1
|
Wang YH. Naturally Occurring Polyhydroxylated Spirostanol Saponins, A Review of the Classification, Sources, Biosynthesis, Biological Activities, and Toxicity. Chem Biodivers 2025; 22:e202401720. [PMID: 39317680 DOI: 10.1002/cbdv.202401720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Polyhydroxylated spirostanol saponins, characterized by three or more hydroxy substitutions in the aglycone, have various interesting biological activities. In the present study, "steroids", "saponins", "polyhydroxylated", "spirostanol saponins", and "steroidal saponins" were used as search terms to screen the literature. Cited references were collected between 1950 and 2023 from the Web of Science, SciFinder, and China National Knowledge Internet (CNKI). A total of 407 polyhydroxylated spirostanol saponins were included in this review. These saponins were classified into three types, α, β, and γ. Polyhydroxylated spirostanol saponins have potential benefits, primarily anti-inflammatory, antimicrobial, cytotoxic, and cAMP phosphodiesterase inhibitory activities. These compounds were found in 11 plant families and 36 genera. The top three families containing the most saponins were Asparagaceae, Melanthiaceae, and Amaryllidaceae, and the top five genera were Trillium, Helleborus, Allium, Dracaena, and Paris. The top five plants were Trillium tschonoskii Maxim., Ypsilandra thibetica Franch., Paris polyphylla var. yunnanensis (Franch.)Hand.-Mazz., Helleborus thibetanus Franch., and Helleborus foetidus L. On the basis of their diverse biological activities, these saponins and related plant resources are worthy of further development and utilization.
Collapse
Affiliation(s)
- Yue-Hu Wang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| |
Collapse
|
2
|
Viteri R, Espinoza F, Cornejo X, Simirgiotis MJ, Manzano P. Phytochemical profiling, antioxidant, enzymatic inhibitory, and antibacterial activities of Wigandia ecuadorensis. FRONTIERS IN PLANT SCIENCE 2024; 15:1481447. [PMID: 39574448 PMCID: PMC11578724 DOI: 10.3389/fpls.2024.1481447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/14/2024] [Indexed: 11/24/2024]
Abstract
Wigandia ecuadoriensis, a member of the Namaceae family, is a source of metabolites and has been traditionally used as an anti-inflammatory. This work aimed to determine the total phenolic content (TPC), total flavonoid content (TFC), antioxidant effect, inhibition of α-glucosidase and cholinesterase enzymes (AChE, BChE), and antibacterial activity of the methanolic extract (ME) and subfractions of Wigandia ecuadoriensis. The findings revealed that ME and its subfractions exhibited significant antioxidant capacity, with the ethyl acetate fraction being the most active, displaying an IC50 of 17.66 µg/mL against the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and 10.31 µg/mL against 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS). This activity was attributed to its high total phenolic content (357.47 mg GAE/g). Furthermore, W. ecuadoriensis fractions showed marked antimicrobial properties against human pathogen strains with Minimum Bactericidal Concentration (MBC) values of 1.56-6.25 mg/mL for S. aureus, E. faecalis and E. coli. Furthermore, aqueous fraction exhibited slight inhibition of acetylcholinesterase (IC50: 915.98 µg/mL) and butyrylcholinesterase (IC50: 380.42 µg/mL). Interestingly, EF showed the greatest inhibitory effect of α-glucosidase (IC50: 38.44 µg/mL) which is more potent than the control used, acarbose (IC50: 179.07 µg/mL). UHPLC-QTOF-MS analysis identified forty compounds, including phenolic acids, flavonoids, saponins, terpenes, and fatty acyls. As far as we know, this is the first study to evaluate the chemical composition and biological potential of W. ecuadoriensis. Our results provide the first evidence to the chemical knowledge of the species W. ecuadoriensis and demonstrate its bioactive potential as an interesting source of secondary metabolites with possible beneficial properties for health.
Collapse
Affiliation(s)
- Rafael Viteri
- Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL, Polytechnic University, ESPOL, Guayaquil, Ecuador
| | - Fernando Espinoza
- Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL, Polytechnic University, ESPOL, Guayaquil, Ecuador
| | - Xavier Cornejo
- Herbario GUAY, Departamento de Botánica, Facultad de Ciencias Naturales, Universidad de Guayaquil, Guayaquil, Ecuador
| | - Mario J. Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Patricia Manzano
- Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL, Polytechnic University, ESPOL, Guayaquil, Ecuador
| |
Collapse
|
3
|
Liu J, Xu X, Zhou J, Sun G, Li Z, Zhai L, Wang J, Ma R, Zhao D, Jiang R, Sun L. Phenolic acids in Panax ginseng inhibit melanin production through bidirectional regulation of melanin synthase transcription via different signaling pathways. J Ginseng Res 2023; 47:714-725. [PMID: 38107393 PMCID: PMC10721457 DOI: 10.1016/j.jgr.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 12/19/2023] Open
Abstract
Background Our previous investigation indicated that the preparation of Panax ginseng Meyer (P. ginseng) inhibited melanogenesis. It comprised salicylic acid (SA), protocatechuic acid (PA), p-coumaric acid (p-CA), vanillic acid (VA), and caffeic acid (CA). In this investigation, the regulatory effects of P. ginseng phenolic acid monomers on melanin production were assessed. Methods In vitro and in vivo impact of phenolic acid monomers were assessed. Results SA, PA, p-CA and VA inhibited tyrosinase (TYR) to reduce melanin production, whereas CA had the opposite effects. SA, PA, p-CA and VA significantly downregulated the melanocortin 1 receptor (MC1R), cycle AMP (cAMP), protein kinase A (PKA), cycle AMP-response element-binding protein (CREB), microphthalmia-associated transcription factor (MITF) pathway, reducing mRNA and protein levels of TYR, tyrosinase-related protein 1 (TYRP1), and TYRP2. Moreover, CA treatment enhanced the cAMP, PKA, and CREB pathways to promote MITF mRNA level and phosphorylation. It also alleviated MITF protein level in α-MSH-stimulated B16F10 cells, comparable to untreated B16F10, increasing the expression of phosphorylation glycogen synthase kinase 3β (p-GSK3β), β-catenin, p-ERK/ERK, and p-p38/p38. Furthermore, the GSK3β inhibitor promoted p-GSK3β and p-MITF expression, as observed in CA-treated cells. Moreover, p38 and ERK inhibitors inhibited CA-stimulated p-p38/p38, p-ERK/ERK, and p-MITF increase, which had negative binding energies with MC1R, as depicted by molecular docking. Conclusion P. ginseng roots' phenolic acid monomers can safely inhibit melanin production by bidirectionally regulating melanin synthase transcription. Furthermore, they reduced MITF expression via MC1R/cAMP/PKA signaling pathway and enhanced MITF post-translational modification via Wnt/mitogen-activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Jianzeng Liu
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaohao Xu
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Jingyuan Zhou
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Guang Sun
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Zhenzhuo Li
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Lu Zhai
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Jing Wang
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Rui Ma
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Rui Jiang
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun, China
| |
Collapse
|
4
|
Vardhan S, Sahoo SK. Computational studies on searching potential phytochemicals against DNA polymerase activity of the monkeypox virus. J Tradit Complement Med 2023; 13:S2225-4110(23)00055-X. [PMID: 37360910 PMCID: PMC10165885 DOI: 10.1016/j.jtcme.2023.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 06/28/2023] Open
Abstract
Objectives The outbreak of monkeypox virus (MPXV) is an emerging epidemic of medical concern with 65353 confirmed cases of infection and a fatality of 115 worldwide. Since May 2022, MPXV has been rapidly disseminating across the globe through various modes of transmission, including direct contact, respiratory droplets, and consensual sex. Because of the limited medical countermeasures available to treat MPXV, the present study aimed to identify potential phytochemicals (limonoids, triterpenoids, and polyphenols) as antagonists to target the DNA polymerase protein of MPXV with the ultimate goal to inhibit the viral DNA replication mechanism and immune-mediated responses. Methods The protein-DNA and protein-ligand molecular docking were performed with the help of computational programs AutoDock Vina, iGEMDOCK and HDOCK server. The BIOVIA Discovery studio and ChimeraX were used to evaluate the protein-ligand interactions. The GROMACS 2021 was used for the molecular dynamics simulations. The ADME and toxicity properties were computed by using online servers SwissADME and pKCSM. Results Molecular docking of 609 phytochemicals and molecular dynamics simulations of lead phytochemicals glycyrrhizinic acid and apigenin-7-O-glucuronide generated useful data that supported the ability of phytochemicals to obstruct the DNA polymerase activity of the monkeypox virus. Conclusions The computational results supported that appropriate phytochemicals can be used to formulate an adjuvant therapy for the monkeypox virus.
Collapse
Affiliation(s)
- Seshu Vardhan
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, 395007, Gujarat, India
| | - Suban K. Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, 395007, Gujarat, India
| |
Collapse
|
5
|
Lim HY, Kim E, Park SH, Hwang KH, Kim D, Jung YJ, Kopalli SR, Hong YD, Sung GH, Cho JY. Antimelanogenesis Effects of Theasinensin A. Int J Mol Sci 2021; 22:ijms22147453. [PMID: 34299073 PMCID: PMC8305159 DOI: 10.3390/ijms22147453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Theasinensin A (TSA) is a major group of catechin dimers mainly found in oolong tea and black tea. This compound is also manufactured with epigallocatechin gallate (EGCG) as a substrate and is refined after the enzyme reaction. In previous studies, TSA has been reported to be effective against inflammation. However, the effect of these substances on skin melanin formation remains unknown. In this study, we unraveled the role of TSA in melanogenesis using mouse melanoma B16F10 cells and normal human epidermal melanocytes (NHEMs) through reverse transcription polymerase chain reaction (RT-PCR), Western blotting analysis, luciferase reporter assay, and enzyme-linked immunosorbent assay analysis. TSA inhibited melanin formation and secretion in α-melanocyte stimulating hormone (α-MSH)-induced B16F10 cells and NHEMs. TSA down-regulated the mRNA expression of tyrosinase (Tyr), tyrosinase-related protein 1 (Tyrp1), and Tyrp2, which are all related to melanin formation in these cells. TSA was able to suppress the activities of certain proteins in the melanocortin 1 receptor (MC1R) signaling pathway associated with melanin synthesis in B16F10 cells: cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB), protein kinase A (PKA), tyrosinase, and microphthalmia-associated transcription factor (MITF). We also confirmed α-MSH-mediated CREB activities through a luciferase reporter assay, and that the quantities of cAMP were reduced by TSA in the enzyme linked immunosorbent assay (ELISA) results. Based on these findings, TSA should be considered an effective inhibitor of hyperpigmentation.
Collapse
Affiliation(s)
- Hye Yeon Lim
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (H.Y.L.); (S.H.P.)
| | - Eunji Kim
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea;
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (H.Y.L.); (S.H.P.)
| | - Kyung Hwan Hwang
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Yongin 17074, Korea; (K.H.H.); (D.K.); (Y.D.H.)
| | - Donghyun Kim
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Yongin 17074, Korea; (K.H.H.); (D.K.); (Y.D.H.)
| | - You-Jung Jung
- Biological Resources Utilization Department, National Institute of Biological Resources, Incheon 22689, Korea;
| | | | - Yong Deog Hong
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Yongin 17074, Korea; (K.H.H.); (D.K.); (Y.D.H.)
| | - Gi-Ho Sung
- Department of Microbiology, Biomedical Institute of Mycological Resource, International St. Mary’s Hospital and College of Medicine, Catholic Kwandong University, Simgokro, 100 Gil, 7, Seo-gu, Incheon 22711, Korea
- Correspondence: (G.-H.S.); (J.Y.C.); Tel.: +82-32-290-2772 (G.-H.S.); +82-31-290-7868 (J.Y.C.)
| | - Jae Youl Cho
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (H.Y.L.); (S.H.P.)
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea;
- Correspondence: (G.-H.S.); (J.Y.C.); Tel.: +82-32-290-2772 (G.-H.S.); +82-31-290-7868 (J.Y.C.)
| |
Collapse
|