1
|
Roshni PT, Rekha PD. Essential oils: a potential alternative with promising active ingredients for pharmaceutical formulations in chronic wound management. Inflammopharmacology 2024; 32:3611-3630. [PMID: 39312099 DOI: 10.1007/s10787-024-01571-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/11/2024] [Indexed: 11/10/2024]
Abstract
Chronic wound is a major clinical challenge that complicates wound healing, mainly associated with bacterial biofilms. Bacterial burden damages tissue and persists inflammation, failing to granulate, leading to morbidity and mortality. Various therapeutic strategies and approaches have been developed for chronic wound healing in clinical practice. As treating biofilm infection is crucial in chronic wounds, a potent antibiofilm agent, essential oils have been explored extensively for their therapeutic properties and as a replacement for antibiotic therapy. Currently, several studies on essential oils and their active compounds in therapeutics, such as adjunctive therapies, nanotechnology-based treatment and their drug delivery systems, help heal chronic wounds. The antimicrobial, anti-inflammatory and antioxidant properties of essential oils make them distinct and are renowned as natural remedies to improve the healing of infected chronic wounds. Consequently, it accelerates wound closure by reducing inflammation, increasing angiogenesis and tissue regeneration. This review focuses on different essential oils and their active compounds that are exploited for the treatment of biofilm infection, chronic inflammation and wound healing. Thus, an effective novel treatment can be developed to improve the current treatment strategy to overcome multidrug resistance bacteria or antibiotic resistance in various chronic wound infections that support wound healing.
Collapse
Affiliation(s)
- Pulukkunadu Thekkeveedu Roshni
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018, India
| | - Punchappady Devasya Rekha
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018, India.
| |
Collapse
|
2
|
Yao Y, Shen G, Luo J, Wang J, Xu Z, Wang H, Cui L. Research Progress with Atractylone as an Antitumor Agent. Molecules 2024; 29:5450. [PMID: 39598839 PMCID: PMC11597220 DOI: 10.3390/molecules29225450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Atractylone is a sesquiterpenoid compound extracted from Rhizoma Atractylodis. As one of the main active components in the volatile oil of the Atractylodes genus, it has exhibited certain therapeutic effects, including anti-inflammatory, antiviral, antioxidant, antiallergic, antiangiogenic, and neuroprotective activities, among others. With further research on the chemical constituents and pharmacology of sesquiterpenes, research on the antitumor activity of Atractylone has also been further expanded. Much of the current literature pays particular attention to the antitumor activity of Atractylone, which was found to inhibit the apoptosis of tumor cells and prevent growth, invasion, and migration through different apoptosis pathways and signaling pathways. Due to its promising potential for cancer prevention, it may play a role in reducing the incidence of malignant tumors. In this paper, the antitumor activity and mechanism of Atractylone are reviewed, providing a reference to inform future research on the tumor treatment, clinical application, and further development and utilization of this plant genus.
Collapse
Affiliation(s)
- Ying Yao
- College of Pharmacy, Harbin University of Commerce, Harbin 150076, China; (Y.Y.); (G.S.); (J.L.); (J.W.); (Z.X.)
- Heilongjiang Provincial Key Laboratory of Geriatric Medicine, Harbin 150076, China
| | - Guanghuan Shen
- College of Pharmacy, Harbin University of Commerce, Harbin 150076, China; (Y.Y.); (G.S.); (J.L.); (J.W.); (Z.X.)
- Heilongjiang Provincial Key Laboratory of Geriatric Medicine, Harbin 150076, China
- Postdoctoral Programme of Meteria Medica Institute, Harbin University of Commerce, Harbin 150076, China
| | - Jianghan Luo
- College of Pharmacy, Harbin University of Commerce, Harbin 150076, China; (Y.Y.); (G.S.); (J.L.); (J.W.); (Z.X.)
- Heilongjiang Provincial Key Laboratory of Geriatric Medicine, Harbin 150076, China
| | - Jinhong Wang
- College of Pharmacy, Harbin University of Commerce, Harbin 150076, China; (Y.Y.); (G.S.); (J.L.); (J.W.); (Z.X.)
- Heilongjiang Provincial Key Laboratory of Geriatric Medicine, Harbin 150076, China
| | - Zheng Xu
- College of Pharmacy, Harbin University of Commerce, Harbin 150076, China; (Y.Y.); (G.S.); (J.L.); (J.W.); (Z.X.)
- Heilongjiang Provincial Key Laboratory of Geriatric Medicine, Harbin 150076, China
| | - Hao Wang
- College of Pharmacy, Harbin University of Commerce, Harbin 150076, China; (Y.Y.); (G.S.); (J.L.); (J.W.); (Z.X.)
- Heilongjiang Provincial Key Laboratory of Geriatric Medicine, Harbin 150076, China
| | - Linlin Cui
- College of Pharmacy, Harbin University of Commerce, Harbin 150076, China; (Y.Y.); (G.S.); (J.L.); (J.W.); (Z.X.)
- Heilongjiang Provincial Key Laboratory of Geriatric Medicine, Harbin 150076, China
| |
Collapse
|
3
|
Yang R, Wang Y, Wang J, Guo X, Zhao Y, Zhu K, Zhu X, Zou H, Yan Y. Geographical Origin Traceability of Atractylodis Macrocephalae Rhizoma Based on Chemical Composition, Chromaticity, and Electronic Nose. Molecules 2024; 29:4991. [PMID: 39519632 PMCID: PMC11547543 DOI: 10.3390/molecules29214991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/06/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Atractylodis Macrocephalae Rhizoma (AMR) is a traditional Chinese medicine used for gastrointestinal diseases. With increased demand, there are more and more places of cultivation for AMR. However, the quality of AMR varies from place to place, and there is no good way to distinguish AMR from different origins at present. In this paper, we determined the content of eight chemical components including 60% ethanol extracts, essential oil, polysaccharides, atractylenolides, and atractylone, obtained the color parameters of AMR powder by colorimetry, and odor information was captured by the electronic nose, all of which were combined with machine learning to establish a rapid origin traceability method. The results of the principal component analysis of the chemical components revealed that Zhejiang AMR has a high comprehensive score and overall better quality. The Kruskal-Wallis test demonstrated that there are varying degrees of differences in chemical composition and color parameters across the different origin. However, the accuracy of the classification model is low (less than 80%), making it difficult to distinguish between different origins of AMR. The electronic nose demonstrated excellent classification performance in the traceability of AMR from different origins, with accuracy reaching more than 90% (PLS-DA: 96.88%, BPNN: 96.88%, PSO-SVM: 100%). Overall, this study clarified the quality differences of AMR among different origins, and a rapid and precise method combining machine learning was developed to trace the origin of AMR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Huiqin Zou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (R.Y.); (Y.W.); (J.W.); (X.G.); (Y.Z.); (K.Z.); (X.Z.)
| | - Yonghong Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (R.Y.); (Y.W.); (J.W.); (X.G.); (Y.Z.); (K.Z.); (X.Z.)
| |
Collapse
|
4
|
Biao Y, Li D, Zhang Y, Gao J, Xiao Y, Yu Z, Li L. Wulingsan Alleviates MAFLD by Activating Autophagy via Regulating the AMPK/mTOR/ULK1 Signaling Pathway. Can J Gastroenterol Hepatol 2024; 2024:9777866. [PMID: 39035827 PMCID: PMC11260214 DOI: 10.1155/2024/9777866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/19/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
Here, we presented the study of the molecular mechanisms underlying the action of Wulingsan (WLS) in rats with metabolic-associated fatty liver disease (MAFLD) induced by a high-fat diet (HFD). High-performance liquid chromatography was employed to identify the chemical components of WLS. After 2 weeks of HFD induction, MAFLD rats were treated with WLS in three different doses for 6 weeks, a positive control treatment or with a vehicle. Lipid metabolism, liver function, oxidative stress, and inflammatory factors as well as pathomorphological changes in liver parenchyma were assessed in all groups. Finally, the expressions of autophagy-related markers, adenosine monophosphate-activated protein kinase (AMPK)/mechanistic target of rapamycin (mTOR)/unc-51-like kinase-1 (ULK1) signaling pathway-related genes, and proteins in liver were detected. The results revealed that WLS significantly ameliorated liver injury, the dysfunction of the lipid metabolism, the oxidative stress, and overall inflammatory status. Furthermore, WLS increased the expressions of LC3B-II, Beclin1, p-AMPK, and ULK1, along with decreased p62, p-mTOR, and sterol regulatory element-binding protein-1c levels. In conclusion, we showed that WLS is capable of alleviating HFD-induced MAFLD by improving lipid accumulation, suppressing oxidative stress and inflammation, and promoting autophagy.
Collapse
Affiliation(s)
- Yaning Biao
- School of Basic MedicineHebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Dantong Li
- School of PharmacyHebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Yixin Zhang
- School of PharmacyHebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Jingmiao Gao
- School of PharmacyHebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Yi Xiao
- School of PharmacyHebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Zehe Yu
- School of PharmacyHebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Li Li
- School of PharmacyHebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
Li L, He Y, Wang N, Li Y, Du Y, He N, Wang B, Zhang T. Atractylone in the Atractylodes macrocephala Rhizoma Essential Oil and Its Anti-Inflammatory Activity. Molecules 2023; 28:7340. [PMID: 37959758 PMCID: PMC10648463 DOI: 10.3390/molecules28217340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
The aim of this study was to conduct a screening of potential therapeutic compounds found in the Atractylodes macrocephala rhizoma essential oil (AO) and explore its mechanism of action in the treatment of ulcerative colitis (UC). An inflammation cell model was employed in conjunction with phospho-antibody array technology to explore potential therapeutic compounds of AO and their anti-inflammatory and antioxidant effects. Furthermore, we assessed their efficacy and mechanisms of action in treating dextran sulfate sodium (DSS)-induced colitis in mice. Via the screening process, we identified atractylone (ATR) as the primary active compound in AO. It has been demonstrated that ATR can both decrease the levels of tumor necrosis factor (TNF)-α and reactive oxygen species (ROS) and increase the expression of adhesion proteins such as claudin, ZO-1, and occludin in vitro. Moreover, ATR has been shown to improve UC symptoms in vivo. Via a non-targeted metabolomics analysis of colon tissue, we identified 57 distinct metabolites that responded to ATR treatment. Subsequent analysis of the metabolic pathways revealed that the action of ATR was primarily focused on the amino acid metabolism pathway. In summary, ATR may alleviate the symptoms of UC by regulating multiple signaling pathways. Additionally, ATR has a comprehensive function in anti-inflammation, antioxidative stress, and intestinal injury reduction.
Collapse
Affiliation(s)
- Ling Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (L.L.); (Y.H.); (N.W.); (Y.D.)
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China;
| | - Yihao He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (L.L.); (Y.H.); (N.W.); (Y.D.)
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Nan Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (L.L.); (Y.H.); (N.W.); (Y.D.)
| | - Yuting Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China;
| | - Yaoyao Du
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (L.L.); (Y.H.); (N.W.); (Y.D.)
| | - Ning He
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China;
| | - Bing Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (L.L.); (Y.H.); (N.W.); (Y.D.)
| |
Collapse
|
6
|
Yu Y, Fu D, Zhou H, Su J, Chen S, Lv G. Potential application of Atractylodes macrocephala Koidz. as a natural drug for bone mass regulation: A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 315:116718. [PMID: 37268258 DOI: 10.1016/j.jep.2023.116718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/21/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The root of Atractylodes macrocephala Koidz. (AM) has been used for thousands of years in China, and it's extracts contain various constituents, such as volatile oils, polysaccharides, and lactones, with a myriad of pharmacological effects, including improves the healthy state of the gastrointestinal system and regulating immunity, hormone secretion, anti-inflammatory, antibacterial, antioxidation, anti-aging, and antitumor properties. Recently, researchers have focused on the effect of AM in regulating bone mass; therefore, its potential mechanism of action in regulating bone mass needs to be elucidated. AIM OF REVIEW This study reviewed the known and possible mechanisms of bone mass regulation by AM. MATERIALS AND METHODS Cochrane, Medline via PubMed, Embase, CENTRAL, CINAHL, Web of Science, Chinese biomedical literature database, Chinese Science and Technology Periodical Database, and Wanfang Database were used to search AM root extracts-related studies. The retrieval date was from the establishment of the database to January 1, 2023. RESULTS By summarizing 119 natural active substances that have been isolated from AM root to date, we explored its possible targets and pathways (such as Hedgehog, Wnt/β-catenin, and BMP/Smads pathways etc.) for bone growth and presented our position on possible future research/perspectives in the regulation of bone mass using this plant. CONCLUSIONS AM root extracts (incuding aqueous, ethanol etc.) promotes osteogenesis and inhibits osteoclastogenesis. These functions promote the absorption of nutrients, regulate gastrointestinal motility and intestinal microbial ecology, regulate endocrine function, strengthen bone immunity, and exert anti-inflammatory and antioxidant effects.
Collapse
Affiliation(s)
- Yikang Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Danqing Fu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hengpu Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Su
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Suhong Chen
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.
| | - Guiyuan Lv
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
7
|
Liu M, Wang J, Chen S, Meng X, Cheng Z, Wang J, Tan Y, Su W, Lu Z, Zhang M, Jia X. Exploring the effect of Er miao San-containing serum on macrophage polarization through miR-33/NLRP3 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116178. [PMID: 36708884 DOI: 10.1016/j.jep.2023.116178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
HEADINGS ETHNOPHARMACOLOGICAL RELEVANCE Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease. Er miao San (EMS) has been shown to have good anti-inflammatory effects and is widely used in the clinical treatment of RA. However, the exact mechanism is not completely understood. AIM OF THE STUDY The aim of this study was to explore that EMS-containing serum affects M1/M2 polarization of macrophages and may be mediated through the microRNA (miRNA)-33/NLRP3 pathway, thereby elucidating the molecular mechanism of EMS treatment of RA. MATERIALS AND METHODS We screened for safe concentrations of EMS-containing serum by using CCK-8 measurement. RAW264.7 cells were cultured with lipopolysaccharide (LPS) (100 ng/mL) and interferon-γ (20 ng/mL) for 24 h to induce M1-type macrophages. Adenosine triphosphate (ATP) (5 mM) was added in the last 30 min to activate NLRP3. The content of miR-33 was detected by RT‒qPCR after transfection of the miRNA-33 mimic. The protein expression levels of NLRP3, ASC, caspase-1, Inducible Nitric Oxide Synthase (iNOS) and Arginase-1 (Arg-1) were detected by Western blot. The contents of IL-1β, IL-10, TNF-α, TGF-β and IL-18 in serum and cell supernatant were determined by ELISA. The fluorescence intensity of CD86 and CD206 was detected by immunofluorescence. RESULTS The results showed that EMS-containing serum promoted the protein expression level of Arg-1 and the secretion levels of TGF-β and IL-10, inhibited the levels of iNOS, IL-1β and TNF-α, and regulated the balance of pro-inflammatory factors and anti-inflammatory factors. RT‒qPCR results showed that EMS-containing serum could reduce the level of miRNA-33. EMS-containing serum could reduce the expression of NLRP3 inflammasome-related proteins and downregulate the expression levels of IL-1β and IL-18. These results suggest that EMS exerts its effect on macrophage polarization through the miRNA-33/NLRP3 pathway. CONCLUSION EMS-containing serum inhibits the activation of the NLRP3 inflammasome by downregulating miRNA-33, thus preventing the polarization of M1-type macrophages.
Collapse
Affiliation(s)
- Min Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Jin Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Simeng Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Xiangwen Meng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Zhiluo Cheng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Jiayu Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Yanan Tan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Wenrui Su
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Zhiyuan Lu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Min Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Xiaoyi Jia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
8
|
Cheng H, Zhang D, Wu J, Liu J, Tan Y, Feng W, Peng C. Atractylodes macrocephala Koidz. volatile oil relieves acute ulcerative colitis via regulating gut microbiota and gut microbiota metabolism. Front Immunol 2023; 14:1127785. [PMID: 37205093 PMCID: PMC10187138 DOI: 10.3389/fimmu.2023.1127785] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 05/21/2023] Open
Abstract
Background Atractylodes macrocephala Koidz. (AM) is a functional food with strong ant-colitis activity. AM volatile oil (AVO) is the main active ingredient of AM. However, no study has investigated the improvement effect of AVO on ulcerative colitis (UC) and the bioactivity mechanism also remains unknown. Here, we investigated whether AVO has ameliorative activity on acute colitis mice and its mechanism from the perspective of gut microbiota. Methods Acute UC was induced in C57BL/6 mice by dextran sulfate sodium and treated with the AVO. Body weight, colon length, colon tissue pathology, and so on were assessed. The gut microbiota composition was profiled using 16s rRNA sequencing and global metabolomic profiling of the feces was performed. The results showed that AVO can alleviate bloody diarrhea, colon damage, and colon inflammation in colitis mice. In addition, AVO decreased potentially harmful bacteria (Turicibacter, Parasutterella, and Erysipelatoclostridium) and enriched potentially beneficial bacteria (Enterorhabdus, Parvibacter, and Akkermansia). Metabolomics disclosed that AVO altered gut microbiota metabolism by regulating 56 gut microbiota metabolites involved in 102 KEGG pathways. Among these KEGG pathways, many metabolism pathways play an important role in maintaining intestine homeostasis, such as amino acid metabolism (especially tryptophan metabolism), bile acids metabolism, and retinol metabolism. Conclusion In conclusion, our study indicated that AVO can be expected as novel prebiotics to treat ulcerative colitis, and modulating the composition and metabolism of gut microbiota may be its pharmacological mechanism.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Su F, Yang G, Hu D, Ruan C, Wang J, Zhang Y, Zhu Q. Chemical Composition, Antibacterial and Antioxidant Activities of Essential Oil from Centipeda minima. Molecules 2023; 28:molecules28020824. [PMID: 36677882 PMCID: PMC9861044 DOI: 10.3390/molecules28020824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/31/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
This study elucidated the chemical composition of essential oil from Centipeda minima (EOCM) and its antibacterial and antioxidant activities with two chemical monomers thymol and carvacrol. The main chemical composition of EOCM, analyzed by GC-MS, were trans-chrysanthenyl acetate, thymol, aromadendrene and β-caryophyllene. In the screening of antibacterial activity against S. aureus, two monomers with antibacterial activity were obtained: thymol and carvacrol. The MIC of EOCM, thymol and carvacrol were 0.625 mg/mL, 0.156 mg/mL and 0.156 mg/mL, respectively. The experimental results were shown that three drugs could inhibit the growth of S. aureus and inhibit the formation of biofilm by changing the permeability of cell membrane and interfering with the metabolic activities in bacteria. The scavenging effects of the three drugs on DPPH radical and hydroxyl radical showed that the antioxidant effect of the three drugs was EOCM > carvacrol > thymol.
Collapse
Affiliation(s)
- Fan Su
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Gan Yang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Datong Hu
- Shandong Academy of Pharmaceutical Sciences, Jinan 250098, China
| | - Chen Ruan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jing Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yingying Zhang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (Y.Z.); (Q.Z.)
| | - Qingjun Zhu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (Y.Z.); (Q.Z.)
| |
Collapse
|
10
|
Bai Y, Wei W, Yao C, Wu S, Wang W, Guo DA. Advances in the chemical constituents, pharmacological properties and clinical applications of TCM formula Yupingfeng San. Fitoterapia 2023; 164:105385. [PMID: 36473539 DOI: 10.1016/j.fitote.2022.105385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Yupingfeng San (YPFS) is a famous and commonly used traditional Chinese medicine (TCM) formula for the treatment of chronic obstructive pulmonary disease, asthma, respiratory tract infections, and pneumonia in China. It is composed of three Chinese herbs, including Astragali Radix, Atractylodis Macrocephalae Rhizoma and Saposhnikoviae Radix. In this review, the relevant references on YPFS were searched in the Web of Science, PubMed, China National Knowledge Infrastructure (CNKI), and other databases. Literatures published from 2000 to 2022 were screened and summarized. The constituents in YPFS could be classified into nine groups according to their structures, including flavonoids, saponins, essential oils, coumarins, lactones, amino acids, organic acids, saccharides, chromones and others. The importance of chemical constituents in YPFS were demonstrated for specific pathological processes including immunoregulatory, anti-inflammatory, anti-tumor and pulmonary diseases. This article systematically reviewed the up-to-date information on its chemical compositions, pharmacology and safety, that could be used as essential data and reference for clinical applications of YPFS.
Collapse
Affiliation(s)
- Yuxin Bai
- College of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenlong Wei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Changliang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shifei Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wei Wang
- College of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - De-An Guo
- College of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
11
|
Exploring the Molecular Mechanism of Tong Xie Yao Fang in Treating Ulcerative Colitis Using Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8141443. [PMID: 36204124 PMCID: PMC9532093 DOI: 10.1155/2022/8141443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022]
Abstract
Objective. The purpose of this study was to investigate the mechanisms of action of Tong Xie Yao Fang (TXYF) against ulcerative colitis (UC) by employing a network pharmacology approach. Methods. The network pharmacology approach, including screening of the active ingredients and targets, construction of the active ingredient-drug target network, the active ingredient-diseasetarget network, the protein–protein interaction (PPI) network, enrichment analyses, molecular docking, and targets validation, was used to explore the mechanisms of TXYF against UC. Results. 34 active ingredients and 129 and 772 targets of TXYF and UC, respectively, were identified. The intersection of the active ingredient-drug target network, the active ingredient-disease target network, and the PPI network suggested that kaempferol, beta-sitosterol, wogonin, and naringenin were the core ingredients and prostaglandin-endoperoxide synthase 2 (PTGS2) was the core target. Enrichment analyses showed that regulation of exogenous protein binding and other functions were of great significance. Nuclear factor-kappa B (NF-κB) signaling pathway, interleukin-17 (IL-17) signaling pathway, and tumor necrosis factor (TNF) signaling pathway were important pathways. Results of molecular docking indicated that the core ingredients and the target molecule had strong binding affinities. We have validated the high levels of expression of PTGS2 in UC by analyzing three additional datasets from the Gene Expression Omnibus (GEO) database. Conclusions. There are multiple ingredients, targets, and pathways involved in TXYF’s effectiveness against UC, and these findings will promote further research and clinical applications.
Collapse
|
12
|
Li L, Du Y, Wang Y, He N, Wang B, Zhang T. Atractylone Alleviates Ethanol-Induced Gastric Ulcer in Rat with Altered Gut Microbiota and Metabolites. J Inflamm Res 2022; 15:4709-4723. [PMID: 35996682 PMCID: PMC9392477 DOI: 10.2147/jir.s372389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022] Open
Abstract
Background Gastric ulcer (GU) is the most common multifactor gastrointestinal disorder affecting millions of people worldwide. There is evidence that gut microbiota is closely related to the development of GU. Atractylone (ATR) has been reported to possess potential biological activities, but research on ATR alleviating GU injury is unprecedented. Methods Helicobacter pylori (H. pylori)-induced GU model in zebrafish and ethanol-induced acute GU model in rat were established to evaluate the anti-inflammatory and ulcer inhibitory effects of ATR. Then, 16S rRNA sequencing and metabolomics analysis were performed to investigate the effect of ATR on the microbiota and metabolites in rat feces and their correlation. Results Therapeutically, ATR inhibited H. pylori-induced gastric mucosal injury in zebrafish. In the ulceration model of rat, ATR mitigated the gastric lesions damage caused by ethanol, decreased the ulcer area, and reduced the production of inflammatory factors. Additionally, ATR alleviated the gastric oxidative stress injury by increasing the activity of superoxide dismutase (SOD) and decreasing the level of malondialdehyde (MDA). Furthermore, ATR played a positive role in relieving ulcer through reshaping gut microbiota composition including Parabacteroides and Bacteroides and regulating the levels of metabolites including amino acids, short-chain fatty acids (SCFAs), and bile acids. Conclusion Our work sheded light on the mechanism of ATR treating GU from the perspective of the gut microbiota and explored the correlation between gut microbiota, metabolites, and host phenotype.
Collapse
Affiliation(s)
- Ling Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Yaoyao Du
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yang Wang
- Metabo-Profile Biotechnology (Shanghai) Co. Ltd, Shanghai, People’s Republic of China
| | - Ning He
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Chinese Academy of Sciences, Shanghai Institute of Materia Medica, Shanghai, People’s Republic of China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
13
|
Chemical characterization and antioxidant, anti-inflammatory, and anti-septic activities of the essential oil from the aerial parts of Atractylodes macrocephala Koidz. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
14
|
Anti-Inflammatory and Antioxidant Chinese Herbal Medicines: Links between Traditional Characters and the Skin Lipoperoxidation “Western” Model. Antioxidants (Basel) 2022; 11:antiox11040611. [PMID: 35453296 PMCID: PMC9030610 DOI: 10.3390/antiox11040611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
The relationship between lipid peroxidation and inflammation has been accepted as a paradigm in the field of topical inflammation. The underlying biochemical mechanisms may be summarised as unspecific oxidative damage followed by specific oxidative processes as the physio pathological response in skin tissues. In this experimental review we hypothesise that the characteristics attributed by Traditional Chinese Medicine (TCM) to herbal drugs can be linked to their biomolecular activities within the framework of the above paradigm. To this end, we review and collect experimental data from several TCM herbal drugs to create 2D-3D pharmacological and biochemical spaces that are further reduced to a bidimensional combined space. When multivariate analysis is applied to the latter, it unveils a series of links between TCM herbal characters and the skin lipoperoxidation “Western” model. With the help of these patterns and a focused review on their chemical, pharmacological and antioxidant properties we show that cleansing herbs of bitter and cold nature acting through removal of toxins—including P. amurense, Coptis chinensis, S. baicalensis and F. suspensa—are highly correlated with strong inhibition of both lipid peroxidation and eicosanoids production. Sweet drugs—such as A. membranaceus, A. sinensis and P. cocos—act through a specific inhibition of the eicosanoids production. The therapeutic value of the remaining drugs—with low antioxidant or anti-inflammatory activity—seems to be based on their actions on the Qi with the exception of furanocoumarin containing herbs—A. dahurica and A. pubescens—which “expel wind”. A further observation from our results is that the drugs present in the highly active “Cleansing herbs” cluster are commonly used and may be interchangeable. Our work may pave the way to a translation between two medical systems with radically different philosophies and help the prioritisation of active ingredients with specific biomolecular activities of interest for the treatment of skin conditions.
Collapse
|
15
|
Long F, Lin H, Zhang X, Zhang J, Xiao H, Wang T. Atractylenolide-I Suppresses Tumorigenesis of Breast Cancer by Inhibiting Toll-Like Receptor 4-Mediated Nuclear Factor-κB Signaling Pathway. Front Pharmacol 2020; 11:598939. [PMID: 33363472 PMCID: PMC7753112 DOI: 10.3389/fphar.2020.598939] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Toll-like receptor 4 (TLR4) is an essential sensor related to tumorigenesis, and overexpression of TLR4 in human tumors often correlates with poor prognosis. Atractylenolide-I (AT-I), a novel TLR4-antagonizing agent, is a major bioactive component from Rhizoma Atractylodes Macrocephalae. Emerging evidence suggests that AT-I exerts anti-tumor effects on various cancers such as colorectal cancer, bladder cancer and melanoma. Nevertheless, the effects of AT-I on mammary tumorigenesis remain unclear. Methods: In order to ascertain the correlation of TLR4/NF-κB pathway with breast cancer, the expression of TLR4 and NF-κB in normal breast tissues and cancer tissues with different TNM-stages was detected by human tissue microarray and immunohistochemistry technology. The effects of AT-I on tumorigenesis were investigated by cell viability, colony formation, apoptosis, migration and invasion assays in two breast cancer cells (MCF-7 and MDA-MB-231), and N-Nitroso-N-methylurea induced rat breast cancer models were developed to evaluate the anti-tumor effects of AT-I in vivo. The possible underlying mechanisms were further explored by western blot and ELISA assays after a series of LPS treatment and TLR4 knockdown experiments. Results: We found that TLR4 and NF-κB were significantly up-regulated in breast cancer tissues, and was correlated with advanced TNM-stages. AT-I could inhibit TLR4 mediated NF-κB signaling pathway and decrease NF-κB-regulated cytokines in breast cancer cells, thus inhibiting cell proliferation, migration and invasion, and inducing apoptosis of breast cancer cells. Furthermore, AT-I could inhibit N-Nitroso-N-methylurea-induced rat mammary tumor progression through TLR4/NF-κB pathway. Conclusion: Our findings demonstrated that TLR4 and NF-κB were over expressed in breast cancer, and AT-I could suppress tumorigenesis of breast cancer via inhibiting TLR4-mediated NF-κB signaling pathway.
Collapse
Affiliation(s)
- Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
| | - Hong Lin
- Department of Pharmacy, Sichuan Cancer Hospital and Institution, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiqian Zhang
- Department of Pharmacy, Chengdu Third People's Hospital and College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Jianhui Zhang
- Department of Breast Cancer, Sichuan Cancer Hospital and Institution, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongtao Xiao
- Department of Pharmacy, Sichuan Cancer Hospital and Institution, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ting Wang
- Department of Pharmacy, Sichuan Cancer Hospital and Institution, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|