1
|
Rudden M, Herman R, Rose M, Bawdon D, Cox DS, Dodson E, Holden MTG, Wilkinson AJ, James AG, Thomas GH. The molecular basis of thioalcohol production in human body odour. Sci Rep 2020; 10:12500. [PMID: 32719469 PMCID: PMC7385124 DOI: 10.1038/s41598-020-68860-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/26/2020] [Indexed: 11/09/2022] Open
Abstract
Body odour is a characteristic trait of Homo sapiens, however its role in human behaviour and evolution is poorly understood. Remarkably, body odour is linked to the presence of a few species of commensal microbes. Herein we discover a bacterial enzyme, limited to odour-forming staphylococci that are able to cleave odourless precursors of thioalcohols, the most pungent components of body odour. We demonstrated using phylogenetics, biochemistry and structural biology that this cysteine-thiol lyase (C-T lyase) is a PLP-dependent enzyme that moved horizontally into a unique monophyletic group of odour-forming staphylococci about 60 million years ago, and has subsequently tailored its enzymatic function to human-derived thioalcohol precursors. Significantly, transfer of this enzyme alone to non-odour producing staphylococci confers odour production, demonstrating that this C-T lyase is both necessary and sufficient for thioalcohol formation. The structure of the C-T lyase compared to that of other related enzymes reveals how the adaptation to thioalcohol precursors has evolved through changes in the binding site to create a constrained hydrophobic pocket that is selective for branched aliphatic thioalcohol ligands. The ancestral acquisition of this enzyme, and the subsequent evolution of the specificity for thioalcohol precursors implies that body odour production in humans is an ancient process.
Collapse
Affiliation(s)
- Michelle Rudden
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Reyme Herman
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Matthew Rose
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Daniel Bawdon
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Diana S Cox
- Unilever R&D, Colworth Science Park, Sharnbrook, Bedford, MK44 1LQ, UK
| | - Eleanor Dodson
- Department of Chemistry, University of York, Wentworth Way, York, YO10 5DD, UK
| | | | - Anthony J Wilkinson
- Department of Chemistry, University of York, Wentworth Way, York, YO10 5DD, UK.
| | - A Gordon James
- Unilever R&D, Colworth Science Park, Sharnbrook, Bedford, MK44 1LQ, UK
| | - Gavin H Thomas
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.
| |
Collapse
|
2
|
Tofalo R, Perpetuini G, Battistelli N, Tittarelli F, Suzzi G. Correlation between IRC7 gene expression and 4-mercapto-4-methylpentan-2-one production in Saccharomyces cerevisiae strains. Yeast 2020; 37:487-495. [PMID: 32329917 DOI: 10.1002/yea.3468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/21/2020] [Accepted: 04/19/2020] [Indexed: 12/11/2022] Open
Abstract
Volatile thiols are not present in must but are synthesized and released by wine yeasts during alcoholic fermentation. In this study, autochthonous and commercial Saccharomyces cerevisiae strains were characterized for the expression of the main genes involved in thiols metabolism and their production in wine. New primer sets were developed on the basis of the S288c genome to evaluate the expression of Cys3, Cys4, MET17 and IRC7 genes. Obtained data revealed the occurrence of some thiols, for example, 4-mercapto-4-methylpentan-2-one (4-MMP) and 3-mercaptohexan-1-ol (3-MH) in Pecorino white wine. All genes were upregulated, but only for IRC7 was found a correlation with 4-MMP release: strains with the highest production showed the highest transcription level. IRC7 gene could be proposed as target for the selection of S. cerevisiae strains to increase thiols content in wine.
Collapse
Affiliation(s)
- Rosanna Tofalo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Giorgia Perpetuini
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Noemi Battistelli
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Fabrizia Tittarelli
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Giovanna Suzzi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
3
|
Ribič U, Jakše J, Toplak N, Koren S, Kovač M, Klančnik A, Jeršek B. Transporters and Efflux Pumps Are the Main Mechanisms Involved in Staphylococcus epidermidis Adaptation and Tolerance to Didecyldimethylammonium Chloride. Microorganisms 2020; 8:E344. [PMID: 32121333 PMCID: PMC7143832 DOI: 10.3390/microorganisms8030344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 01/28/2023] Open
Abstract
Staphylococcus epidermidis cleanroom strains are often exposed to sub-inhibitory concentrations of disinfectants, including didecyldimethylammonium chloride (DDAC). Consequently, they can adapt or even become tolerant to them. RNA-sequencing was used to investigate adaptation and tolerance mechanisms of S. epidermidis cleanroom strains (SE11, SE18), with S. epidermidis SE11Ad adapted and S. epidermidis SE18To tolerant to DDAC. Adaptation to DDAC was identified with up-regulation of genes mainly involved in transport (thioredoxin reductase [pstS], the arsenic efflux pump [gene ID, SE0334], sugar phosphate antiporter [uhpT]), while down-regulation was seen for the Agr system (agrA, arC, agrD, psm, SE1543), for enhanced biofilm formation. Tolerance to DDAC revealed the up-regulation of genes associated with transporters (L-cysteine transport [tcyB]; uracil permease [SE0875]; multidrug transporter [lmrP]; arsenic efflux pump [arsB]); the down-regulation of genes involved in amino-acid biosynthesis (lysine [dapE]; histidine [hisA]; methionine [metC]), and an enzyme involved in peptidoglycan, and therefore cell wall modifications (alanine racemase [SE1079]). We show for the first time the differentially expressed genes in DDAC-adapted and DDAC-tolerant S. epidermidis strains, which highlight the complexity of the responses through the involvement of different mechanisms.
Collapse
Affiliation(s)
- Urška Ribič
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (U.R.); (A.K.)
| | - Jernej Jakše
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia;
| | - Nataša Toplak
- Omega d.o.o., Dolinškova 8, SI-1000 Ljubljana, Slovenia; (N.T.); (S.K.); (M.K.)
| | - Simon Koren
- Omega d.o.o., Dolinškova 8, SI-1000 Ljubljana, Slovenia; (N.T.); (S.K.); (M.K.)
| | - Minka Kovač
- Omega d.o.o., Dolinškova 8, SI-1000 Ljubljana, Slovenia; (N.T.); (S.K.); (M.K.)
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (U.R.); (A.K.)
| | - Barbara Jeršek
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (U.R.); (A.K.)
| |
Collapse
|
4
|
Zareian M, Silcock P, Bremer P. Effect of medium compositions on microbially mediated volatile organic compounds release profile. J Appl Microbiol 2018; 125:813-827. [PMID: 29741231 DOI: 10.1111/jam.13908] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/22/2018] [Accepted: 04/03/2018] [Indexed: 11/29/2022]
Abstract
AIMS To monitor temporal changes in the volatile organic compounds' (VOCs) profile generated by the metabolic activities of Pseudomonads in real time. METHODS AND RESULTS Three Pseudomonas strains were cultivated in Vogel's broth, supplemented with glucose (0·5 or 1%) and/or protein (egg white powder at 0 or 2%) at 25°C. Glucose or egg white protein contents influenced the VOCs' release profile for alcohols, carbonyls and sulphur derivatives. Increasing glucose content resulted in higher alcohol and ketone contents. Glucose showed a lower effect on the VOCs' release profile, mainly impacting on individual compounds, such as m/z 89 (3-methyl-1-butanol). In contrast, egg white protein enhanced production of VOCs such as m/z 75 (2-methyl-1-propanol) and m/z 63 (dimethyl sulphide) regardless of glucose level present in the medium. At the end of bacteria growth phase (54, 60 and 72 h), the fingerprint of VOCs was different from the early growth phase. Cells near to the end of their growth phase (54, 60 and 72 h) produced a distinctly different array of compounds compared to those produced in early growth phase, for example, cyclic compounds were detected in early growth phase, whereas sulphur derivatives were more common in late growth phase. CONCLUSIONS Pseudomonads-mediated VOCs' fingerprint as a response to varying growth conditions can be identified as latent biomarkers. SIGNIFICANCE AND IMPACT OF THE STUDY Understanding how microbially mediated VOCs' release profile responds to varying growth conditions can potentially be used as a rapid method for detecting microbial activities in controlled conditions such as food quality systems.
Collapse
Affiliation(s)
- M Zareian
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - P Silcock
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - P Bremer
- Department of Food Science, University of Otago, Dunedin, New Zealand
| |
Collapse
|
5
|
Zha M, Sun B, Yin S, Mehmood A, Cheng L, Wang C. Generation of 2-Furfurylthiol by Carbon-Sulfur Lyase from the Baijiu Yeast Saccharomyces cerevisiae G20. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2114-2120. [PMID: 29436228 DOI: 10.1021/acs.jafc.7b06125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
2-Furfurylthiol is the representative aroma compound of Chinese sesame-flavored baijiu. Previous studies demonstrated that baijiu yeasts could generate 2-furfurylthiol using furfural and l-cysteine as precursors and that the Saccharomyces cerevisiae genes STR3 and CYS3 are closely related to 2-furfurylthiol biosynthesis. To confirm the mechanism of the STR3- and CYS3-gene products on 2-furfurylthiol biosynthesis, their encoded proteins were purified, and we confirmed their activities as carbon-sulfur lyases. Str3p and Cys3p were able to cleave the cysteine-furfural conjugate to release 2-furfurylthiol. Moreover, the characterization of the enzymatic properties of the purified proteins shows good thermal stabilities and wide pH tolerances, which enable their strong potential for various applications. These data provide direct evidence that yeast Str3p and Cys3p release 2-furfurylthiol in vitro, which can be applied to improve baijiu flavor.
Collapse
Affiliation(s)
- Musu Zha
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University , Beijing 100048 , China
- Beijing Engineering and Technology Research Center of Food Additives , Beijing Technology & Business University , Beijing 100048 , China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University , Beijing 100048 , China
- Beijing Engineering and Technology Research Center of Food Additives , Beijing Technology & Business University , Beijing 100048 , China
| | - Sheng Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University , Beijing 100048 , China
- Beijing Engineering and Technology Research Center of Food Additives , Beijing Technology & Business University , Beijing 100048 , China
| | - Arshad Mehmood
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University , Beijing 100048 , China
- Beijing Engineering and Technology Research Center of Food Additives , Beijing Technology & Business University , Beijing 100048 , China
| | - Lei Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University , Beijing 100048 , China
- Beijing Engineering and Technology Research Center of Food Additives , Beijing Technology & Business University , Beijing 100048 , China
| | - Chengtao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University , Beijing 100048 , China
- Beijing Engineering and Technology Research Center of Food Additives , Beijing Technology & Business University , Beijing 100048 , China
| |
Collapse
|
6
|
Allegrini A, Astegno A, La Verde V, Dominici P. Characterization of C-S lyase from Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365 and its potential role in food flavour applications. J Biochem 2017; 161:349-360. [PMID: 28003427 DOI: 10.1093/jb/mvw079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/17/2016] [Indexed: 01/07/2023] Open
Abstract
Volatile thiols have substantial impact on the aroma of many beverages and foods. Thus, the control of their formation, which has been linked to C-S lyase enzymatic activities, is of great significance in industrial applications involving food flavours. Herein, we have carried out a spectroscopic and functional characterization of a putative pyridoxal 5'-phosphate (PLP)-dependent C-S lyase from the lactic acid bacterium Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365 (LDB C-S lyase). Recombinant LDB C-S lyase exists as a tetramer in solution and shows spectral properties of enzymes containing PLP as cofactor. The enzyme has a broad substrate specificity toward sulphur-containing amino acids with aminoethyl-L-cysteine and L-cystine being the most effective substrates over L-cysteine and L-cystathionine. Notably, the protein also reveals cysteine-S-conjugate β-lyase activity in vitro, and is able to cleave a cysteinylated substrate precursor into the corresponding flavour-contributing thiol, with a catalytic efficiency higher than L-cystathionine. Contrary to similar enzymes of other lactic acid bacteria however, LDB C-S lyase is not capable of α,γ-elimination activity towards L-methionine to produce methanethiol, which is a significant compound in flavour development. Based on our results, future developments can be expected regarding the flavour-forming potential of Lactobacillus C-S lyase and its use in enhancing food flavours.
Collapse
|
7
|
Improvement of aromatic thiol release through the selection of yeasts with increased β-lyase activity. Int J Food Microbiol 2016; 225:1-8. [PMID: 26971012 DOI: 10.1016/j.ijfoodmicro.2016.03.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 01/22/2016] [Accepted: 03/01/2016] [Indexed: 11/23/2022]
Abstract
The development of a selective medium for the rapid differentiation of yeast species with increased aromatic thiol release activity has been achieved. The selective medium was based on the addition of S-methyl-l-cysteine (SMC) as β-lyase substrate. In this study, a panel of 245 strains of Saccharomyces cerevisiae strains was tested for their ability to grow on YCB-SMC medium. Yeast strains with an increased β-lyase activity grew rapidly because of their ability to release ammonium from SMC in comparison to others, and allowed for the easy isolation and differentiation of yeasts with promising properties in oenology, or another field, for aromatic thiol release. The selective medium was also helpful for the discrimination between those S. cerevisiae strains, which present a common 38-bp deletion in the IRC7 sequence (present in around 88% of the wild strains tested and are likely to be less functional for 4-mercapto-4-methylpentan-2-one (4MMP) production), and those S. cerevisiae strains homozygous for the full-length IRC7 allele. The medium was also helpful for the selection of non-Saccharomyces yeasts with increased β-lyase activity. Based on the same medium, a highly sensitive, reproducible and non-expensive GC-MS method for the evaluation of the potential volatile thiol release by different yeast isolates was developed.
Collapse
|
8
|
Denawaka CJ, Fowlis IA, Dean JR. Source, impact and removal of malodour from soiled clothing. J Chromatogr A 2016; 1438:216-25. [PMID: 26898151 DOI: 10.1016/j.chroma.2016.02.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 10/22/2022]
Abstract
Static headspace--multi-capillary column--gas chromatography--ion mobility spectrometry (SHS-MCC-GC-IMS) has been applied to the analysis of malodour compounds from soiled clothing (socks and T-shirts), pre- and post washing, at low temperature (20°C). Six volatile compounds (VCs) (i.e. butyric acid, dimethyl disulfide, dimethyl trisulfide, 2-heptanone, 2-nonanone and 2-octanone) were identified. After sensory evaluation of soiled garments they were subjected to laundering with non-perfumed washing powder. The efficiency of the laundering process was evaluated by determining the reduction of each detected volatile compound (VC) post-wash (damp) for socks and T-shirts; VC concentration reductions of between 16 and 100% were noted, irrespective of sample type. Additionally the T-shirt study considered the change in VC concentration post-wash (dry) i.e. after the drying process at ambient temperature. Overall VC concentration reductions of between 25 and 98% were noted for T-shirt samples pre-wash to post-wash (dry). Finally, a potential biochemical metabolic pathway for the formation of malodour compounds associated with bacteria in axillary sweat is proposed.
Collapse
Affiliation(s)
- Chamila J Denawaka
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Ian A Fowlis
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - John R Dean
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
| |
Collapse
|
9
|
Bawdon D, Cox DS, Ashford D, James AG, Thomas GH. Identification of axillary Staphylococcus sp. involved in the production of the malodorous thioalcohol 3-methyl-3-sufanylhexan-1-ol. FEMS Microbiol Lett 2015; 362:fnv111. [PMID: 26163522 DOI: 10.1093/femsle/fnv111] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2015] [Indexed: 12/31/2022] Open
Abstract
The production of malodour by humans is mediated by bacterial transformation of naturally secreted, non-odorous molecules. Specifically in the underarm (axilla), malodour arises due to biotransformation by the microbiota of dipeptide-conjugated thioalcohols, particularly S-[1-(2-hydroxyethyl)-1-methylbutyl]-(L)-cysteinylglycine (Cys-Gly-3M3SH). This molecule, secreted by the axilla, has a well-established role in malodour when metabolized to free thioalcohol by bacteria. We present Cys-Gly-3M3SH biotransformation data from a library of skin-isolated corynebacteria and staphylococci and report a significant variation in thioalcohol generation across individual bacterial species. Staphylococcus hominis, Staphylococcus haemolyticus and Staphylococcus lugdunensis were particularly efficient Cys-Gly-3M3SH transformers. In contrast, Staphylococcus epidermidis and Corynebacterium tuberculostearicum, both highly prevalent axillary commensals, are low producers of 3M3SH. We also identify significant differences between the ability of several isolates to biotransform Cys-Gly-3M3SH compared to S-benzyl-L-Cys-Gly, a dipeptide-linked version of a commonly used malodour precursor substrate. Finally, using traditional biochemical assays we subsequently establish that Cys-Gly-3M3SH is actively transported into S. hominis, rather than passively diffusing across the membrane. This work significantly enhances our knowledge of Cys-Gly-3M3SH biotransformation by physiologically important bacteria in the axillary microbiota.
Collapse
Affiliation(s)
- Daniel Bawdon
- Department of Biology (Area 10), University of York, Wentworth Way, York YO10 5DD, UK
| | - Diana S Cox
- Unilever Discover, Colworth Science Park, Sharnbrook, Bedford MK44 1LQ, UK
| | - David Ashford
- Bioscience Technology Facility, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - A Gordon James
- Unilever Discover, Colworth Science Park, Sharnbrook, Bedford MK44 1LQ, UK
| | - Gavin H Thomas
- Department of Biology (Area 10), University of York, Wentworth Way, York YO10 5DD, UK
| |
Collapse
|
10
|
Stevens D, Cornmell R, Taylor D, Grimshaw SG, Riazanskaia S, Arnold DS, Fernstad SJ, Smith AM, Heaney LM, Reynolds JC, Thomas CLP, Harker M. Spatial variations in the microbial community structure and diversity of the human foot is associated with the production of odorous volatiles. FEMS Microbiol Ecol 2014; 91:1-11. [DOI: 10.1093/femsec/fiu018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
11
|
He X, Slupsky CM. Metabolic fingerprint of dimethyl sulfone (DMSO2) in microbial-mammalian co-metabolism. J Proteome Res 2014; 13:5281-92. [PMID: 25245235 DOI: 10.1021/pr500629t] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is growing awareness that intestinal microbiota alters the energy harvesting capacity of the host and regulates metabolism. It has been postulated that intestinal microbiota are able to degrade unabsorbed dietary components and transform xenobiotic compounds. The resulting microbial metabolites derived from the gastrointestinal tract can potentially enter the circulation system, which, in turn, affects host metabolism. Yet, the metabolic capacity of intestinal microbiota and its interaction with mammalian metabolism remains largely unexplored. Here, we review a metabolic pathway that integrates the microbial catabolism of methionine with mammalian metabolism of methanethiol (MT), dimethyl sulfide (DMS), and dimethyl sulfoxide (DMSO), which together provide evidence that supports the microbial origin of dimethyl sulfone (DMSO2) in the human metabolome. Understanding the pathway of DMSO2 co-metabolism expends our knowledge of microbial-derived metabolites and motivates future metabolomics-based studies on ascertaining the metabolic consequences of intestinal microbiota on human health, including detoxification processes and sulfur xenobiotic metabolism.
Collapse
Affiliation(s)
- Xuan He
- Department of Nutrition, Department of Food Science and Technology, One Shields Avenue , University of California, Davis, Davis, California 95616, United States
| | | |
Collapse
|
12
|
Volatile biomarkers from human melanoma cells. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 931:90-6. [DOI: 10.1016/j.jchromb.2013.05.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 05/09/2013] [Accepted: 05/13/2013] [Indexed: 11/20/2022]
|
13
|
Daily battle against body odor: towards the activity of the axillary microbiota. Trends Microbiol 2013; 21:305-12. [DOI: 10.1016/j.tim.2013.03.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 01/17/2023]
|
14
|
James AG, Austin CJ, Cox DS, Taylor D, Calvert R. Microbiological and biochemical origins of human axillary odour. FEMS Microbiol Ecol 2012; 83:527-40. [PMID: 23278215 DOI: 10.1111/1574-6941.12054] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 10/23/2012] [Accepted: 11/29/2012] [Indexed: 10/27/2022] Open
Abstract
The generation of malodour on various sites of the human body is caused by the microbial biotransformation of odourless natural secretions into volatile odorous molecules. On the skin surface, distinctive odours emanate, in particular, from the underarm (axilla), where a large and permanent population of microorganisms thrives on secretions from the eccrine, apocrine and sebaceous glands. Traditional culture-based microbiological studies inform us that this resident microbiota consists mainly of Gram-positive bacteria of the genera Staphylococcus, Micrococcus, Corynebacterium and Propionibacterium. Among the molecular classes that have been implicated in axillary malodour are short- and medium-chain volatile fatty acids, 16-androstene steroids and, most recently, thioalcohols. Most of the available evidence suggests that members of the Corynebacterium genus are the primary causal agents of axillary odour, with the key malodour substrates believed to originate from the apocrine gland. In this article, we examine, in detail, the microbiology and biochemistry of malodour formation on axillary skin, focussing on precursor-product relationships, odour-forming enzymes and metabolic pathways and causal organisms. As well as reviewing the literature, some relevant new data are presented and considered alongside that already available in the public domain to reach an informed view on the current state-of-the-art, as well as future perspectives.
Collapse
|
15
|
Filipiak W, Ruzsanyi V, Mochalski P, Filipiak A, Bajtarevic A, Ager C, Denz H, Hilbe W, Jamnig H, Hackl M, Dzien A, Amann A. Dependence of exhaled breath composition on exogenous factors, smoking habits and exposure to air pollutants. J Breath Res 2012; 6:036008. [PMID: 22932429 PMCID: PMC3863686 DOI: 10.1088/1752-7155/6/3/036008] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Non-invasive disease monitoring on the basis of volatile breath markers is a very attractive but challenging task. Several hundreds of compounds have been detected in exhaled air using modern analytical techniques (e.g. proton-transfer reaction mass spectrometry, gas chromatography-mass spectrometry) and have even been linked to various diseases. However,the biochemical background for most of compounds detected in breath samples has not been elucidated; therefore, the obtained results should be interpreted with care to avoid false correlations. The major aim of this study was to assess the effects of smoking on the composition of exhaled breath. Additionally, the potential origin of breath volatile organic compounds (VOCs) is discussed focusing on diet, environmental exposure and biological pathways based on other's studies. Profiles of VOCs detected in exhaled breath and inspired air samples of 115 subjects with addition of urine headspace derived from 50 volunteers are presented. Samples were analyzed with GC-MS after preconcentration on multibed sorption tubes in case of breath samples and solid phase micro-extraction (SPME) in the case of urine samples. Altogether 266 compounds were found in exhaled breath of at least 10% of the volunteers. From these, 162 compounds were identified by spectral library match and retention time (based on reference standards). It is shown that the composition of exhaled breath is considerably influenced by exposure to pollution and indoor-air contaminants and particularly by smoking. More than 80 organic compounds were found to be significantly related to smoking, the largest group comprising unsaturated hydrocarbons (29 dienes, 27 alkenes and 3 alkynes). On the basis of the presented results, we suggest that for the future understanding of breath data it will be necessary to carefully investigate the potential biological origin of volatiles, e.g., by means of analysis of tissues, isolated cell lines or other body fluids. In particular, VOCs linked to smoking habit or being the results of human exposure should be considered with care for clinical diagnosis since small changes in their concentration profiles(typically in the ppt(v)–ppb(v) range) revealing that the outbreak of certain disease might be hampered by already high background.
Collapse
Affiliation(s)
- W Filipiak
- Breath Research Institute of the Austrian Academy of Sciences, Rathausplatz 4, A-6850 Dornbirn, Austria
- Department of Anesthesia and Intensive Care, Innsbruck Medical University, Anichstr. 35, A-6020 Innsbruck, Austria
| | - V Ruzsanyi
- Breath Research Institute of the Austrian Academy of Sciences, Rathausplatz 4, A-6850 Dornbirn, Austria
- Department of Anesthesia and Intensive Care, Innsbruck Medical University, Anichstr. 35, A-6020 Innsbruck, Austria
| | - P Mochalski
- Breath Research Institute of the Austrian Academy of Sciences, Rathausplatz 4, A-6850 Dornbirn, Austria
- Department of Anesthesia and Intensive Care, Innsbruck Medical University, Anichstr. 35, A-6020 Innsbruck, Austria
| | - A Filipiak
- Breath Research Institute of the Austrian Academy of Sciences, Rathausplatz 4, A-6850 Dornbirn, Austria
- Department of Anesthesia and Intensive Care, Innsbruck Medical University, Anichstr. 35, A-6020 Innsbruck, Austria
| | - A Bajtarevic
- Breath Research Institute of the Austrian Academy of Sciences, Rathausplatz 4, A-6850 Dornbirn, Austria
- Department of Anesthesia and Intensive Care, Innsbruck Medical University, Anichstr. 35, A-6020 Innsbruck, Austria
| | - C Ager
- Breath Research Institute of the Austrian Academy of Sciences, Rathausplatz 4, A-6850 Dornbirn, Austria
- Department of Anesthesia and Intensive Care, Innsbruck Medical University, Anichstr. 35, A-6020 Innsbruck, Austria
| | - H Denz
- Breath Research Institute of the Austrian Academy of Sciences, Rathausplatz 4, A-6850 Dornbirn, Austria
- Landeskrankenhaus Natters, A-6161 Natters, Austria
| | - W Hilbe
- Universitätsklinik für Innere Medizin 5 (Hämatologie und Onkologie), Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - H Jamnig
- Landeskrankenhaus Natters, A-6161 Natters, Austria
| | - M Hackl
- Landeskrankenhaus Natters, A-6161 Natters, Austria
| | - A Dzien
- Department of Internal Medicine, Innsbruck Medical University, Bürgerstraße 2, A-6020 Innsbruck, Austria
| | - A Amann
- Breath Research Institute of the Austrian Academy of Sciences, Rathausplatz 4, A-6850 Dornbirn, Austria
- Department of Anesthesia and Intensive Care, Innsbruck Medical University, Anichstr. 35, A-6020 Innsbruck, Austria
| |
Collapse
|
16
|
Molecular analysis of volatile metabolites released specifically by Staphylococcus aureus and Pseudomonas aeruginosa. BMC Microbiol 2012; 12:113. [PMID: 22716902 PMCID: PMC3444334 DOI: 10.1186/1471-2180-12-113] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 06/20/2012] [Indexed: 11/24/2022] Open
Abstract
Background The routinely used microbiological diagnosis of ventilator associated pneumonia (VAP) is time consuming and often requires invasive methods for collection of human specimens (e.g. bronchoscopy). Therefore, it is of utmost interest to develop a non-invasive method for the early detection of bacterial infection in ventilated patients, preferably allowing the identification of the specific pathogens. The present work is an attempt to identify pathogen-derived volatile biomarkers in breath that can be used for early and non- invasive diagnosis of ventilator associated pneumonia (VAP). For this purpose, in vitro experiments with bacteria most frequently found in VAP patients, i.e. Staphylococcus aureus and Pseudomonas aeruginosa, were performed to investigate the release or consumption of volatile organic compounds (VOCs). Results Headspace samples were collected and preconcentrated on multibed sorption tubes at different time points and subsequently analyzed with gas chromatography mass spectrometry (GC-MS). As many as 32 and 37 volatile metabolites were released by S. aureus and P. aeruginosa, respectively. Distinct differences in the bacteria-specific VOC profiles were found, especially with regard to aldehydes (e.g. acetaldehyde, 3-methylbutanal), which were taken up only by P. aeruginosa but released by S. aureus. Differences in concentration profiles were also found for acids (e.g. isovaleric acid), ketones (e.g. acetoin, 2-nonanone), hydrocarbons (e.g. 2-butene, 1,10-undecadiene), alcohols (e.g. 2-methyl-1-propanol, 2-butanol), esters (e.g. ethyl formate, methyl 2-methylbutyrate), volatile sulfur compounds (VSCs, e.g. dimethylsulfide) and volatile nitrogen compounds (VNCs, e.g. 3-methylpyrrole). Importantly, a significant VOC release was found already 1.5 hours after culture start, corresponding to cell numbers of ~8*106 [CFUs/ml]. Conclusions The results obtained provide strong evidence that the detection and perhaps even identification of bacteria could be achieved by determination of characteristic volatile metabolites, supporting the clinical use of breath-gas analysis as non-invasive method for early detection of bacterial lung infections.
Collapse
|
17
|
Holt S, Cordente AG, Williams SJ, Capone DL, Jitjaroen W, Menz IR, Curtin C, Anderson PA. Engineering Saccharomyces cerevisiae to release 3-Mercaptohexan-1-ol during fermentation through overexpression of an S. cerevisiae Gene, STR3, for improvement of wine aroma. Appl Environ Microbiol 2011; 77:3626-32. [PMID: 21478306 PMCID: PMC3127618 DOI: 10.1128/aem.03009-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 03/26/2011] [Indexed: 11/20/2022] Open
Abstract
Sulfur-containing aroma compounds are key contributors to the flavor of a diverse range of foods and beverages. The tropical fruit characters of Vitis vinifera L. cv. Sauvignon blanc wines are attributed to the presence of the aromatic thiols 3-mercaptohexan-1-ol (3MH), 3-mercaptohexan-1-ol-acetate, and 4-mercapto-4-methylpentan-2-one (4MMP). These volatile thiols are found in small amounts in grape juice and are formed from nonvolatile cysteinylated precursors during fermentation. In this study, we overexpressed a Saccharomyces cerevisiae gene, STR3, which led to an increase in 3MH release during fermentation of a V. vinifera L. cv. Sauvignon blanc juice. Characterization of the enzymatic properties of Str3p confirmed it to be a pyridoxal-5'-phosphate-dependent cystathionine β-lyase, and we demonstrated that this enzyme was able to cleave the cysteinylated precursors of 3MH and 4MMP to release the free thiols. These data provide direct evidence for a yeast enzyme able to release aromatic thiols in vitro that can be applied in the development of self-cloned yeast to enhance wine flavor.
Collapse
Affiliation(s)
- Sylvester Holt
- University of Copenhagen, Copenhagen, Denmark
- School of Biological Sciences, Flinders University, Adelaide, SA, Australia
| | | | - Simon J. Williams
- School of Biological Sciences, Flinders University, Adelaide, SA, Australia
| | | | | | - Ian R. Menz
- School of Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Chris Curtin
- The Australian Wine Research Institute, Adelaide, SA, Australia
| | - Peter A. Anderson
- School of Biological Sciences, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
18
|
Abstract
Body malodour, including foot odour, suppresses social interaction by diminishing self-confidence and accelerating damage to the wearer's clothes and shoes. Most treatment agents, including aluminium anti-perspirant salts, inhibit the growth of malodourous bacteria. These metallic salts also reduce sweat by blocking the excretory ducts of sweat glands, minimizing the water source that supports bacterial growth. However, there are some drawback effects that limit the use of aluminium anti-perspirant salts. In addition, over-the-counter anti-perspirant and deodourant products may not be sufficiently effective for heavy sweaters, and strong malodour producers. Body odour treatment agents are rarely mentioned in the literature compared with other cosmetic ingredients. This review briefly summarizes the relationship among sweat, skin bacteria, and body odour; describes how odourous acids, thiols, and steroids are formed; and discusses the active ingredients, including metallic salts and herbs, that are used to treat body odour. A new class of ingredients that function by regulating the release of malodourants will also be described. These ingredients do not alter the balance of the skin flora.
Collapse
|