no difference in OS between the upfront RT group and the deferral group (26.5 vs 28 months, P=0.57), and similar results were found between the first-line chemotherapy group and the EGFR-TKI group (28 vs 23.2 months, P=0.499). In multivariate analysis, the prognosis correlated with EGFR mutation type (P=0.017). Conclusion EGFR-mutant NSCLC patients with BM benefited from the combination and sequential therapies of EGFR-TKIs, chemotherapy, and RTs. Patients with the EGFR exon 19 deletion may have a better OS. However, the optimal timing of RT interval remains to be explored.
Collapse
Affiliation(s)
- Haiyang Wang
- Department of Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaoqing Yu
- Department of Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Yun Fan
- Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Esophagus, Lung), Zhejiang Cancer Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Youhua Jiang
- Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Esophagus, Lung), Zhejiang Cancer Hospital, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
49
|
Remon J, Besse B. Brain Metastases in Oncogene-Addicted Non-Small Cell Lung Cancer Patients: Incidence and Treatment. Front Oncol 2018; 8:88. [PMID: 29696132 PMCID: PMC5904204 DOI: 10.3389/fonc.2018.00088] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/14/2018] [Indexed: 12/11/2022] Open
Abstract
Brain metastases (BM) are common in non-small cell lung cancer patients including in molecularly selected populations, such as EGFR-mutant and ALK-rearranged tumors. They are associated with a reduced quality of life, and are commonly the first site of progression for patients receiving tyrosine kinase inhibitors (TKIs). In this review, we summarize incidence of BM and intracranial efficacy with TKI agents according to oncogene driver mutations, focusing on important clinical issues, notably optimal first-line treatment in oncogene-addicted lung tumors with upfront BM (local therapies followed by TKI vs. TKI monotherapy). We also discuss the potential role of newly emerging late-generation TKIs as new standard treatment in oncogene-addicted lung cancer tumors compared with sequential strategies.
Collapse
Affiliation(s)
- J. Remon
- Medical Oncology Department, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Benjamin Besse
- Cancer Medicine Department, Institut Gustave Roussy, Villejuif, France
- University Paris-Sud, Orsay, France
| |
Collapse
|
50
|
Hou X, Du H, Quan X, Shi L, Zhang Q, Wu Y, Liu Y, Xiao J, Li Y, Lu L, Ai X, Zhan M, Yuan S, Sun L. Silibinin Inhibits NSCLC Metastasis by Targeting the EGFR/LOX Pathway. Front Pharmacol 2018; 9:21. [PMID: 29472856 PMCID: PMC5809401 DOI: 10.3389/fphar.2018.00021] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022] Open
Abstract
Tumor metastasis is the most lethal and debilitating process that threatens cancer patients. Among the regulators involved in tumor metastasis, lysyl oxidase (LOX) is an important contributor for tumor invasion, migration and the formation of the pre-metastatic niche. Although the relationship between LOX and poor prognosis of lung patients has been preliminary reported, the mechanism remains poorly understood. Here, we found that LOX overexpression is closely related to the survival of lung adenocarcinoma patients but not squamous cell carcinoma patients. Moreover, we confirmed that LOX expression is regulated by the activation of epidermal growth factor receptor (EGFR) via the PI3K/AKT, MEK/ERK, and SAPK/JNK signaling pathways in non-small cell lung cancer (NSCLC). Meanwhile, the study also suggested that the traditional anti-fibrosis drug silibinin inhibited NSCLC cell migration in an EGFR/LOX dependent manner. In addition, an orthotopic implantation metastasis model also confirmed that the EGFR inhibitor WZ4002 and silibinin decreased tumor metastasis through the EGFR/LOX pathway. Altogether, this study revealed that LOX expression is regulated by the EGFR pathway and this may account for the anti-cancer metastasis effects of silibinin, indicating LOX as a potentially therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Xiaoying Hou
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Hongzhi Du
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Xingping Quan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Lei Shi
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Qianqian Zhang
- School of Pharmaceutical, Lanzhou University, Lanzhou, China
| | - Yao Wu
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Yang Liu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Jing Xiao
- Center of Intervention Radiology, Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai, China
| | - Yong Li
- Center of Intervention Radiology, Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai, China
| | - Ligong Lu
- Center of Intervention Radiology, Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai, China
| | - Xun Ai
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL, United States
| | - Meixiao Zhan
- Center of Intervention Radiology, Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai, China
| | - Shengtao Yuan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Li Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| |
Collapse
|