1
|
Maldonado H, Dreger M, Bedgood LD, Kyriakou T, Wolanska KI, Rigby ME, Marotta VE, Webster JM, Wang J, Rusilowicz-Jones EV, Marshall JF, Coulson JM, Macpherson IR, Hurlstone A, Morgan MR. A trafficking regulatory subnetwork governs α Vβ 6 integrin-HER2 cross-talk to control breast cancer invasion and drug resistance. SCIENCE ADVANCES 2024; 10:eadk9944. [PMID: 39630893 PMCID: PMC11616693 DOI: 10.1126/sciadv.adk9944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/31/2024] [Indexed: 12/07/2024]
Abstract
HER2 and αVβ6 integrin are independent predictors of breast cancer survival and metastasis. We identify an αVβ6/HER2 cross-talk mechanism driving invasion, which is dysregulated in drug-resistant HER2+ breast cancer cells. Proteomic analyses reveal ligand-bound αVβ6 recruits HER2 and a trafficking subnetwork, comprising guanosine triphosphatases RAB5 and RAB7A and the Rab regulator guanine nucleotide dissociation inhibitor 2 (GDI2). The RAB5/RAB7A/GDI2 functional module mediates direct cross-talk between αVβ6 and HER2, affecting receptor trafficking and signaling. Acute exposure to trastuzumab increases recruitment of the subnetwork to αVβ6, but trastuzumab resistance decouples GDI2 recruitment. GDI2, RAB5, and RAB7A cooperate to regulate migration and transforming growth factor-β activation to promote invasion. However, these mechanisms are dysregulated in trastuzumab-resistant cells. In patients, RAB5A, RAB7A, and GDI2 expression correlates with patient survival and αVβ6 expression predicts relapse following trastuzumab treatment. Thus, the RAB5/RAB7A/GDI2 subnetwork regulates αVβ6-HER2 cross-talk to drive breast cancer invasion but is subverted in trastuzumab-resistant cells to drive αVβ6-independent and HER2-independent tumor progression.
Collapse
Affiliation(s)
- Horacio Maldonado
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Marcel Dreger
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Lara D. Bedgood
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Theano Kyriakou
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Katarzyna I. Wolanska
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Megan E. Rigby
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Valeria E. Marotta
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Justine M. Webster
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Jun Wang
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Emma V. Rusilowicz-Jones
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - John F. Marshall
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Judy M. Coulson
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Iain R. Macpherson
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - Adam Hurlstone
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Mark R. Morgan
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| |
Collapse
|
2
|
Xiao Y, Martinez L, Zigmond Z, Woltmann D, Singer DV, Singer HA, Vazquez-Padron RI, Salman LH. Functions for platelet factor 4 (PF4/CXCL4) and its receptors in fibroblast-myofibroblast transition and fibrotic failure of arteriovenous fistulas (AVFs). J Vasc Access 2024; 25:1911-1924. [PMID: 37589266 PMCID: PMC10998683 DOI: 10.1177/11297298231192386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Over 60% of End Stage Renal Disease (ESRD) patients are relying on hemodialysis (HD) to survive, and the arteriovenous fistula (AVF) is the preferred vascular access method for HD. However approximately half of all newly created AVF fail to mature and cannot be used without a salvage procedure. We have recently demonstrated an association between AVF maturation failure and post-operative fibrosis, while our RNA-seq study also revealed that veins that ultimately failed during AVF maturation had elevated levels of platelet factor 4 (PF4/CXCL4). However, a link between these two findings was yet to be established. METHODS In this study, we investigated potential mechanisms between PF4 levels and fibrotic remodeling in veins. We compared the local expression of PF4 and fibrosis marker integrin β6 (ITGB6) in veins that successfully underwent maturation with that in veins that ultimately failed to mature. We also measured the changes of expression level of α-smooth muscle actin (αSMA/ACTA2) and collagen (Col1/COL1A1) in venous fibroblasts upon various treatments, such as PF4 pharmacological treatment, alteration of PF4 expression, and blocking of PF4 receptors. RESULTS We found that PF4 is expressed in veins and co-localizes with αSMA. In venous fibroblasts, PF4 stimulates expression of αSMA and Col1 via different pathways. The former requires integrins αvβ5 and α5β1, while chemokine receptor CXCR3 is needed for the latter. Interestingly, we also discovered that the expression of PF4 is associated with that of ITGB6, the β subunit of integrin αvβ6. This integrin is critical for the activation of the major fibrosis factor TGFβ, and overexpression of PF4 promotes activation of the TGFβ pathway. CONCLUSIONS These results indicate that upregulation of PF4 may cause venous fibrosis both directly by stimulating fibroblast differentiation and expression of extracellular matrix (ECM) molecules and indirectly by facilitating the activation of the TGFβ pathway.
Collapse
Affiliation(s)
- Yuxuan Xiao
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Zachary Zigmond
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Daniel Woltmann
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Diane V Singer
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Harold A Singer
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Loay H Salman
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
- Division of Nephrology & Hypertension, Albany Medical College, Albany, NY, USA
| |
Collapse
|
3
|
Zhang Y, Chen Z, Shen Z, Qian D, Wang G, Wang X, Xi S, Wang X. ITGB6 promotes pancreatic fibrosis and aggravates the malignant process of pancreatic cancer via JAK2/STAT3 signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6093-6106. [PMID: 38418753 DOI: 10.1007/s00210-024-03003-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Integrin β6 (ITGB6) is upregulated in multiple tumor types and elevated ITGB6 levels have been detected in patients with chronic pancreatitis. However, the role of ITGB6 in pancreatic fibrosis and cancer remains to be elucidated. In the present study, ITGB6 expression was assessed using western blotting and qRT-PCR. Besides, cell proliferation, cycling, migration, and invasion were evaluated using CCK-8, flow cytometry, wound healing, and transwell assays, respectively. The expression of fibrosis and JAK2/STAT3 signaling markers was detected by western blotting and immunofluorescence analysis. Moreover, nude mice were subcutaneously injected with co-cultured cell suspensions to establish an in vivo model. The results showed that ITGB6 was highly expressed in pancreatic cancer tissues and TGF-β-induced pancreatic stellate cells (PSCs). Inhibition of ITGB6 expression in PSCs resulted in clear inhibition of activated PSC proliferation, migration, and fibrogenesis. Additionally, reduced ITGB6 expression inhibits the JAK2/STAT3 signaling pathway. Interestingly, activators of the JAK2/STAT3 signaling pathway reversed the effects of ITGB6 disruption on PSCs. Activated PSCs notably promoted the proliferation, invasion, and migration of pancreatic cancer cells in a co-culture assay. In contrast, activated PSCs with low ITGB6 expression failed to significantly affect the malignancy of pancreatic cancer cells. Moreover, in vivo results showed that interference with ITGB6 inhibited the activation of PSCs and promoted the development of pancreatic cancer. Silencing ITGB6 inhibited the proliferation, migration, and fibrosis-like effects of activated PSCs and indirectly inhibited the metastasis and malignant process of pancreatic cancer by inhibiting the JAK2/STAT3 signaling pathway. Therefore, ITGB6 is a potential candidate target for pancreatic cancer prevention and treatment.
Collapse
Affiliation(s)
- Yu Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
- Department of Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
- Department of Emergency Surgery, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui, 237005, People's Republic of China
| | - Zhiyuan Chen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, No.2 Zheshan West Road, Jinghu District, Wuhu, Anhui, 241001, People's Republic of China
| | - Zhengchao Shen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, No.2 Zheshan West Road, Jinghu District, Wuhu, Anhui, 241001, People's Republic of China
| | - Daohai Qian
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, No.2 Zheshan West Road, Jinghu District, Wuhu, Anhui, 241001, People's Republic of China
| | - Guannan Wang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, No.2 Zheshan West Road, Jinghu District, Wuhu, Anhui, 241001, People's Republic of China
| | - Xu Wang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, No.2 Zheshan West Road, Jinghu District, Wuhu, Anhui, 241001, People's Republic of China
| | - Shihang Xi
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, No.2 Zheshan West Road, Jinghu District, Wuhu, Anhui, 241001, People's Republic of China
| | - Xiaoming Wang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China.
- Department of Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China.
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, No.2 Zheshan West Road, Jinghu District, Wuhu, Anhui, 241001, People's Republic of China.
| |
Collapse
|
4
|
Zhang Z, Wang Z, Liu T, Tang J, Liu Y, Gou T, Chen K, Wang L, Zhang J, Yang Y, Zhang H. Exploring the role of ITGB6: fibrosis, cancer, and other diseases. Apoptosis 2024; 29:570-585. [PMID: 38127283 DOI: 10.1007/s10495-023-01921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 12/23/2023]
Abstract
Integrin β6 (ITGB6), a member of the integrin family of proteins, is only present in epithelial tissues and frequently associates with integrin subunit αv to form transmembrane heterodimers named integrin αvβ6. Importantly, ITGB6 determines αvβ6 expression and availability. In addition to being engaged in organ fibrosis, ITGB6 is also directly linked to the emergence of cancer, periodontitis, and several potential genetic diseases. Therefore, it is of great significance to study the molecular-biological mechanism of ITGB6, which could provide novel insights for future clinical diagnosis and therapy. This review introduces the structure, distribution, and biological function of ITGB6. This review also expounds on ITGB6-related diseases, detailing the known biological effects of ITGB6.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, 627 Wuluo Road, Wuhan, 430070, China
| | - Tong Liu
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Jiayou Tang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Yanqing Liu
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Tiantian Gou
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Kangli Chen
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Li Wang
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Juan Zhang
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yang Yang
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| | - Huan Zhang
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
5
|
Xu L, Saunders K, Huang SP, Knutsdottir H, Martinez-Algarin K, Terrazas I, Chen K, McArthur HM, Maués J, Hodgdon C, Reddy SM, Roussos Torres ET, Xu L, Chan IS. A comprehensive single-cell breast tumor atlas defines epithelial and immune heterogeneity and interactions predicting anti-PD-1 therapy response. Cell Rep Med 2024; 5:101511. [PMID: 38614094 PMCID: PMC11148512 DOI: 10.1016/j.xcrm.2024.101511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 02/20/2024] [Accepted: 03/20/2024] [Indexed: 04/15/2024]
Abstract
We present an integrated single-cell RNA sequencing atlas of the primary breast tumor microenvironment (TME) containing 236,363 cells from 119 biopsy samples across eight datasets. In this study, we leverage this resource for multiple analyses of immune and cancer epithelial cell heterogeneity. We define natural killer (NK) cell heterogeneity through six subsets in the breast TME. Because NK cell heterogeneity correlates with epithelial cell heterogeneity, we characterize epithelial cells at the level of single-gene expression, molecular subtype, and 10 categories reflecting intratumoral transcriptional heterogeneity. We develop InteractPrint, which considers how cancer epithelial cell heterogeneity influences cancer-immune interactions. We use T cell InteractPrint to predict response to immune checkpoint inhibition (ICI) in two breast cancer clinical trials testing neoadjuvant anti-PD-1 therapy. T cell InteractPrint was predictive of response in both trials versus PD-L1 (AUC = 0.82, 0.83 vs. 0.50, 0.72). This resource enables additional high-resolution investigations of the breast TME.
Collapse
Affiliation(s)
- Lily Xu
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kaitlyn Saunders
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shao-Po Huang
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hildur Knutsdottir
- Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
| | - Kenneth Martinez-Algarin
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Isabella Terrazas
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Heather M McArthur
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | - Sangeetha M Reddy
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Evanthia T Roussos Torres
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Isaac S Chan
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
6
|
Hermawan A, Wulandari F, Yudi Utomo R, Asmah Susidarti R, Kirihata M, Meiyanto E. Transcriptomics analyses reveal the effects of Pentagamaboronon-0-ol on PI3K/Akt and cell cycle of HER2+ breast cancer cells. Saudi Pharm J 2023; 31:101847. [PMID: 38028209 PMCID: PMC10652209 DOI: 10.1016/j.jsps.2023.101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Monoclonal antibodies and targeted therapies against HER2+ breast cancer has improved overall and disease-free survival in patients; however, encountering drug resistance causes recurrence, necessitating the development of newer HER2-targeted medications. A curcumin analog PGB-0-ol showed most cytotoxicity against HCC1954 HER2+ breast cancer cells than against other subtypes of breast cancer cells. Objective Here, we employed next-generation sequencing technology to elucidate the molecular mechanism underlying the effect of PGB-0-ol on HCC1954 HER2+ breast cancer cells. Methods The molecular mechanism underlying the action of PGB-0-ol on HCC1954 HER2+ breast cancer cells was determined using next-generation sequencing technologies. Additional bioinformatics studies were performed, including gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, disease-gene, and drug-gene associations, network topology analysis (NTA), and gene set enrichment analysis (GSEA). Results We detected 2,263 differentially expressed genes (DEGs) (1,459 upregulated and 804 downregulated) in the PGB-0-ol- and DMSO-treated HCC1954 cells. KEGG enrichment data revealed the control of phosphatidylinositol signaling system, and ErbB signaling following PGB-0-ol treatment. Gene ontology (GO) enrichment analysis demonstrated that these DEGs governed cell cycle, participated in the mitotic spindle and nuclear membrane, and controlled kinase activity at the molecular level. According to the NTA data for GO enrichment, GSEA data for KEGG, drug-gene and disease-gene, PGB-0-ol regulated PI3K/Akt signaling and cell cycle in breast cancer. Overall, our investigation revealed the transcriptomic profile of PGB-0-ol-treated HCC1954 breast cancer cells following PGB-0-ol therapy. Bioinformatics analyses showed that PI3K/Akt signaling and cell cycle was modulated. However, further studies are required to validate the findings of this study.
Collapse
Affiliation(s)
- Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
- Laboratory of Advanced Pharmaceutical Sciences. APSLC Building, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| | - Febri Wulandari
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| | - Rohmad Yudi Utomo
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| | - Ratna Asmah Susidarti
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| | - Mitsunori Kirihata
- Research Center for BNCT, Osaka Metropolitan University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Edy Meiyanto
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| |
Collapse
|
7
|
Marczyk M, Qing T, O'Meara T, Yagahoobi V, Pelekanou V, Bai Y, Reisenbichler E, Cole KS, Li X, Gunasekharan V, Ibrahim E, Fanucci K, Wei W, Rimm DL, Pusztai L, Blenman KRM. Tumor immune microenvironment of self-identified African American and non-African American triple negative breast cancer. NPJ Breast Cancer 2022; 8:88. [PMID: 35869114 PMCID: PMC9307813 DOI: 10.1038/s41523-022-00449-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
Differences in the tumor immune microenvironment may result in differences in prognosis and response to treatment in cancer patients. We hypothesized that differences in the tumor immune microenvironment may exist between African American (AA) and NonAA patients, due to ancestry-related or socioeconomic factors, that may partially explain differences in clinical outcomes. We analyzed clinically matched triple-negative breast cancer (TNBC) tissues from self-identified AA and NonAA patients and found that stromal TILs, PD-L1 IHC-positivity, mRNA expression of immune-related pathways, and immunotherapy response predictive signatures were significantly higher in AA samples (p < 0.05; Fisher's Exact Test, Mann-Whitney Test, Permutation Test). Cancer biology and metabolism pathways, TAM-M2, and Immune Exclusion were significantly higher in NonAA samples (p < 0.05; Permutation Test, Mann-Whitney Test). There were no differences in somatic tumor mutation burden. Overall, there is greater immune infiltration and inflammation in AA TNBC and these differences may impact response to immune checkpoint inhibitors and other therapeutic agents that modulate the immune microenvironment.
Collapse
Affiliation(s)
- Michal Marczyk
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
- Yale Cancer Center, Yale University, New Haven, CT, USA
| | - Tao Qing
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, CT, USA
| | - Tess O'Meara
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, CT, USA
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Vesal Yagahoobi
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Vasiliki Pelekanou
- Department of Pathology, Yale University, New Haven, CT, USA
- Precision Medicine - Oncology, Translational Medical Oncology, Translational Medicine Early Development, Sanofi, Cambridge, MA, USA
| | - Yalai Bai
- Department of Pathology, Yale University, New Haven, CT, USA
| | | | - Kimberly S Cole
- Department of Pathology, Yale University, New Haven, CT, USA
- Sema4 Genomics, Branford, CT, USA
| | - Xiaotong Li
- Department of Computational Biology & Bioinformatics, Biological & Biomedical Sciences, Yale University, New Haven, CT, USA
| | - Vignesh Gunasekharan
- Yale Cancer Center, Yale University, New Haven, CT, USA
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, CT, USA
| | - Eiman Ibrahim
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | | | - Wei Wei
- Yale Cancer Center, Yale University, New Haven, CT, USA
- Department of Biostatistics, Yale University, New Haven, CT, USA
| | - David L Rimm
- Yale Cancer Center, Yale University, New Haven, CT, USA
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, CT, USA
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Lajos Pusztai
- Yale Cancer Center, Yale University, New Haven, CT, USA.
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, CT, USA.
| | - Kim R M Blenman
- Yale Cancer Center, Yale University, New Haven, CT, USA.
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, CT, USA.
- Department of Computer Science, Yale University, New Haven, CT, USA.
| |
Collapse
|
8
|
miR-18a Mediates Immune Evasion in ER-Positive Breast Cancer through Wnt Signaling. Cells 2022; 11:cells11101672. [PMID: 35626709 PMCID: PMC9139289 DOI: 10.3390/cells11101672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/09/2022] [Accepted: 04/25/2022] [Indexed: 01/16/2023] Open
Abstract
ER-positive (ER+) breast cancer is considered immunologically ‘silent’ with fewer tumor-infiltrating immune cells. We have previously demonstrated the role of miR-18a in mediating invasion and poor prognosis in ER+ breast cancer by activation of the Wnt signaling pathway. Here, we explored the immune-modulatory functions of high levels of miR-18a in these tumors. A microarray-based gene expression analysis performed in miR-18a over-expressed ER+ breast cancer cell lines demonstrated dysregulation and suppression of immune-related pathways. Stratification of the ER+ tumor samples by miR-18a levels in the TCGA and METABRIC cohort and immune cell identification performed using CIBERSORT and Immune CellAI algorithms revealed a higher proportion of T-regulatory cells (p < 0.001) and a higher CD4/CD8 ratio (p < 0.01). miR-18a over-expressed MCF7 co-cultured with THP-1 showed decreased antigen presentation abilities and increased invasiveness and survival. They also promoted the differentiation of pro-tumorigenic M2 macrophages. Inhibition of the Wnt pathway in miR-18a over-expressed cells brought about the restoration of TAP-1, a protein critical for antigen presentation. Examination of tumor specimens from our case series showed that miR-18a high ER+ tumors had a dense lymphocyte infiltrate when compared to miR-18a low tumors but expressed a higher CD4/CD8 ratio and the M2 macrophage marker CD206, along with the invasive marker MMP9. We report for the first time an association between miR-18a-mediated Wnt signaling and stromal immune modulation in ER+ tumors. Our results highlight the possibility of formulating specific Wnt pathway inhibitors that may be used in combination with immune checkpoint blockers (ICB) for sensitizing ‘immune-cold’ ER+ tumors to immunotherapy.
Collapse
|
9
|
Rodríguez MDCR, Rodríguez IG, Nattress C, Qureshi A, Halldén G. HDAC Inhibitors Enhance Efficacy of the Oncolytic Adenoviruses Ad∆∆ and Ad-3∆-A20T in Pancreatic and Triple-Negative Breast Cancer Models. Viruses 2022; 14:1006. [PMID: 35632748 PMCID: PMC9143155 DOI: 10.3390/v14051006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 02/07/2023] Open
Abstract
The prognosis for triple-negative breast cancer (TNBC) and pancreatic ductal adenocarcinoma (PDAC) is dismal. TNBC and PDAC are highly aggressive cancers with few treatment options and a potential for rapid resistance to standard-of-care chemotherapeutics. Oncolytic adenoviruses (OAds) represent a promising tumour-selective strategy that can overcome treatment resistance and eliminate cancer cells by lysis and host immune activation. We demonstrate that histone deacetylase inhibitors (HDACi) potently enhanced the cancer-cell killing of our OAds, Ad∆∆ and Ad-3∆-A20T in TNBC and PDAC preclinical models. In the TNBC cell lines MDA-MB-436, SUM159 and CAL51, cell killing, viral uptake and replication were increased when treated with sublethal doses of the Class-I-selective HDACis Scriptaid, Romidepsin and MS-275. The pan-HDACi, TSA efficiently improved OAd efficacy, both in vitro and in SUM159 xenograft models in vivo. Cell killing and Ad∆∆ replication was also significantly increased in five PDAC cell lines when pre-treated with TSA. Efficacy was dependent on treatment time and dose, and on the specific genetic alterations in each cell line. Expression of the cancer specific αvß6-integrin supported higher viral uptake of the integrin-retargeted Ad-3∆-A20T in combination with Scriptaid. In conclusion, we demonstrate that inhibition of specific HDACs is a potential means to enhance OAd activity, supporting clinical translation.
Collapse
Affiliation(s)
| | - Inés García Rodríguez
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam Institute for Infection and Immunity, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Callum Nattress
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK;
| | - Ahad Qureshi
- Centre for Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (M.D.C.R.R.); (A.Q.)
| | - Gunnel Halldén
- Centre for Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (M.D.C.R.R.); (A.Q.)
| |
Collapse
|
10
|
Nguyen BA, Ho J, De La Cruz Diaz JS, Nishimura S, Kaplan DH. TGFβ activating integrins β6 and β8 are dysregulated in inflammatory skin disease and cutaneous melanoma. J Dermatol Sci 2022; 106:2-11. [PMID: 35277328 PMCID: PMC9124681 DOI: 10.1016/j.jdermsci.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/12/2022] [Accepted: 01/26/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Integrins avβ6 and avβ8 are expressed by keratinocytes and transactivate latent TGFβ. In a murine model, integrin mediated activation of TGFβ has been shown to be critical in maintaining skin homeostasis, specifically playing roles in epidermal retention of Langerhans cells and resident memory cells T cells (Trm). OBJECTIVE We examine expression of Integrins β6 and β8 in human skin, inflammatory skin disease, benign nevi, and melanoma and hypothesize that integrin expression is dysregulated in disease. METHODS Using immunohistochemistry, we stained tissue from normal human skin (n = 8), psoriasis (n = 6), atopic dermatitis (n = 6), lichen planus (n = 5), benign nevi (n = 24), and melanoma (n = 25) with anti-integrin β6 and anti-integrin β8 to survey expression pattern. We also performed a retrospective chart review in the melanoma cohort to examine if integrin β6 and β8 expression was associated with increased Breslow depth and worse prognostic staging. RESULTS Here, we show that human keratinocytes express integrins β6 and β8, similar to murine keratinocytes. We also found that inflammatory skin conditions have increased Integrin β6, but not Integrin β8 expression. Furthermore, we identified that melanomas have greatly increased expression of integrin β8 compared to nevi. Additionally, high expression of integrin β8 was correlated with greater Breslow depth at diagnosis and with worse prognostic staging. CONCLUSION These findings demonstrate that like murine keratinocytes, human keratinocytes express integrin β6 and β8 under steady state conditions. Moreover, altered integrin expression may participate in the development or maintenance of cutaneous inflammation as well as tumor immune evasion.
Collapse
Affiliation(s)
- Breanna A Nguyen
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jonhan Ho
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jacinto S De La Cruz Diaz
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Stephen Nishimura
- Department of Pathology, University of California San Francisco, San Francisco, CA, United States
| | - Daniel H Kaplan
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
11
|
Cheng T, Chen P, Chen J, Deng Y, Huang C. Landscape Analysis of Matrix Metalloproteinases Unveils Key Prognostic Markers for Patients With Breast Cancer. Front Genet 2022; 12:809600. [PMID: 35069702 PMCID: PMC8770541 DOI: 10.3389/fgene.2021.809600] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BRCA) is the most common cancer in the world, of which incidence rate and mortality are the highest in women. Being responsible for the remodeling and degradation of extracellular matrix proteins, matrix metalloproteinases (MMPs) have been regarded as one of the most important protease family related to tumorigenesis. It has been demonstrated that MMPs play crucial roles in some tumor invasion and metastasis. However, the potential roles of MMPs in tumorigenesis and progression of BRCA and its subtype remain elusive. Herein, we conducted a systematic study on MMPs via a series of database-based retrospective analysis, including TCGA, R Studio, GEPIA, Kaplan-Meier Plotter, cBioPortal, STRING, GeneMANIA and TIMER. As a result, many MMP family members were differentially expressed in patients with BRCA, e.g., the expressions of MMP1, MMP9, MMP11 and MMP13 were up-regulated, whereas the expression levels of MMP19 and MMP28 were down-regulated. MMP9, MMP12, MMP15 and MMP27 were significantly correlated with the clinical stages of BRCA, implying their important roles in the occurrence and development of BRCA. In addition, the survival analysis indicated that different expression pattern of MMPs exhibited distinct outcomes in patient with BRCA, e.g., patients with high expression of MMP2, MMP8, MMP16, MMP17, MMP19, MMP20, MMP21, MMP24, MMP25, MMP26 and MMP27 had a prolonged survival time, while the others (MMP1, MMP7, MMP9, MMP12 and MMP15) exhibited poor prognosis. Subsequent functional and network analysis revealed MMPs were mainly correlated with parathyroid hormone synthesis and secretion pathway, collagen metabolism, and their effect on the activities of serine hydrolase, serine peptidase and aminopeptidase. Notably, our analysis showed that the expression of MMPs was significantly correlated with the infiltration of various immune cells in BRCA, including CD8+T cells, CD4+T cells, macrophages, neutrophils, B cells, and dendritic cells, suggesting the close correlations between MMPs and immune functions. In short, our study disclosed MMPs play multiple biological roles in the development of BRCA, MMP1 and MMP9 might be used as independent prognostic markers and potential therapeutic targets for diagnosis and treatment for patients with BRCA.
Collapse
Affiliation(s)
- Tianyi Cheng
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Peiying Chen
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Jingyi Chen
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Yingtong Deng
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Chen Huang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China.,Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China
| |
Collapse
|
12
|
Li D, Dong C, Ma X, Zhao X. Integrin α vβ 6-targeted MR molecular imaging of breast cancer in a xenograft mouse model. Cancer Imaging 2021; 21:44. [PMID: 34187570 PMCID: PMC8244136 DOI: 10.1186/s40644-021-00411-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 06/08/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The motif RXDLXXL-based nanoprobes allow specific imaging of integrin αvβ6, a protein overexpressed during tumorigenesis and tumor progression of various tumors. We applied a novel RXDLXXL-coupled cyclic arginine-glycine-aspartate (RGD) nonapeptide conjugated with ultrasmall superparamagnetic iron oxide nanoparticles (referred to as cFK-9-USPIO) for the application of integrin αvβ6-targeted magnetic resonance (MR) molecular imaging for breast cancer. METHODS A novel MR-targeted nanoprobe, cFK-9-USPIO, was synthesized by conjugating integrin αvβ6-targeted peptide cFK-9 to N-amino (-NH2)-modified USPIO nanoparticles via a dehydration esterification reaction. Integrin αvβ6-positive mouse breast cancer (4 T1) and integrin αvβ6 negative human embryonic kidney 293 (HEK293) cell lines were incubated with cFK-9-AbFlour 647 (blocking group) or cFK-9-USPIO (experimental group), and subsequently imaged using laser scanning confocal microscopy (LSCM) and 3.0 Tesla magnetic resonance imaging (MRI) system. The affinity of cFK-9 targeting αvβ6 was analyzed by calculating the mean fluorescent intensity in cells, and the nanoparticle targeting effect was measured by the reduction of T2 values in an in vitro MRI. The in vivo MRI capability of cFK-9-USPIO was investigated in 4 T1 xenograft mouse models. Binding of the targeted nanoparticles to αvβ6-positive 4 T1 tumors was determined by ex vivo histopathology. RESULTS In vitro laser scanning confocal microscopy (LSCM) imaging showed that the difference in fluorescence intensity between the targeting and blocking groups of 4 T1 cells was significantly greater than that in HEK293 cells (P < 0.05). The in vitro MRI demonstrated a more remarkable T2 reduction in 4 T1 cells than in HEK293 cells (P < 0.001). The in vivo MRI of 4 T1 xenograft tumor-bearing nude mice showed significant T2 reduction in tumors compared to controls. Prussian blue staining further confirmed that αvβ6 integrin-targeted nanoparticles were specifically accumulated in 4 T1 tumors and notably fewer nanoparticles were detected in 4 T1 tumors of mice injected with control USPIO and HEK293 tumors of mice administered cFK-9-USPIO. CONCLUSIONS Integrin αvβ6-targeted nanoparticles have great potential for use in the detection of αvβ6-overexpressed breast cancer with MR molecular imaging.
Collapse
Affiliation(s)
- Dengfeng Li
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| | | | - Xiaohong Ma
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| | - Xinming Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| |
Collapse
|
13
|
Borrero-García LD, Del Mar Maldonado M, Medina-Velázquez J, Troche-Torres AL, Velazquez L, Grafals-Ruiz N, Dharmawardhane S. Rac inhibition as a novel therapeutic strategy for EGFR/HER2 targeted therapy resistant breast cancer. BMC Cancer 2021; 21:652. [PMID: 34074257 PMCID: PMC8170972 DOI: 10.1186/s12885-021-08366-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 05/17/2021] [Indexed: 11/10/2022] Open
Abstract
Background Even though targeted therapies are available for cancers expressing oncogenic epidermal growth receptor (EGFR) and (or) human EGFR2 (HER2), acquired or intrinsic resistance often confounds therapy success. Common mechanisms of therapy resistance involve activating receptor point mutations and (or) upregulation of signaling downstream of EGFR/HER2 to Akt and (or) mitogen activated protein kinase (MAPK) pathways. However, additional pathways of resistance may exist thus, confounding successful therapy. Methods To determine novel mechanisms of EGFR/HER2 therapy resistance in breast cancer, gefitinib or lapatinib resistant variants were created from SKBR3 breast cancer cells. Syngenic therapy sensitive and resistant SKBR3 variants were characterized for mechanisms of resistance by mammosphere assays, viability assays, and western blotting for total and phospho proteins. Results Gefitinib and lapatinib treatments reduced mammosphere formation in the sensitive cells, but not in the therapy resistant variants, indicating enhanced mesenchymal and cancer stem cell-like characteristics in therapy resistant cells. The therapy resistant variants did not show significant changes in known therapy resistant pathways of AKT and MAPK activities downstream of EGFR/HER2. However, these cells exhibited elevated expression and activation of the small GTPase Rac, which is a pivotal intermediate of GFR signaling in EMT and metastasis. Therefore, the potential of the Rac inhibitors EHop-016 and MBQ-167 to overcome therapy resistance was tested, and found to inhibit viability and induce apoptosis of therapy resistant cells. Conclusions Rac inhibition may represent a viable strategy for treatment of EGFR/HER2 targeted therapy resistant breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08366-7.
Collapse
Affiliation(s)
- Luis D Borrero-García
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Maria Del Mar Maldonado
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Julia Medina-Velázquez
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Angel L Troche-Torres
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Luis Velazquez
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Nilmary Grafals-Ruiz
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Suranganie Dharmawardhane
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico.
| |
Collapse
|
14
|
Davies JA, Marlow G, Uusi-Kerttula HK, Seaton G, Piggott L, Badder LM, Clarkson RWE, Chester JD, Parker AL. Efficient Intravenous Tumor Targeting Using the αvβ6 Integrin-Selective Precision Virotherapy Ad5 NULL-A20. Viruses 2021; 13:864. [PMID: 34066836 PMCID: PMC8151668 DOI: 10.3390/v13050864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
We previously developed a refined, tumor-selective adenovirus, Ad5NULL-A20, harboring tropism ablating mutations in each major capsid protein, to ablate all native means of infection. We incorporated a 20-mer peptide (A20) in the fiber knob for selective infection via αvβ6 integrin, a marker of aggressive epithelial cancers. Methods: To ascertain the selectivity of Ad5NULL-A20 for αvβ6-positive tumor cell lines of pancreatic and breast cancer origin, we performed reporter gene and cell viability assays. Biodistribution of viral vectors in mice harboring xenografts with low, medium, and high αvβ6 levels was quantified by qPCR for viral genomes 48 h post intravenous administration. Results: Ad5NULL-A20 vector transduced cells in an αvβ6-selective manner, whilst cell killing mediated by oncolytic Ad5NULL-A20 was αvβ6-selective. Biodistribution analysis following intravenous administration into mice bearing breast cancer xenografts demonstrated that Ad5NULL-A20 resulted in significantly reduced liver accumulation coupled with increased tumor accumulation compared to Ad5 in all three models, with tumor-to-liver ratios improved as a function of αvβ6 expression. Conclusions: Ad5NULL-A20-based virotherapies efficiently target αvβ6-integrin-positive tumors following intravenous administration, validating the potential of Ad5NULL-A20 for systemic applications, enabling tumor-selective overexpression of virally encoded therapeutic transgenes.
Collapse
Affiliation(s)
- James A. Davies
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK; (J.A.D.); (G.M.); (H.K.U.-K.); (L.M.B.); (J.D.C.)
| | - Gareth Marlow
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK; (J.A.D.); (G.M.); (H.K.U.-K.); (L.M.B.); (J.D.C.)
| | - Hanni K. Uusi-Kerttula
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK; (J.A.D.); (G.M.); (H.K.U.-K.); (L.M.B.); (J.D.C.)
| | - Gillian Seaton
- School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK; (G.S.); (L.P.); (R.W.E.C.)
| | - Luke Piggott
- School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK; (G.S.); (L.P.); (R.W.E.C.)
| | - Luned M. Badder
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK; (J.A.D.); (G.M.); (H.K.U.-K.); (L.M.B.); (J.D.C.)
| | - Richard W. E. Clarkson
- School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK; (G.S.); (L.P.); (R.W.E.C.)
| | - John D. Chester
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK; (J.A.D.); (G.M.); (H.K.U.-K.); (L.M.B.); (J.D.C.)
- Velindre Cancer Centre, Cardiff CF14 2TL, UK
| | - Alan L. Parker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK; (J.A.D.); (G.M.); (H.K.U.-K.); (L.M.B.); (J.D.C.)
| |
Collapse
|
15
|
Zheng X, Zhu Y, Wang X, Hou Y, Fang Y. Silencing of ITGB6 inhibits the progression of cervical carcinoma via regulating JAK/STAT3 signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:803. [PMID: 34268416 PMCID: PMC8246156 DOI: 10.21037/atm-21-1669] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/29/2021] [Indexed: 12/03/2022]
Abstract
Background Integrin β6 (ITGB6), a key submonomer of integrin αvβ6, plays an important role in epithelial-to-mesenchymal transition (EMT), wound healing, epithelial-derived tumor growth, fibrosis, and epithelial repair. However, the role of ITGB6 in cervical carcinoma (CC) remains elusive. Methods The expression levels of ITGB6 in CC tissues and cell lines were determined using quantitative real-time polymerase chain reaction (qRT-PCR). The cell viability, proliferation, apoptosis, migration, and invasion were evaluated by Cell Counting Kit-8 (CCK-8), colony-forming, flow cytometry, and Transwell assay, respectively. The expression of related proteins, including EMT markers and the Janus kinase/signal transducer and activator of transcription (JAK/STAT3) signaling markers, were detected using western blotting. Results The ITGB6 expression in CC tissues and cells (C-33A, Hela, SiHa, and Caski) was remarkably higher than that in paracarcinoma tissues and ECT1/E6E7 cells. The data from The Cancer Genome Atlas (TCGA) data set suggested that patients with CC with high ITGB6 expression showed poorer overall survival (OS). Compared with the empty transfection group (si-NC), si-ITGB6 restrained the proliferation, migration, and invasion of SiHa and Hela cells, while promoting cell apoptosis. si-ITGB6 suppression decreased the expression of Snail, vimentin, and N-cadherin, while increasing E-cadherin expression. Further research showed that si-ITGB6 reduced p-JAK1/JAK1, p-JAK2/JAK2, and p-STAT3/STAT3 expression in the JAK/STAT3 signaling pathway. Interestingly, proliferation, migration, invasion, and the expressions of the molecular markers of the JAK/STAT3 signaling pathway and EMT pathway induced by ITGB6 were altered by RO8191 (JAK/STAT3 pathway activator). Furthermore, the protein expression levels of Snail, vimentin, N-cadherin, p-STAT3/STAT3, p-JAK1/JAK1, and p-JAK2/JAK2 in tumor tissues were higher than those in adjacent normal tissue, while the expression level of E-cadherin was downregulated in tumor tissues. Conclusions Silencing of ITGB6 restrains cell proliferation, migration and invasion, and promotes apoptosis in CC by inhibiting JAK/STAT signaling pathways. Thus, ITGB6 may perhaps be a new and useful candidate target for treating CC.
Collapse
Affiliation(s)
- Xiaoxia Zheng
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University/Jinan Maternity and Child Care Hospital Affiliated, Jinan, China
| | - Yanan Zhu
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University/Jinan Maternity and Child Care Hospital Affiliated, Jinan, China
| | - Xiaoping Wang
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University/Jinan Maternity and Child Care Hospital Affiliated, Jinan, China
| | - Yanmei Hou
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University/Jinan Maternity and Child Care Hospital Affiliated, Jinan, China
| | - Yingji Fang
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University/Jinan Maternity and Child Care Hospital Affiliated, Jinan, China
| |
Collapse
|
16
|
Zhong C, Li ZX, Yang LJ, Wu G, Xiang B, Wang YL, Zhou Q. ITGB6 may promote proliferation and invasion in pancreatic cancer. Arch Med Sci 2021; 20:267-279. [PMID: 38414469 PMCID: PMC10895961 DOI: 10.5114/aoms/114039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/06/2019] [Indexed: 02/29/2024] Open
Abstract
Introduction The ITGB6 gene encoding a protein that can regulate the integrin αvβ6 heterodimer protein expression in different status was shown to play an important role in multiple human cancers, such as brain cancer, colon cancer and oral cancer, and is related to clinical progression. This study aims to explore the function and the mechanism of the ITGB6 gene or protein in pancreatic cancer. Material and methods We examined the expression of ITGB6 in pancreatic cancer using immunohistochemistry and analyzed the relationship between the expression of ITGB6 and the clinicopathologic features in pancreatic cancer patients. In addition, a bioinformatic method was used to analyze the ITGB6 mRNA level in pancreatic tumor tissues compared with normal pancreatic tissues and to analyze the correlation between high KIF23 expression and prognosis in pancreatic cancer patients. Moreover, colony formation assay, MTT assay, cell scratch, cell invasion and western blot assays in vitro and a xenograft mouse model in vivo were performed to analyze the effect of KIF23 on proliferation and invasion of pancreatic cancer cells. Results Increased expression of ITGB6 was significantly correlated with poor clinical outcome in both our clinical data and TCGA data of pancreatic cancer. Furthermore, functional assays revealed that ITGB6 knockdown in vivo and in vitro might inhibit cancer cell proliferation and the ability of invasion or migration. Conclusions Our data suggest that ITGB6 is associated with pancreatic cancer malignant progression. Hence, ITGB6 may serve as a potential target of pancreatic cancer for future research, and further study is needed.
Collapse
Affiliation(s)
- Chao Zhong
- Department of Traditional Chinese Medicine of Orthopedic and Traumatic, Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu City, Sichuan Province, China
| | - Zhi-Xi Li
- Department of Respiratory Medicine, East Hospital, Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu City, Sichuan Province, China
| | - Ling-Jing Yang
- Department of Respiratory Medicine, East Hospital, Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu City, Sichuan Province, China
| | - Gang Wu
- Department of Hepatobiliary Surgery, Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu City, Sichuan Province, China
| | - Bo Xiang
- Department of Cardiosurgery, Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu City, Sichuan Province, China
| | - Yu-Lan Wang
- Department of Oncology, Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu City, Sichuan Province, China
| | - Qing Zhou
- Department of Ultrasound, Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu City, Sichuan Province, China
| |
Collapse
|
17
|
Bagati A, Kumar S, Jiang P, Pyrdol J, Zou AE, Godicelj A, Mathewson ND, Cartwright ANR, Cejas P, Brown M, Giobbie-Hurder A, Dillon D, Agudo J, Mittendorf EA, Liu XS, Wucherpfennig KW. Integrin αvβ6-TGFβ-SOX4 Pathway Drives Immune Evasion in Triple-Negative Breast Cancer. Cancer Cell 2021; 39:54-67.e9. [PMID: 33385331 PMCID: PMC7855651 DOI: 10.1016/j.ccell.2020.12.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/18/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
Cancer immunotherapy shows limited efficacy against many solid tumors that originate from epithelial tissues, including triple-negative breast cancer (TNBC). We identify the SOX4 transcription factor as an important resistance mechanism to T cell-mediated cytotoxicity for TNBC cells. Mechanistic studies demonstrate that inactivation of SOX4 in tumor cells increases the expression of genes in a number of innate and adaptive immune pathways important for protective tumor immunity. Expression of SOX4 is regulated by the integrin αvβ6 receptor on the surface of tumor cells, which activates TGFβ from a latent precursor. An integrin αvβ6/8-blocking monoclonal antibody (mAb) inhibits SOX4 expression and sensitizes TNBC cells to cytotoxic T cells. This integrin mAb induces a substantial survival benefit in highly metastatic murine TNBC models poorly responsive to PD-1 blockade. Targeting of the integrin αvβ6-TGFβ-SOX4 pathway therefore provides therapeutic opportunities for TNBC and other highly aggressive human cancers of epithelial origin.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/pharmacology
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Antineoplastic Agents, Immunological/therapeutic use
- Cell Line, Tumor
- Drug Resistance, Neoplasm
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Integrins/antagonists & inhibitors
- Integrins/genetics
- Integrins/metabolism
- Mice
- Neoplasm Transplantation
- SOXC Transcription Factors/genetics
- SOXC Transcription Factors/metabolism
- Sequence Analysis, RNA
- Signal Transduction/drug effects
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/metabolism
- Transforming Growth Factor beta/genetics
- Triple Negative Breast Neoplasms/drug therapy
- Triple Negative Breast Neoplasms/genetics
- Triple Negative Breast Neoplasms/immunology
- Tumor Escape/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Archis Bagati
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Smith Building, Room 736, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02215, USA
| | - Sushil Kumar
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Smith Building, Room 736, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Peng Jiang
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jason Pyrdol
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Smith Building, Room 736, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Angela E Zou
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Smith Building, Room 736, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Anze Godicelj
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Smith Building, Room 736, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Nathan D Mathewson
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Smith Building, Room 736, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Adam N R Cartwright
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Smith Building, Room 736, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Paloma Cejas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Anita Giobbie-Hurder
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Deborah Dillon
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Judith Agudo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Smith Building, Room 736, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Elizabeth A Mittendorf
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02215, USA; Breast Oncology Program, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - X Shirley Liu
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Smith Building, Room 736, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA 02215, USA; Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
18
|
Li F, Shang Y, Shi F, Zhang L, Yan J, Sun Q, She J. Expression of Integrin β6 and HAX-1 Correlates with Aggressive Features and Poor Prognosis in Esophageal Squamous Cell Carcinoma. Cancer Manag Res 2020; 12:9599-9608. [PMID: 33061645 PMCID: PMC7537805 DOI: 10.2147/cmar.s274892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose The development of esophageal squamous cell carcinoma (ESCC) is a complicated process in which cell adhesion and motility, mediated by integrins, are involved through connecting the cytoskeleton to extracellular matrix. Different mechanisms via which integrin β6 participates in cancer invasion and metastasis have been described by numerous studies; however, the expression and clinical significance of integrin β6 in ESCC remain unknown. Methods To investigate the differential expression of integrin β6 in ESCC, qPCR and immunohistochemistry assays were performed in 10 paired human samples. A total of 137 ESCC samples were further enrolled to evaluate the expression levels of integrin β6 and its endocytic trafficking regulator HS1-associated protein X-1 (HAX-1), followed by the evaluation of their correlation with clinicopathological parameters. The overall survival was analyzed using the Kaplan–Meier method, with significant variables further evaluated by multivariate Cox regression analyses. Results The expression of integrin β6 was markedly increased in ESCC compared with matched adjacent normal tissues. Among the ESCC samples, positive expression of integrin β6 was observed in 41.6% tumors, which was associated with histological differentiation, lymph node metastasis and TNM stage. High expression of HAX-1 was detected in 47.4% tumors, and there was a positive relationship between the expression levels of integrin β6 and HAX-1. Furthermore, the expression of integrin β6 and HAX-1 were independent unfavorable indicators for prognosis. Patients with positive integrin β6 and high HAX-1 expression demonstrated worst outcomes. Conclusion The present findings suggested the predictive value of integrin β6 and HAX-1 as independent indicators of poor prognosis for patients with ESCC, both of which may contribute to the tumor proliferation and metastasis, leading to ESCC progression. Therefore, combined targeting of integrin β6 and HAX-1 may provide a potential novel approach for the treatment of ESCC.
Collapse
Affiliation(s)
- Fanni Li
- Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Yukui Shang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Feiyu Shi
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Lei Zhang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Jun Yan
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Qi Sun
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Junjun She
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| |
Collapse
|
19
|
Wu J, Cheng J, Zhang F, Luo X, Zhang Z, Chen S. Estrogen receptor α is involved in the regulation of ITGA8 methylation in estrogen receptor-positive breast cancer. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:993. [PMID: 32953793 PMCID: PMC7475494 DOI: 10.21037/atm-20-5220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Integrin subunit α 8 (ITGA8) methylation has been associated with the development of several cancers, but its contribution to breast cancer remains unclear. The present study aimed to investigate the methylation status of ITGA8, and the underlying regulatory mechanisms of ITGA8 methylation in breast cancer. Methods ITGA8 expression was investigated using the Gene Expression Profiling Interactive Analysis 2 (GEPIA2) database and the Breast Cancer Gene-Expression Miner v.4.4 (bc-GenExMiner v4.4). The association between ITGA8 expression levels and the survival rate of breast cancer patients was evaluated using The Cancer Genome Atlas (TCGA) database and Gene Expression-based Outcome for Breast Cancer Online (GOBO): Gene Set Analysis. Methylation-specific PCR (MSP) was used to detect the methylation of ITGA8. Protein level of ITGA8 was determined by Western blot analysis. Results ITGA8 was expressed at low levels in human breast cancer cells compared to non-tumorigenic breast cells and breast tissue, and was upregulated in estrogen receptor (ER)-positive tissue compared with ER-negative tissue (P<0.01). ITGA8 gene expression was negatively associated with breast tumor stage and survival rate in all breast cancer patients. However, ER-positive patients with low ITGA8 expression showed poorer distant metastasis-free survival (DMFS) and recurrence-free survival (RFS) rates than patients with high ITGA8 expression. This was not observed in the ER-negative population. Mechanistically speaking, hypermethylation of ITGA8 was discovered in ER-positive breast cancer cells. Administration of the methylation inhibitor, 5-aza-2’-deoxycytidine (5-aza-dC), significantly elevated protein expression of ITGA8 in ER-positive breast cancer cells compared to ER-negative cells. The positive association between ITGA8 status and methylation was also observed in clinical tissue specimens. When treated with 17-beta-estradiol, an antagonist of ERα, 5-aza-dC-induced upregulation of ITGA8 in ER-positive breast cancer cells was no longer observed. Conclusions Low ITGA8 expression in ER-positive breast cancer might be caused by the hypermethylation of ITGA8, a process dependent on ERα. Our findings provide an important foundation for investigations into ITGA8-targeted treatment strategies for ER-positive breast cancer.
Collapse
Affiliation(s)
- Jingxun Wu
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jianghong Cheng
- Shaanxi Key Laboratory of Brain Disorders and School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Fuxing Zhang
- Department of General Surgery, The First Affiliated Hospital, Xiamen University, Xiamen, China
| | - Xianyang Luo
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen, China.,Teaching Hospital of Fujian Medical University, Fuzhou, China
| | - Zhiming Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Teaching Hospital of Fujian Medical University, Fuzhou, China
| | - Shuai Chen
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Shaanxi Key Laboratory of Brain Disorders and School of Basic Medical Science, Xi'an Medical University, Xi'an, China.,Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen, China.,Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| |
Collapse
|
20
|
Nakamura S, Matsuno A, Ueda M. Improvement of biodistribution profile of a radiogallium-labeled, αvβ6 integrin-targeting peptide probe by incorporation of negatively charged amino acids. Ann Nucl Med 2020; 34:575-582. [DOI: 10.1007/s12149-020-01483-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/01/2020] [Indexed: 11/24/2022]
|
21
|
Sun Q, Dong X, Shang Y, Sun F, Niu J, Li F. Integrin αvβ6 predicts poor prognosis and promotes resistance to cisplatin in hilar cholangiocarcinoma. Pathol Res Pract 2020; 216:153022. [PMID: 32534716 DOI: 10.1016/j.prp.2020.153022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/23/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Integrin αvβ6 is associated with an extremely aggressive cancer phenotype. However, little is known about the clinicopathological significance and prognostic value of integrin αvβ6 in human hilar cholangiocarcinoma. METHODS In the present study, bioinformatics analysis demonstrated a significant increase of integrin β6 gene expression in cholangiocarcinoma tissues compared to non-tumorous tissues, which was further validated in clinical samples through RT-qPCR and western blotting analyses. Integrin αvβ6 was observed to be expressed in 48.6% of tumors, and its expression was related to a poor tumor differentiation (p = 0.002), lymph node metastasis (p<0.001) and advanced TNM stage (p=0.001). Furthermore, patients who were αvβ6-positive showed a significantly shorter overall survival period than those who were αvβ6-negative (p=0.004). Multivariate analysis confirmed that integrin αvβ6 was an independent prognostic factor (p=0.002). In addition, loss- and gain-of-function assays showed integrin αvβ6 not only played an important role in colony formation, but also protected cholangiocarcinoma cells from cisplatin-induced growth inhibition and apoptosis. ERK/MAPK signaling pathway was involved in integrin αvβ6-mediated resistance of cholangiocarcinoma cells to cisplatin. CONCLUSIONS Taken together, the present findings revealed that integrin αvβ6 could serve as a potential prognostic predictor and contribute to cisplatin resistance, which might prove to be a promising target candidate for the clinical intervention of human hilar cholangiocarcinoma.
Collapse
Affiliation(s)
- Qi Sun
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiwen Dong
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yukui Shang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Fengkai Sun
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Jun Niu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Fanni Li
- Department of Talent Highland, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
22
|
Maldonado MDM, Medina JI, Velazquez L, Dharmawardhane S. Targeting Rac and Cdc42 GEFs in Metastatic Cancer. Front Cell Dev Biol 2020; 8:201. [PMID: 32322580 PMCID: PMC7156542 DOI: 10.3389/fcell.2020.00201] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
The Rho family GTPases Rho, Rac, and Cdc42 have emerged as key players in cancer metastasis, due to their essential roles in regulating cell division and actin cytoskeletal rearrangements; and thus, cell growth, migration/invasion, polarity, and adhesion. This review will focus on the close homologs Rac and Cdc42, which have been established as drivers of metastasis and therapy resistance in multiple cancer types. Rac and Cdc42 are often dysregulated in cancer due to hyperactivation by guanine nucleotide exchange factors (GEFs), belonging to both the diffuse B-cell lymphoma (Dbl) and dedicator of cytokinesis (DOCK) families. Rac/Cdc42 GEFs are activated by a myriad of oncogenic cell surface receptors, such as growth factor receptors, G-protein coupled receptors, cytokine receptors, and integrins; consequently, a number of Rac/Cdc42 GEFs have been implicated in metastatic cancer. Hence, inhibiting GEF-mediated Rac/Cdc42 activation represents a promising strategy for targeted metastatic cancer therapy. Herein, we focus on the role of oncogenic Rac/Cdc42 GEFs and discuss the recent advancements in the development of Rac and Cdc42 GEF-interacting inhibitors as targeted therapy for metastatic cancer, as well as their potential for overcoming cancer therapy resistance.
Collapse
Affiliation(s)
- Maria Del Mar Maldonado
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Julia Isabel Medina
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Luis Velazquez
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Suranganie Dharmawardhane
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
23
|
Huang H, Yuan M, Wu SL, Ba J, Yu X, Mao X, Jin F. Clinical Significance of C-X-C Motif Chemokine Receptor 4 and Integrin αvβ6 Expression in Breast Cancer. J Breast Cancer 2020; 23:171-181. [PMID: 32395376 PMCID: PMC7192747 DOI: 10.4048/jbc.2020.23.e23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/20/2020] [Indexed: 02/06/2023] Open
Abstract
Purpose C-X-C motif chemokine receptor 4 (CXCR4) and integrin αvβ6 play important roles in the malignant progression of multiple cancers. However, it remains unclear whether the expression of one or both proteins in breast cancer (BC) is of clinical significance. In this study, we investigated the expression of CXCR4 and integrin αvβ6 in BC tissues and their correlation with clinicopathological characteristics, including survival. Methods CXCR4 and αvβ6 expression in 111 BC tissues was examined by immunocytochemistry. Correlations between the expression of the 2 proteins and patient clinicopathological characteristic were investigated using the Kaplan–Meier method and the Cox proportional hazards model. Results CXCR4 and αvβ6 were overexpressed in BC tissue compared with normal breast tissue. Overexpression of both molecules was related to lymph node status (p = 0.013 and p = 0.022, respectively). αvβ6 overexpression was also associated with tumor size (p = 0.044). A positive correlation was detected between the expression of CXCR4 and αvβ6 (r = 0.649, p = 0.001), and co-overexpression of both molecules was associated with tumor size (p = 0.018) and lymph node metastasis (p = 0.015). Kaplan–Meier analysis revealed that overexpression of CXCR4, αvβ6, or both molecules was associated with short overall survival (OS; p < 0.001, p < 0.001, and p = 0.009, respectively) and disease-free survival (DFS; p < 0.001, p = 0.005, and p = 0.019, respectively). Multivariate analysis indicated that lymph node metastasis was an independent prognostic factor for unfavorable OS and DFS (p = 0.002 and p = 0.005, respectively), whereas co-overexpression of CXCR4 and αvβ6 was an independent prognostic factor only for OS (p = 0.043). Conclusion CXCR4 and αvβ6 may play synergistic roles in the progression of BC, and co-targeting of CXCR4 and αvβ6 could be a potential strategy for the prevention and treatment of BC.
Collapse
Affiliation(s)
- Hongshan Huang
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mengci Yuan
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
| | - Shuang-Ling Wu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jinling Ba
- Department of Breast Thyroid Surgery, The Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Xinmiao Yu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaoyun Mao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
24
|
Wang S, Tian J, Wang J, Liu S, Ke L, Shang C, Yang J, Wang L. Identification of the Biomarkers and Pathological Process of Heterotopic Ossification: Weighted Gene Co-Expression Network Analysis. Front Endocrinol (Lausanne) 2020; 11:581768. [PMID: 33391181 PMCID: PMC7774600 DOI: 10.3389/fendo.2020.581768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022] Open
Abstract
Heterotopic ossification (HO) is the formation of abnormal mature lamellar bone in extra-skeletal sites, including soft tissues and joints, which result in high rates of disability. The understanding of the mechanism of HO is insufficient. The aim of this study was to explore biomarkers and pathological processes in HO+ samples. The gene expression profile GSE94683 was downloaded from the Gene Expression Omnibus database. Sixteen samples from nine HO- and seven HO+ subjects were analyzed. After data preprocessing, 3,529 genes were obtained for weighted gene co-expression network analysis. Highly correlated genes were divided into 13 modules. Finally, the cyan and purple modules were selected for further study. Gene ontology functional annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment indicated that the cyan module was enriched in a variety of components, including protein binding, membrane, nucleoplasm, cytosol, poly(A) RNA binding, biosynthesis of antibiotics, carbon metabolism, endocytosis, citrate cycle, and metabolic pathways. In addition, the purple module was enriched in cytosol, mitochondrion, protein binding, structural constituent of ribosome, rRNA processing, oxidative phosphorylation, ribosome, and non-alcoholic fatty liver disease. Finally, 10 hub genes in the cyan module [actin related protein 3 (ACTR3), ADP ribosylation factor 4 (ARF4), progesterone receptor membrane component 1 (PGRMC1), ribosomal protein S23 (RPS23), mannose-6-phosphate receptor (M6PR), WD repeat domain 12 (WDR12), synaptosome associated protein 23 (SNAP23), actin related protein 2 (ACTR2), siah E3 ubiquitin protein ligase 1 (SIAH1), and glomulin (GLMN)] and 2 hub genes in the purple module [proteasome 20S subunit alpha 3 (PSMA3) and ribosomal protein S27 like (RPS27L)] were identified. Hub genes were validated through quantitative real-time polymerase chain reaction. In summary, 12 hub genes were identified in two modules that were associated with HO. These hub genes could provide new biomarkers, therapeutic ideas, and targets in HO.
Collapse
|
25
|
Chang HW, Yen CY, Chen CH, Tsai JH, Tang JY, Chang YT, Kao YH, Wang YY, Yuan SSF, Lee SY. Evaluation of the mRNA expression levels of integrins α3, α5, β1 and β6 as tumor biomarkers of oral squamous cell carcinoma. Oncol Lett 2018; 16:4773-4781. [PMID: 30214610 DOI: 10.3892/ol.2018.9168] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 05/01/2018] [Indexed: 12/16/2022] Open
Abstract
Integrin signaling may modulate several different functions involved in cell migration, invasion, proliferation and motility, and is a potential candidate biomarker for oral cancer. In the present study, a total of four integrin genes were evaluated as potential biomarkers of oral squamous cell carcinoma (OSCC). Gene expression was determined using the reverse transcription-quantitative polymerase chain reaction in 55 OSCC and 55 matched normal oral tissues. The performance of individual and combined biomarkers was analyzed by receiver operating characteristic (ROC) analysis based on the relative mRNA expression (OSCC vs. matched oral tissue from the tumor-free margin), which was calculated using the ΔΔCq value (ΔCq of OSCC-ΔCq of oral tissue from the tumor-free margin of the same patient). In the individual ROC analysis, the areas under the ROC curve (AUCs) of relative mRNA expression (ΔΔCq) of integrin subunit α3 (ITGA3), integrin subunit α5 (ITGA5), integrin subunit β1 (ITGB1) and integrin subunit β6 (ITGB6) in all tumor locations were 0.724, 0.698, 0.640 and 0.657, respectively. For locations 2 (tongue/mouth part) and 3 (edentulous ridge), their individual AUC values were 0.840, 0.765, 0.725 and 0.763, respectively. In the cumulative ROC analysis, ITGA3, ITGA5 and ITGB1 genes exhibited the highest combined AUC values (0.809 and 0.871 for all locations and locations 2 and 3 combined, respectively) compared with other biomarker combinations. In conclusion, the results of the present study identified that higher mRNA expressions of ITGA3, ITGA5, ITGB1 and ITGB6 genes are suitable for OSCC diagnosis biomarkers. Cumulative ROC analysis indicated an improved overall performance compared with the best individual integrin biomarker of OSCC.
Collapse
Affiliation(s)
- Hsueh-Wei Chang
- Department of Biomedical Sciences and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C.,Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C.,Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, R.O.C.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, R.O.C
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan, R.O.C.,School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Chung-Ho Chen
- Department of Dentistry, Kaohsiung Municipal Hsiao Kang Hospital, Kaohsiung 81267, Taiwan, R.O.C
| | - Jun-Hsu Tsai
- Department of Oral and Maxillofacial Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, R.O.C.,School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, R.O.C.,Department of Radiation Oncology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Yung-Ting Chang
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C.,Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Nankang, Taipei 11574, Taiwan, R.O.C
| | - Yu-Hsun Kao
- Department of Oral and Maxillofacial Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, R.O.C.,School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Yen-Yun Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C.,Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, R.O.C
| | - Shyng-Shiou F Yuan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, R.O.C.,Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, R.O.C
| | - Sheng-Yang Lee
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan, R.O.C.,Division of Orthodontics, Wan-Fang Medical Center, Taipei Medical University, Taipei 11696, Taiwan, R.O.C
| |
Collapse
|
26
|
Mangiferin inhibits cell migration and invasion through Rac1/WAVE2 signalling in breast cancer. Cytotechnology 2018; 70:593-601. [PMID: 29455393 DOI: 10.1007/s10616-017-0140-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/02/2017] [Indexed: 01/09/2023] Open
Abstract
Breast tumour progression results from the advancement of the disease to a metastatic phenotype. Rac1 and Cdc42 belong to the Rho family of genes that, together with their downstream effectors, Wiskott-Aldrich Syndrome protein-family verprolin-homologous protein 2 (WAVE2) and Arp2/3, assume a vital part in cytoskeletal rearrangement and the arrangement of film projections that advance malignant cell relocation and invasion. Mangiferin is a characteristic polyphenolic compound from Mangifera indica L. (Anacardiaceae), ordinarily referred to as mango, that is consumed worldwide as a natural product, including culinary and seasoning applications. Mangiferin delays breast malignancy development and progression by inhibiting different signalling pathways required in mitogenic signalling and metastatic progression. Studies were performed to analyse the impact of mangiferin on Rac1/WAVE2 flagging, relocation and invasion in highly metastatic human MDA-MB-231 mammary cells. Additional studies led to the observation that comparative treatment with mangiferin caused marked reduction in tumour cell movement and invasion. Taken together, these discoveries demonstrate that mangiferin treatment adequately hinders Rac1/WAVE2 flagging and diminishes metastatic phenotypic expression in malignant mammary cells, indicating that mangiferin may provide a benefit as a novel restorative approach in the treatment of metastatic breast cancer.
Collapse
|
27
|
Farré PL, Scalise GD, Duca RB, Dalton GN, Massillo C, Porretti J, Graña K, Gardner K, De Luca P, De Siervi A. CTBP1 and metabolic syndrome induce an mRNA and miRNA expression profile critical for breast cancer progression and metastasis. Oncotarget 2018; 9:13848-13858. [PMID: 29568399 PMCID: PMC5862620 DOI: 10.18632/oncotarget.24486] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/31/2018] [Indexed: 12/27/2022] Open
Abstract
Metastatic breast cancer (BrCa) is still one of the main causes of cancer death in women. Metabolic syndrome (MeS), a risk factor for BrCa, is associated to high grade tumors, increased metastasis and recurrence of this disease. C-terminal binding protein 1 (CTBP1) is a co-repressor of tumor suppressor genes that is activated by low NAD+/NADH ratio. Previously, we demonstrated that CTBP1 hyperactivation by MeS increased tumor growth in MDA-MB-231-derived xenografts regulating several genes and miRNAs. In this work, our aim was to elucidate the role of CTBP1 and MeS in BrCa metastasis. We found that CTBP1 protein diminished adhesion while increased migration of triple negative BrCa cells. CTBP1 and MeS modulated the expression of multiple genes (ITGB4, ITGB6, PRSS2, COL17A1 and FABP4) and miRNAs (miR-378a-3p, miR-146a-5p, let-7e-3p, miR-381-5p, miR-194-5p, miR-494-3p) involved in BrCa progression of MDA-MB-231-derived xenografts. Furthermore, we demonstrated that MeS increased lung micrometastasis and liver neoplastic disease in mice. CTBP1 hyperactivation seems to be critical for MeS effect on BrCa metastasis since CTBP1 depletion completely impaired the detection of circulating tumor cells. Our results highlight CTBP1 and MeS impact on BrCa progression positioning them as key properties to be considered for BrCa patient prognosis and management.
Collapse
Affiliation(s)
- Paula L Farré
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - Georgina D Scalise
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - Rocío B Duca
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - Guillermo N Dalton
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - Cintia Massillo
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - Juliana Porretti
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - Karen Graña
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - Kevin Gardner
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Paola De Luca
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - Adriana De Siervi
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| |
Collapse
|
28
|
Affiliation(s)
- Victoria A. Meliopoulos
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
29
|
Safikhani Z, Smirnov P, Thu KL, Silvester J, El-Hachem N, Quevedo R, Lupien M, Mak TW, Cescon D, Haibe-Kains B. Gene isoforms as expression-based biomarkers predictive of drug response in vitro. Nat Commun 2017; 8:1126. [PMID: 29066719 PMCID: PMC5655668 DOI: 10.1038/s41467-017-01153-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 08/23/2017] [Indexed: 01/09/2023] Open
Abstract
Next-generation sequencing technologies have recently been used in pharmacogenomic studies to characterize large panels of cancer cell lines at the genomic and transcriptomic levels. Among these technologies, RNA-sequencing enable profiling of alternatively spliced transcripts. Given the high frequency of mRNA splicing in cancers, linking this feature to drug response will open new avenues of research in biomarker discovery. To identify robust transcriptomic biomarkers for drug response across studies, we develop a meta-analytical framework combining the pharmacological data from two large-scale drug screening datasets. We use an independent pan-cancer pharmacogenomic dataset to test the robustness of our candidate biomarkers across multiple cancer types. We further analyze two independent breast cancer datasets and find that specific isoforms of IGF2BP2, NECTIN4, ITGB6, and KLHDC9 are significantly associated with AZD6244, lapatinib, erlotinib, and paclitaxel, respectively. Our results support isoform expressions as a rich resource for biomarkers predictive of drug response.
Collapse
Affiliation(s)
- Zhaleh Safikhani
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON, Canada, M5G1L7
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, Canada, M5G1L7
| | - Petr Smirnov
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON, Canada, M5G1L7
| | - Kelsie L Thu
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON, Canada, M5G1L7
- Institut de Recherches Cliniques de Montréal, 110 Pine Avenue West, Montreal, QC, Canada, H2W 1R7
| | - Jennifer Silvester
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON, Canada, M5G1L7
- Institut de Recherches Cliniques de Montréal, 110 Pine Avenue West, Montreal, QC, Canada, H2W 1R7
| | - Nehme El-Hachem
- Institut de Recherches Cliniques de Montréal, 110 Pine Avenue West, Montreal, QC, Canada, H2W 1R7
| | - Rene Quevedo
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON, Canada, M5G1L7
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, Canada, M5G1L7
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON, Canada, M5G1L7
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, Canada, M5G1L7
| | - Tak W Mak
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON, Canada, M5G1L7
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, Canada, M5G1L7
- Campbell Family Institute for Breast Cancer Research, 620 University Avenue, Toronto, ON, Canada, M5G2C1
| | - David Cescon
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON, Canada, M5G1L7
- Campbell Family Institute for Breast Cancer Research, 620 University Avenue, Toronto, ON, Canada, M5G2C1
- Division of Medical Oncology and Hematology, Department of Medicine, University of Toronto, 27 King's College Circle, Toronto, ON, Canada, M5S 1A1
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON, Canada, M5G1L7.
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, Canada, M5G1L7.
- Department of Computer Science, University of Toronto, 10 King's College Road, Toronto, ON, Canada, M5S 3G4.
- Ontario Institute of Cancer Research, 661 University Avenue, Suite 510, Toronto, ON, Canada, M5G 0A3.
| |
Collapse
|
30
|
|
31
|
Desai K, Aiyappa R, Prabhu JS, Nair MG, Lawrence PV, Korlimarla A, CE A, Alexander A, Kaluve RS, Manjunath S, Correa M, Srinath BS, Patil S, Kalamdani A, Prasad MSN, Sridhar TS. HR+HER2− breast cancers with growth factor receptor–mediated EMT have a poor prognosis and lapatinib downregulates EMT in MCF-7 cells. Tumour Biol 2017; 39:1010428317695028. [DOI: 10.1177/1010428317695028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite an overall good prognosis, a significant proportion of patients with hormone receptor positive human epidermal growth factor receptor 2 negative breast cancers develop distant metastases. The metastatic potential of epithelial cells is known to be regulated by tumor–stromal interaction and mediated by epithelial-to-mesenchymal transition. Hormone receptor positive human epidermal growth factor receptor 2 negative tumors were used to estimate markers of epithelial-to-mesenchymal transition, and the luminal breast cancer cell line MCF-7 was used to examine the interactions between integrins and growth factor receptors in causation of epithelial-to-mesenchymal transition. A total of 140 primary tumors were sub-divided into groups enriched for the markers of epithelial-to-mesenchymal transition (snail family transcriptional repressor 2 and integrin β6) versus those with low levels. Within the epithelial-to-mesenchymal transition+ tumors, there was a positive correlation between the transcripts of integrin β6 and growth factor receptors—human epidermal growth factor receptor 2 and epidermal growth factor receptor. In tumors enriched for epithelial-to-mesenchymal transition markers, patients with tumors with the highest quartile of growth factor receptor transcripts had a shorter disease-free survival compared to patients with low growth factor receptor expression by Kaplan–Meier analysis (log rank, p = 0.03). Epithelial-to-mesenchymal transition was induced in MCF-7 cells by treatment with transforming growth factor beta 1 and confirmed by upregulation of SNAI1 and SNAI2 transcripts, increase of vimentin and integrin β6 protein, and repression of E-cadherin. Treatment of these cells with the dual-specificity tyrosine-kinase inhibitor lapatinib led to downregulation of epithelial-to-mesenchymal transition as indicated by lower levels of SNAI1 and SNAI2 transcripts, integrin αvβ6, and matrix metalloproteinase 9 protein. The results suggest that synergistic interactions between growth factor receptors and integrin β6 could mediate epithelial-to-mesenchymal transition and migration in a subset of luminal breast cancers and lapatinib might be effective in disrupting this interaction.
Collapse
Affiliation(s)
- Krisha Desai
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s National Academy of Health Sciences, Bangalore, India
| | - Radhika Aiyappa
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s National Academy of Health Sciences, Bangalore, India
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s National Academy of Health Sciences, Bangalore, India
| | - Madhumathy G Nair
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s National Academy of Health Sciences, Bangalore, India
| | - Patrick Varun Lawrence
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s National Academy of Health Sciences, Bangalore, India
| | - Aruna Korlimarla
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s National Academy of Health Sciences, Bangalore, India
| | - Anupama CE
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s National Academy of Health Sciences, Bangalore, India
| | - Annie Alexander
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s National Academy of Health Sciences, Bangalore, India
| | - Rohini S Kaluve
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s National Academy of Health Sciences, Bangalore, India
| | | | | | - BS Srinath
- Sri Shankara Cancer Hospital and Research Centre, Bangalore, India
| | - Shekhar Patil
- Sri Shankara Cancer Hospital and Research Centre, Bangalore, India
| | - Anjali Kalamdani
- Sri Shankara Cancer Hospital and Research Centre, Bangalore, India
| | - MSN Prasad
- Sri Shankara Cancer Hospital and Research Centre, Bangalore, India
| | - TS Sridhar
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s National Academy of Health Sciences, Bangalore, India
| |
Collapse
|
32
|
Desai K, Nair MG, Prabhu JS, Vinod A, Korlimarla A, Rajarajan S, Aiyappa R, Kaluve RS, Alexander A, Hari PS, Mukherjee G, Kumar RV, Manjunath S, Correa M, Srinath BS, Patil S, Prasad MSN, Gopinath KS, Rao RN, Violette SM, Weinreb PH, Sridhar TS. High expression of integrin β6 in association with the Rho-Rac pathway identifies a poor prognostic subgroup within HER2 amplified breast cancers. Cancer Med 2016; 5:2000-11. [PMID: 27184932 PMCID: PMC4873607 DOI: 10.1002/cam4.756] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 01/29/2016] [Accepted: 04/05/2016] [Indexed: 12/31/2022] Open
Abstract
Integrin αvβ6 is involved in the transition from ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) of the breast. In addition, integrin β6 (ITGB6) is of prognostic value in invasive breast cancers, particularly in HER2+ subtype. However, pathways mediating the activity of integrin αvβ6 in clinical progression of invasive breast cancers need further elucidation. We have examined human breast cancer specimens (N = 460) for the expression of integrin β6 (ITGB6) mRNA by qPCR. In addition, we have examined a subset (N = 147) for the expression of αvβ6 integrin by immunohistochemistry (IHC). The expression levels of members of Rho–Rac pathway including downstream genes (ACTR2,ACTR3) and effector proteinases (MMP9,MMP15) were estimated by qPCR in the HER2+ subset (N = 59). There is a significant increase in the mean expression of ITGB6 in HER2+ tumors compared to HR+HER2‐ and triple negative (TNBC) subtypes (P = 0.00). HER2+ tumors with the highest levels (top quartile) of ITGB6 have significantly elevated levels of all the genes of the Rho–Rac pathway (P‐values from 0.01 to 0.0001). Patients in this group have a significantly shorter disease‐free survival compared to the group with lower ITGB6 levels (HR = 2.9 (0.9–8.9), P = 0.05). The mean level of ITGB6 expression is increased further in lymph node‐positive tumors. The increased regional and distant metastasis observed in HER2+ tumors with high levels of ITGB6 might be mediated by the canonical Rho–Rac pathway through increased expression of MMP9 and MMP15.
Collapse
Affiliation(s)
- Krisha Desai
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - Madhumathy G Nair
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - Anupama Vinod
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - Aruna Korlimarla
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - Savitha Rajarajan
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - Radhika Aiyappa
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - Rohini S Kaluve
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - Annie Alexander
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - P S Hari
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | | | - Rekha V Kumar
- Kidwai Medical Institute of Oncology, Bangalore, India
| | | | | | - B S Srinath
- Shankara Cancer Hospital and Research Centre, Bangalore, India
| | - Shekhar Patil
- Shankara Cancer Hospital and Research Centre, Bangalore, India
| | - M S N Prasad
- Shankara Cancer Hospital and Research Centre, Bangalore, India
| | | | - Raman N Rao
- Rangadore Memorial Hospital, Bangalore, India
| | | | | | - T S Sridhar
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| |
Collapse
|