1
|
Wang J, Dong H, Ji Y, Li Y, Lee ST. Patterned graphene: An effective platform for adsorption, immobilization, and destruction of SARS-CoV-2 M pro. J Colloid Interface Sci 2024; 673:202-215. [PMID: 38875787 DOI: 10.1016/j.jcis.2024.06.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
To address the ongoing challenges posed by the SARS-CoV-2 and potentially stronger viruses in the future, the development of effective methods to fabricate patterned graphene (PG) and other precisely functional products has become a new research frontier. Herein, we modeled the "checkerboard" graphene (CG) and stripped graphene (SG) as representatives of PG, and studied their interaction mechanism with the target protein (Mpro) by molecular dynamics simulation. The calculation results on the binding strength and the root mean square deviation values of the active pocket revealed that PG is an effective platform for adsorption, immobilization, and destruction of Mpro. Specifically, CG is found to promote disruption of the active pocket for Mpro, but the presence of "checkerboard" oxidized regions inhibits the adsorption of Mpro. Meanwhile, the SG can effectively confine Mpro within the non-oxidized strips and enhances their binding strength, but doesn't play well on disrupting the active pocket. Our work not only elucidates the biological effects of PGs, but also provides guidance for their targeted and precise utilization in combating the SARS-CoV-2.
Collapse
Affiliation(s)
- Jiawen Wang
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau; Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Huilong Dong
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China.
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Youyong Li
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau; Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| | - Shuit-Tong Lee
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau; Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
2
|
Ashok Kumar SS, Bashir S, Pershaanaa M, Kamarulazam F, Kuppusamy AV, Badawi N, Ramesh K, Ramesh S. A review of the role of graphene-based nanomaterials in tackling challenges posed by the COVID-19 pandemic. Microb Pathog 2024; 197:107059. [PMID: 39442812 DOI: 10.1016/j.micpath.2024.107059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/31/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
In 2020, the World Health Organization (WHO) declared a pandemic due to the emergence of the coronavirus disease (COVID-19) which had resulted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). At present, the emergence of many new variants and mutants were found to be more harmful compared to the previous strains. As a result, research scientists around the world had devoted significant efforts to understand the mechanism, causes and transmission due to COVID-19 along with the treatment to cure these diseases. However, despite achieving several findings, much more was unknown and yet to be explored. Hence, along with these developments, it is also extremely essential to design effective systems by incorporating smart materials to battle the COVID-19. Therefore, several approaches have been implemented to combat against COVID-19. Recently, the graphene-based materials have been explored for the current COVID-19 and future pandemics due to its superior physicochemical properties, providing efficient nanoplatforms for optical and electrochemical sensing and diagnostic applications with high sensitivity and selectivity. Moreover, based on the photothermal effects or reactive oxygen species formation, the carbon-based nanomaterials have shown its potentiality for targeted antiviral drug delivery and the inhibitory effects against pathogenic viruses. Therefore, this review article sheds light on the recent progress and the most promising strategies related to graphene and related materials and its applications for detection, decontamination, diagnosis, and protection against COVID-19. In addition, the key challenges and future directives are discussed in detail for fundamental design and development of technologies based on graphene-based materials along with the demand aspects of graphene-based products and lastly, our personal opinions on the appropriate approaches to improve these technologies respectively.
Collapse
Affiliation(s)
- Sachin Sharma Ashok Kumar
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; School of Engineering, Taylor's University, 1 Jalan Taylor's, 47500, Subang Jaya, Selangor, Malaysia.
| | - Shahid Bashir
- Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D, Universiti Malaya, Jalan Pantai Baharu, 59990, Kuala Lumpur, Malaysia
| | - M Pershaanaa
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Fathiah Kamarulazam
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - A V Kuppusamy
- School of Engineering and Computing, Manipal International University, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Nujud Badawi
- University of Hafr Al-Batin College of Science, Hafer Al-Batin, 39921, Saudi Arabia
| | - K Ramesh
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Department of Physical Sciences, Saveetha School of Engineering, Saveetha University (SIMATS), Chennai, India.
| | - S Ramesh
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Department of Physical Sciences, Saveetha School of Engineering, Saveetha University (SIMATS), Chennai, India
| |
Collapse
|
3
|
Mousavi SM, Pouramini Z, Babapoor A, Binazadeh M, Rahmanian V, Gholami A, Omidfar N, Althomali RH, Chiang WH, Rahman MM. Photocatalysis air purification systems for coronavirus removal: Current technologies and future trends. CHEMOSPHERE 2024; 353:141525. [PMID: 38395369 DOI: 10.1016/j.chemosphere.2024.141525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/25/2024]
Abstract
Air pollution causes extreme toxicological repercussions for human health and ecology. The management of airborne bacteria and viruses has become an essential goal of air quality control. Existing pathogens in the air, including bacteria, archaea, viruses, and fungi, can have severe effects on human health. The photocatalysis process is one of the favorable approaches for eliminating them. The oxidative nature of semiconductor-based photocatalysts can be used to fight viral activation as a green, sustainable, and promising approach with significant promise for environmental clean-up. The photocatalysts show wonderful performance under moderate conditions while generating negligible by-products. Airborne viruses can be inactivated by various photocatalytic processes, such as chemical oxidation, toxicity due to the metal ions released from photocatalysts composed of metals, and morphological damage to viruses. This review paper provides a thorough and evaluative analysis of current information on using photocatalytic oxidation to deactivate viruses.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan
| | - Zahra Pouramini
- Department of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran
| | - Aziz Babapoor
- Department of Chemical Engineering, University of Mohaghegh Ardabil, Ardabil, Iran
| | - Mojtaba Binazadeh
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Mollasadra Street, 71345, Shiraz, Fars, Iran
| | - Vahid Rahmanian
- Department of Mechanical Engineering, Université du Québec à Trois-Rivières, Drummondville, QC, Canada.
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, 71439-14693, Iran
| | - Navid Omidfar
- Department of Pathology, Shiraz University of Medical Science, Shiraz, 71439-14693, Iran
| | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam Bin Abdulaziz University, Wadi Al-Dawasir, 11991, Saudi Arabia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, P.O.Box 80203, Saudi Arabia.
| |
Collapse
|
4
|
Hyder A, Ali A, Buledi JA, Memon AA, Iqbal M, Bangalni TH, Solangi AR, Thebo KH, Akhtar J. Nanodiamonds: A Cutting-Edge Approach to Enhancing Biomedical Therapies and Diagnostics in Biosensing. CHEM REC 2024; 24:e202400006. [PMID: 38530037 DOI: 10.1002/tcr.202400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/25/2024] [Indexed: 03/27/2024]
Abstract
Nanodiamonds (NDs) have garnered attention in the field of nanomedicine due to their unique properties. This review offers a comprehensive overview of NDs synthesis methods, properties, and their uses in biomedical applications. Various synthesis techniques, such as detonation, high-pressure, high-temperature, and chemical vapor deposition, offer distinct advantages in tailoring NDs' size, shape, and surface properties. Surface modification methods further enhance NDs' biocompatibility and enable the attachment of bioactive molecules, expanding their applicability in biological systems. NDs serve as promising nanocarriers for drug delivery, showcasing biocompatibility and the ability to encapsulate therapeutic agents for targeted delivery. Additionally, NDs demonstrate potential in cancer treatment through hyperthermic therapy and vaccine enhancement for improved immune responses. Functionalization of NDs facilitates their utilization in biosensors for sensitive biomolecule detection, aiding in precise diagnostics and rapid detection of infectious diseases. This review underscores the multifaceted role of NDs in advancing biomedical applications. By synthesizing NDs through various methods and modifying their surfaces, researchers can tailor their properties for specific biomedical needs. The ability of NDs to serve as efficient drug delivery vehicles holds promise for targeted therapy, while their applications in hyperthermic therapy and vaccine enhancement offer innovative approaches to cancer treatment and immunization. Furthermore, the integration of NDs into biosensors enhances diagnostic capabilities, enabling rapid and sensitive detection of biomolecules and infectious diseases. Overall, the diverse functionalities of NDs underscore their potential as valuable tools in nanomedicine, paving the way for advancements in healthcare and biotechnology.
Collapse
Affiliation(s)
- Ali Hyder
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Akbar Ali
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering (IPE), Chinese Academy of Sciences, Beijing, 100F190, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China
| | - Jamil A Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Ayaz Ali Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Muzaffar Iqbal
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur KPK, Haripur, 22620, Pakistan
| | - Talib Hussain Bangalni
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Khalid Hussain Thebo
- Institute of Metal Research (IMR), Chinese Academy of Science, 2 Wenhua Rood, Shenyang, China
- Department of Chemistry Mirpur, University of Science and Technology (MUST), 10250 (AJK), Mirpur, Pakistan
| | - Javeed Akhtar
- Department of Chemistry Mirpur, University of Science and Technology (MUST), 10250 (AJK), Mirpur, Pakistan
| |
Collapse
|
5
|
Soomro F, Ali A, Ullah S, Iqbal M, Alshahrani T, Khan F, Yang J, Thebo KH. Highly Efficient Arginine Intercalated Graphene Oxide Composite Membranes for Water Desalination. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18447-18457. [PMID: 38055936 DOI: 10.1021/acs.langmuir.3c02699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Graphene oxide-based composite membranes have received enormous attention for highly efficient water desalination. Herein, we prepare arginine/graphene oxide (Arg/GO) composite membranes by surface functionalizing GO nanosheets with arginine amino acid. Arginine has a unique combination of hydroxyl and amino functional groups that cross-link GO nanosheets through hydrogen bonding and electrostatic interactions. The as-prepared Arg@GO composite membranes with different thicknesses are used to separate the salt and dye molecules. The 900-nm-thick Arg@GO composite membrane shows high rejection of 98% for NaCl and 99.8% for MgCl2, Ni(NO3)2, and Pb(NO3)2 with good water permeance. Such a membrane also shows a high separation efficiency (100%) for methylene blue, rhodamine B, and Evans blue dyes. At the same time, the ultrathin Arg@GO composite membrane (220 ± 10 nm) exhibits high water permeance of up to 2100 ± 10 L m-2 h-1 bar-1. Furthermore, the 900-nm-thick Arg@GO composite membrane is stable in an aqueous environment for 40 days with significantly less swelling. Therefore, these membranes can be utilized in future desalination and separation applications.
Collapse
Affiliation(s)
- Faheeda Soomro
- Department of Human and Rehabilitation Sciences, Faculty of Education, Linguists and Sciences, The Begum Nusrat Bhutto Women University, Rohri Bypass, Sukkur 65200, Pakistan
| | - Akbar Ali
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering (IPE), Chinese Academy of Sciences, Beijing 100F190, China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Sami Ullah
- K.A.CARE Energy Research & Innovation Centre (ERIC), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Muzaffar Iqbal
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur 22620 KPK, Pakistan
| | - Thamraa Alshahrani
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Firoz Khan
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Jun Yang
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering (IPE), Chinese Academy of Sciences, Beijing 100F190, China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Khalid Hussain Thebo
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
6
|
Lu Y, Liu YX, Wang Y, Oestreich R, Xu ZY, Zhang W, Hügenell P, Janiak C, Yang XY. A facile spray-pressing synthesis approach for reusable photothermal masks. iScience 2023; 26:107286. [PMID: 37520721 PMCID: PMC10374458 DOI: 10.1016/j.isci.2023.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
Certain types of face masks are highly efficient in protecting humans from bacterial and viral pathogens, and growing concerns with high safety, low cost, and wide market suitability have accelerated the replacement of reusable face masks with disposable ones during the last decades. However, wearing these masks creates countless problems associated with personnel comfort as well as more significant issues related to the cost of fabrication, the generation of medical waste, and environmental contaminants. In this work, we present a facile spray-pressing technique for the production of P-masks with a potential scale-up prospect by adding a graphene layer on one side of meltblown fabric and a functional layer on the other side. In principle, this technique could be easily integrated into the present automatic mask production process and the masks have self-cleaning and/or self-sterilizing properties when it is exposed to solar or simulated solar irradiation.
Collapse
Affiliation(s)
- Yi Lu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, China
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Yi-Xuan Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute, Wuhan University of Technology, Wuhan 430070, China
| | - Yong Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute, Wuhan University of Technology, Wuhan 430070, China
| | - Robert Oestreich
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Zi-Yan Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute, Wuhan University of Technology, Wuhan 430070, China
| | - Wen Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute, Wuhan University of Technology, Wuhan 430070, China
| | - Philipp Hügenell
- Division Thermal Systems and Buildings, Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstraße 2, Freiburg 79110, Germany
| | - Christoph Janiak
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, China
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
7
|
Jatoi AH, Kim KH, Khan MA, Memon FH, Iqbal M, Janwery D, Phulpoto SN, Samantasinghar A, Choi KH, Thebo KH. Functionalized graphene oxide-based lamellar membranes for organic solvent nanofiltration applications. RSC Adv 2023; 13:12695-12702. [PMID: 37114023 PMCID: PMC10126819 DOI: 10.1039/d3ra00223c] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
In this study, two-dimensional graphene oxide-based novel membranes were fabricated by modifying the surface of graphene oxide nanosheets with six-armed poly(ethylene glycol) (PEG) at room conditions. The as-modified PEGylated graphene oxide (PGO) membranes with unique layered structures and large interlayer spacing (∼1.12 nm) were utilized for organic solvent nanofiltration applications. The as-prepared 350 nm-thick PGO membrane offers a superior separation (>99%) against evans blue, methylene blue and rhodamine B dyes along with high methanol permeance ∼ 155 ± 10 L m-2 h-1, which is 10-100 times high compared to pristine GO membranes. Additionally, these membranes are stable for up to 20 days in organic solvent. Hence the results suggested that the as-synthesized PGO membranes with superior separation efficiency for dye molecules in organic solvent can be used in future for organic solvent nanofiltration application.
Collapse
Affiliation(s)
- Ashique Hussain Jatoi
- Department of Chemistry, Shaheed Benazir Bhutto University Shaheed Benazirabad 67480 Pakistan
| | | | - Muhammad Ali Khan
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | - Fida Hussain Memon
- Department of Mechatronics Engineering, Jeju National University Jeju 63243 Republic of Korea
- Department of Electrical Engineering, Sukkur IBA University Sukkur 65200 Pakistan
| | - Muzaffar Iqbal
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur KPK 22620 Pakistan
| | - Dahar Janwery
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro Pakistan
| | - Shah Nawaz Phulpoto
- Department of Molecular Biology & Genetics, Shaheed Benazir University Shaheed Benazirabad 67480 Pakistan
| | - Anupama Samantasinghar
- Department of Mechatronics Engineering, Jeju National University Jeju 63243 Republic of Korea
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University Jeju 63243 Republic of Korea
| | - Khalid Hussain Thebo
- Institute of Metal Research, Chinese Academy of Sciences (CAS) Shenyang 110016 China
| |
Collapse
|
8
|
Kim JT, Lee CW, Jung HJ, Choi HJ, Salman A, Padmajan Sasikala S, Kim SO. Application of 2D Materials for Adsorptive Removal of Air Pollutants. ACS NANO 2022; 16:17687-17707. [PMID: 36354742 DOI: 10.1021/acsnano.2c07937] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Air pollution is on the priority list of global safety issues, with the concern of fatal environmental and public health deterioration. 2D materials are potential adsorbent materials for environmental decontamination, owing to their high surface area, manageable interlayer binding, large surface-to-volume ratio, specific binding capability, and chemical, thermal, and mechanistic stability. Specifically, graphene oxide and reduced graphene oxide have been attracting attention, taking advantage of their low cost synthesis, excessive oxygen containing surface functionalities, and intrinsic aqueous dispersibility, making them desirable for the development of cost-effective, high performance air filters. Many different material designs have been proposed to expand their filtration capability, including the functionalization and integration with other metals and metal oxides, which act not only as binding agents to the target pollutants but also as antimicrobial agents. This review highlights the advantages and drawbacks of 2D materials for air filtration and summarizes the interrelationships among various strategies and the resultant filtration performance in terms of structural engineering, morphology control, and material compositions. Finally, potential future directions are suggested toward the idealized designs of 2D material based air filters.
Collapse
Affiliation(s)
- Jun Tae Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Chan Woo Lee
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hong Ju Jung
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hee Jae Choi
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ali Salman
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Suchithra Padmajan Sasikala
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sang Ouk Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
9
|
Lee JY, Lim J, Choi JH, Lee BH. Can a wonder material be a popular item? A hype cycle of shifts in the sentiment of the interested public about graphene. TECHNOLOGY ANALYSIS & STRATEGIC MANAGEMENT 2022. [DOI: 10.1080/09537325.2022.2136068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Ji Yeon Lee
- Department of Science and Technology Management Policy, University of Science and Technology, Daejeon, Korea
- NTIS Center, Korea Institute of Science and Technology Information, Daejeon, Korea
| | - Jeongsub Lim
- School of Media, Arts, and Science, Sogang University, Seoul, Korea
| | - Jae-Hak Choi
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon, Korea
| | - Byeong-Hee Lee
- Department of Science and Technology Management Policy, University of Science and Technology, Daejeon, Korea
- NTIS Center, Korea Institute of Science and Technology Information, Daejeon, Korea
| |
Collapse
|
10
|
Janjhi FA, Janwery D, Chandio I, Ullah S, Rehman F, Memon AA, Hakami J, Khan F, Boczkaj G, Thebo KH. Recent Advances in Graphene Oxide‐Based Membranes for Heavy Metal Ions Separation. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202200015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Farooque Ahmed Janjhi
- University of Sindh National Centre of Excellence in Analytical Chemistry (NCEAC) 76080 Jamshoro Pakistan
- Gdansk University of Technology Faculty of Civil and Environment Engineering, Department of Sanitary Engineering G. Narutowicza St. 11/12 80-233 Gdansk Poland
| | - Dahar Janwery
- University of Sindh National Centre of Excellence in Analytical Chemistry (NCEAC) 76080 Jamshoro Pakistan
| | - Imamdin Chandio
- University of Sindh National Centre of Excellence in Analytical Chemistry (NCEAC) 76080 Jamshoro Pakistan
| | - Sami Ullah
- King Fahd University of Petroleum & Mineral (KFUPM) K.A. CARE Energy Research & Innovation Center (ERIC) 31261 Dhahran Saudi Arabia
| | - Faisal Rehman
- University of Virginia Department of Mechanical and Aerospace Engineering 22904 Charlottesville VA USA
| | - Ayaz Ali Memon
- University of Sindh National Centre of Excellence in Analytical Chemistry (NCEAC) 76080 Jamshoro Pakistan
| | - Jabir Hakami
- Jazan University Department of Physics, College of Science P.O. Box 114 45142 Jazan Saudi Arabia
| | - Firoz Khan
- King Fahd University of Petroleum & Minerals (KFUPM) Interdiscipliary Research Center for Renewable Energy and Power Systems (IRC–REPS), Research Institute 31261 Dhahran Saudi Arabia
| | - Grzegorz Boczkaj
- Gdansk University of Technology Faculty of Civil and Environment Engineering, Department of Sanitary Engineering G. Narutowicza St. 11/12 80-233 Gdansk Poland
| | - Khalid Hussain Thebo
- Chinese Academy of Science Institute of Metal Research (IMR) Wenhua Road Shenynag China
| |
Collapse
|
11
|
Rehman F, Hussain Memon F, Ullah S, Jafar Mazumder MA, Al-Ahmed A, Khan F, Hussain Thebo K. Recent Development in Laminar Transition Metal Dichalcogenides-based Membranes Towards Water Desalination: A Review. CHEM REC 2022; 22:e202200107. [PMID: 35701111 DOI: 10.1002/tcr.202200107] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/24/2022] [Indexed: 11/12/2022]
Abstract
Transition metal dichalcogenides (TMDCs)-based laminar membranes have gained significant interest in energy storage, fuel cell, gas separation, wastewater treatment, and desalination applications due to single layer structure, good functionality, high mechanical strength, and chemical resistivity. Herein, we review the recent efforts and development on TMDCs-based laminar membranes, and focus is given on their fabrication strategies. Further, TMDCs-based laminar membranes for water purification and seawater desalination are discussed in detail. Finally, present their merits, limits and future challenges needed in this area.
Collapse
Affiliation(s)
- Faisal Rehman
- Department of Mechatronics, College of EME, National University of Sciences and Technology (NUST), Peshawar Road, Rawalpindi, Pakistan.,Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, Virginia, USA
| | - Fida Hussain Memon
- Department of Electrical Engineering, Sukkur IBA University, Sindh, Pakistan
| | - Sami Ullah
- K.A. CARE Energy Research & Innovation Center (ERIC), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Mohammad A Jafar Mazumder
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.,Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Amir Al-Ahmed
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Firoz Khan
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Khalid Hussain Thebo
- Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), Shenyang, China
| |
Collapse
|
12
|
Sorci M, Fink TD, Sharma V, Singh S, Chen R, Arduini BL, Dovidenko K, Heldt CL, Palermo EF, Zha RH. Virucidal N95 Respirator Face Masks via Ultrathin Surface-Grafted Quaternary Ammonium Polymer Coatings. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25135-25146. [PMID: 35613701 PMCID: PMC9185690 DOI: 10.1021/acsami.2c04165] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
N95 respirator face masks serve as effective physical barriers against airborne virus transmission, especially in a hospital setting. However, conventional filtration materials, such as nonwoven polypropylene fibers, have no inherent virucidal activity, and thus, the risk of surface contamination increases with wear time. The ability of face masks to protect against infection can be likely improved by incorporating components that deactivate viruses on contact. We present a facile method for covalently attaching antiviral quaternary ammonium polymers to the fiber surfaces of nonwoven polypropylene fabrics that are commonly used as filtration materials in N95 respirators via ultraviolet (UV)-initiated grafting of biocidal agents. Here, C12-quaternized benzophenone is simultaneously polymerized and grafted onto melt-blown or spunbond polypropylene fabric using 254 nm UV light. This grafting method generated ultrathin polymer coatings which imparted a permanent cationic charge without grossly changing fiber morphology or air resistance across the filter. For melt-blown polypropylene, which comprises the active filtration layer of N95 respirator masks, filtration efficiency was negatively impacted from 72.5 to 51.3% for uncoated and coated single-ply samples, respectively. Similarly, directly applying the antiviral polymer to full N95 masks decreased the filtration efficiency from 90.4 to 79.8%. This effect was due to the exposure of melt-blown polypropylene to organic solvents used in the coating process. However, N95-level filtration efficiency could be achieved by wearing coated spunbond polypropylene over an N95 mask or by fabricating N95 masks with coated spunbond as the exterior layer. Coated materials demonstrated broad-spectrum antimicrobial activity against several lipid-enveloped viruses, as well as Staphylococcus aureus and Escherichia coli bacteria. For example, a 4.3-log reduction in infectious MHV-A59 virus and a 3.3-log reduction in infectious SuHV-1 virus after contact with coated filters were observed, although the level of viral deactivation varied significantly depending on the virus strain and protocol for assaying infectivity.
Collapse
Affiliation(s)
- Mirco Sorci
- Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Tanner D. Fink
- Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Vaishali Sharma
- Department
of Biological Sciences, Michigan Technological
University, 1400 Townsend Drive, Houghton, Michigan 49931, United
States
- Health
Research Institute, Michigan Technological
University, 1400 Townsend Drive, Houghton, Michigan 49931, United
States
| | - Sneha Singh
- Health
Research Institute, Michigan Technological
University, 1400 Townsend Drive, Houghton, Michigan 49931, United
States
- Department
of Chemical Engineering, Michigan Technological
University, 1400 Townsend Drive, Houghton, Michigan 49931, United
States
| | - Ruiwen Chen
- Department
of Materials Science and Engineering, Rensselaer
Polytechnic Institute, 110 8th Street, Troy, New
York 12180, United
States
| | - Brigitte L. Arduini
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Katharine Dovidenko
- Center
for Materials, Devices, and Integrated Systems, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Caryn L. Heldt
- Health
Research Institute, Michigan Technological
University, 1400 Townsend Drive, Houghton, Michigan 49931, United
States
- Department
of Chemical Engineering, Michigan Technological
University, 1400 Townsend Drive, Houghton, Michigan 49931, United
States
| | - Edmund F. Palermo
- Department
of Materials Science and Engineering, Rensselaer
Polytechnic Institute, 110 8th Street, Troy, New
York 12180, United
States
| | - R. Helen Zha
- Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| |
Collapse
|
13
|
Patial S, Kumar A, Raizada P, Le QV, Nguyen VH, Selvasembian R, Singh P, Thakur S, Hussain CM. Potential of graphene based photocatalyst for antiviral activity with emphasis on COVID-19: A review. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2022; 10:107527. [PMID: 35280853 PMCID: PMC8902865 DOI: 10.1016/j.jece.2022.107527] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/18/2022] [Accepted: 03/06/2022] [Indexed: 05/13/2023]
Abstract
Coronavirus disease-2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been one of the most challenging worldwide epidemics of recent times. Semiconducting materials (photocatalysts) could prove effectual solar-light-driven technology on account of variant reactive oxidative species (ROS), including superoxide (•O2 - ) and hydroxyl (•OH) radicals either by degradation of proteins, DNA, RNA, or preventing cell development by terminating cellular membrane. Graphene-based materials have been exquisitely explored for antiviral applications due to their extraordinary physicochemical features including large specific surface area, robust mechanical strength, tunable structural features, and high electrical conductivity. Considering that, the present study highlights a perspective on the potentials of graphene based materials for photocatalytic antiviral activity. The interaction of virus with the surface of graphene based nanomaterials and the consequent physical, as well as ROS induced inactivation process, has been highlighted and discussed. It is highly anticipated that the present review article emphasizing mechanistic antiviral insights could accelerate further research in this field.
Collapse
Affiliation(s)
- Shilpa Patial
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Abhinandan Kumar
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu, Seoul, 02841, South Korea
| | - Van-Huy Nguyen
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Rangabhashiyam Selvasembian
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamilnadu, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
14
|
Kumar A, Hasija V, Sudhaik A, Raizada P, Nguyen VH, Le QV, Singh P, Nguyen DC, Thakur S, Hussain CM. The practicality and prospects for disinfection control by photocatalysis during and post-pandemic: A critical review. ENVIRONMENTAL RESEARCH 2022; 209:112814. [PMID: 35090874 PMCID: PMC8789448 DOI: 10.1016/j.envres.2022.112814] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 05/04/2023]
Abstract
The prevalence of global health implications from the COVID-19 pandemic necessitates the innovation and large-scale application of disinfection technologies for contaminated surfaces, air, and wastewater as the significant transmission media of disease. To date, primarily recommended disinfection practices are energy exhausting, chemical driven, and cause severe impact on the environment. The research on advanced oxidation processes has been recognized as promising strategies for disinfection purposes. In particular, semiconductor-based photocatalysis is an effective renewable solar-driven technology that relies on the reactive oxidative species, mainly hydroxyl (•OH) and superoxide (•O2-) radicals, for rupturing the capsid shell of the virus and loss of pathogenicity. However, the limited understanding of critical aspects such as viral photo-inactivation mechanism, rapid virus mutagenicity, and virus viability for a prolonged time restricts the large-scale application of photocatalytic disinfection technology. In this work, fundamentals of photocatalysis disinfection phenomena are addressed with a reviewed remark on the reported literature of semiconductor photocatalysts efficacies against SARS-CoV-2. Furthermore, to validate the photocatalysis process on an industrial scale, we provide updated data on available commercial modalities for an effective virus photo-inactivation process. An elaborative discussion on the long-term challenges and sustainable solutions is suggested to fill in the existing knowledge gaps. We anticipate this review will ignite interest among researchers to pave the way to the photocatalysis process for disinfecting virus-contaminated environments and surfaces for current and future pandemics.
Collapse
Affiliation(s)
- Abhinandan Kumar
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Vasudha Hasija
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Anita Sudhaik
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Van-Huy Nguyen
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu, Seoul, 02841, South Korea
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| | - D C Nguyen
- Department of Chemistry, The University of Danang, University of Science and Education, Danang, 550000, Viet Nam
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, N J, 07102, USA.
| |
Collapse
|
15
|
Kumar A, Soni V, Singh P, Parwaz Khan AA, Nazim M, Mohapatra S, Saini V, Raizada P, Hussain CM, Shaban M, Marwani HM, Asiri AM. Green aspects of photocatalysts during corona pandemic: a promising role for the deactivation of COVID-19 virus. RSC Adv 2022; 12:13609-13627. [PMID: 35530385 PMCID: PMC9073611 DOI: 10.1039/d1ra08981a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/17/2022] [Indexed: 12/14/2022] Open
Abstract
The selection of a facile, eco-friendly, and effective methodology is the need of the hour for efficient curing of the COVID-19 virus in air, water, and many food products. Recently, semiconductor-based photocatalytic methodologies have provided promising, green, and sustainable approaches to battle against viral activation via the oxidative capabilities of various photocatalysts with excellent performance under moderate conditions and negligible by-products generation as well. Considering this, recent advances in photocatalysis for combating the spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are inclusively highlighted. Starting from the origin to the introduction of the coronavirus, the significant potential of photocatalysis against viral prevention and -disinfection is discussed thoroughly. Various photocatalytic material-based systems including metal-oxides, metal-free and advanced 2D materials (MXenes, MOFs and COFs) are systematically examined to understand the mechanistic insights of virus-disinfection in the human body to fight against COVID-19 disease. Also, a roadmap toward sustainable solutions for ongoing COVID-19 contagion is also presented. Finally, the challenges in this field and future perspectives are comprehensively discussed involving the bottlenecks of current photocatalytic systems along with potential recommendations to deal with upcoming pandemic situations in the future.
Collapse
Affiliation(s)
- Abhinandan Kumar
- School of Advanced Chemical Sciences, Shoolini University Solan Himachal Pradesh 173229 India
| | - Vatika Soni
- School of Advanced Chemical Sciences, Shoolini University Solan Himachal Pradesh 173229 India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University Solan Himachal Pradesh 173229 India
| | - Aftab Aslam Parwaz Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Mohammed Nazim
- Department of Chemical Engineering, Kumoh National Institute of Technology 61 Daehak-ro Gumi-si Gyeongbuk-do 39177 Republic of Korea
| | - Satyabrata Mohapatra
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University Dwarka New Delhi 110078 India
| | - Vipin Saini
- Maharishi Markandeshwar Medical College Kumarhatti Solan Himachal Pradesh 173229 India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University Solan Himachal Pradesh 173229 India
| | | | - Mohamed Shaban
- Department of Physics, Faculty of Science, Beni-Suef University Beni-Suef 62514 Egypt
| | - Hadi M Marwani
- Center of Excellence for Advanced Materials Research, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Abdullah M Asiri
- Center of Excellence for Advanced Materials Research, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| |
Collapse
|
16
|
Rehman F, Memon FH, Ali A, Khan SM, Soomro F, Iqbal M, Thebo KH. Recent progress on fabrication methods of graphene-based membranes for water purification, gas separation, and energy sustainability. REV INORG CHEM 2022. [DOI: 10.1515/revic-2022-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Graphene-based layered materials have got significant interest in membrane technology for water desalination, gas separation, organic nanofiltration, pervaporation, proton exchange applications, etc. and show remarkable results. Up to date, various methods have been developed for fabrication of high performance membrane. Most of them are only suitable for research purposes, but not appropriate for mass transport barrier and membrane applications that require large-area synthesis. In this comprehensive review, we summarized the current synthesis and fabrication methods of graphene-based membranes. Emphasis will be given on fabrication of both graphene-based nanoporous and lamellar membranes. Finally, we discuss the current engineering hurdles and future research directions yet to be explored for fabrication of such membranes.
Collapse
Affiliation(s)
- Faisal Rehman
- Department of Mechatronics Engineering , College of EME, National University of Sciences and Technology (NUST) , Peshawar Road , Rawalpindi , Pakistan
| | - Fida Hussain Memon
- Department of Electrical Engineering , Sukkur IBA University , Sukkur , Sindh , Pakistan
| | - Akbar Ali
- Department of Molecular Engineering , Faculty of Process and Environmental Engineering, Lodz University of Technology , Lodz , Poland
| | - Shah Masaud Khan
- Department of Horticulture , Faculty of Basic Science and Applied Sciences, The University of Haripur KPK , Haripur , KPK , 22620 , Pakistan
| | - Faheeda Soomro
- Department of Human & Rehabilitation Sciences , Begum Nusrat Bhutto Women University , Sukkur , Pakistan
| | - Muzaffar Iqbal
- Department of Chemistry , Faculty of Natural Science, The University of Haripur KPK , Haripur , KPK , 22620 , Pakistan
| | - Khalid Hussain Thebo
- Institute of Metal Research, Chinese Academy of Sciences (CAS) , Shenyang , China
| |
Collapse
|
17
|
Memon FH, Rehman F, Lee J, Soomro F, Iqbal M, Khan SM, Ali A, Thebo KH, Choi KH. Transition Metal Dichalcogenide-based Membranes for Water Desalination, Gas Separation, and Energy Storage. SEPARATION & PURIFICATION REVIEWS 2022. [DOI: 10.1080/15422119.2022.2037000] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Fida Hussain Memon
- Department of Mechatronics Engineering, Jeju National University, Jeju City Republic of Korea
- Department of Electrical Engineering, Sukkur IBA University, Pakistan
| | - Faisal Rehman
- Department of Mechatronics Engineering, College of EME, National University of Sciences and Technology, Peshawar Road, Rawalpindi, Pakistan
| | - Jaewook Lee
- Department of Mechatronics Engineering, Jeju National University, Jeju City Republic of Korea
| | - Faheeda Soomro
- Department of Human and Rehabilitation Sciences, Begum Nusrat Bhutto Women University, Sukkur, Pakistan
| | - Muzaffar Iqbal
- Department of Chemistry, Faculty of Natural Science, University of Haripur KPK, Haripur, Pakistan
| | - Shah Masaud Khan
- Department of Horticulture, Faculty of Basic Science and Applied Sciences, University of Haripur KPK, Haripur, Pakistan
| | - Akbar Ali
- Department of Molecular Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Lodz, Poland
| | | | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, Jeju City Republic of Korea
| |
Collapse
|
18
|
Wang H, Zhao Z, Liu P, Guo X. Laser-Induced Graphene Based Flexible Electronic Devices. BIOSENSORS 2022; 12:55. [PMID: 35200316 PMCID: PMC8869335 DOI: 10.3390/bios12020055] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 05/05/2023]
Abstract
Since it was reported in 2014, laser-induced graphene (LIG) has received growing attention for its fast speed, non-mask, and low-cost customizable preparation, and has shown its potential in the fields of wearable electronics and biological sensors that require high flexibility and versatility. Laser-induced graphene has been successfully prepared on various substrates with contents from various carbon sources, e.g., from organic films, plants, textiles, and papers. This paper reviews the recent progress on the state-of-the-art preparations and applications of LIG including mechanical sensors, temperature and humidity sensors, electrochemical sensors, electrophysiological sensors, heaters, and actuators. The achievements of LIG based devices for detecting diverse bio-signal, serving as monitoring human motions, energy storage, and heaters are highlighted here, referring to the advantages of LIG in flexible designability, excellent electrical conductivity, and diverse choice of substrates. Finally, we provide some perspectives on the remaining challenges and opportunities of LIG.
Collapse
Affiliation(s)
| | | | | | - Xiaogang Guo
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China; (H.W.); (Z.Z.); (P.L.)
| |
Collapse
|
19
|
Fioranelli M, Ahmad H, Sepehri A, Roccia MG, Aziz F. A mathematical model for imaging and killing cancer cells by using concepts of the Warburg effect in designing a Graphene system. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:2985-2995. [PMID: 35240816 DOI: 10.3934/mbe.2022137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
According to the Warburg effect, there are some significant differences between metabolisms, products and process of respirations of cancer cells and normal cells. For example, normal cells absorb oxygen and glucose and give water molecules, carbon dioxide, ATP molecules and some number of spinors; while cancer cells take glucose and give lactate, less number of ATP molecules and different number of spinors. Using this property, we can design a system from two graphene sheets that are connected by pairing the fourth free electrons of carbons. Then, we can break some pairs and produce some holes. The number of these holes should be equal to the number of radiated spinors by normal cells. Near a normal cell, all holes are filled and the graphene system doesn't emit any electrical current or wave. However, near a cancer cell, some extra holes or spinors remain that their motions produce some electrical currents. These currents force on cancer cell membranes and destroy them and consequently, cause the cell death. Also, these currents emit some electromagnetic waves which detectors could take them out of the human's body and consequently, they could play the main role in imaging.
Collapse
Affiliation(s)
- Massimo Fioranelli
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, Rome 00193, Italy
| | - Hijaz Ahmad
- Information Technology Application and Research Center, Istanbul Ticaret University, Istanbul 34445, Turkey
- Department of Mathematics, Faculty of Humanities and Social Sciences, Istanbul Ticaret University, Istanbul 34445, Turkey
| | - Alireza Sepehri
- Istituto Terapie Sistemiche Integrate, Via Flaminia 449, Rome 00181, Italy
| | - Maria Grazia Roccia
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, Rome 00193, Italy
| | - Faissal Aziz
- Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B. P. 2390, Marrakech 40000, Morocco
| |
Collapse
|
20
|
Wang J, Yu Y, Leng T, Li Y, Lee ST. The Inhibition of SARS-CoV-2 3CL M pro by Graphene and Its Derivatives from Molecular Dynamics Simulations. ACS APPLIED MATERIALS & INTERFACES 2022; 14:191-200. [PMID: 34933561 PMCID: PMC8713398 DOI: 10.1021/acsami.1c18104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
At present, the most powerful new drugs for COVID-19 are antibody proteins. In addition, there are some star small molecule drugs. However, there are few studies on nanomaterials. Here, we study the intact graphene (IG), defective graphene (DG), and graphene oxide (GO) interacting with COVID-19 protein. We find that they show progressive inhibition of COVID-19 protein. By using molecular dynamics simulations, we study the interactions between SARS-CoV-2 3CL Mpro and graphene-related materials (GRMs): IG, DG, and GO. The results show that Mpro can be absorbed onto the surfaces of investigated materials. DG and GO interacted with Mpro more intensely, causing the decisive part of Mpro to become more flexible. Further analysis shows that compared to IG and GO, DG can inactivate Mpro and inhibit its expression effectively by destroying the active pocket of Mpro. Our work not only provides detailed and reliable theoretical guidance for the application of GRMs in treating with SARS-CoV-2 but also helps in developing new graphene-based anti-COVID-19 materials.
Collapse
Affiliation(s)
- Jiawen Wang
- Institute of Functional Nano & Soft Materials
(FUNSOM), Soochow University, Suzhou, Jiangsu 215123,
China
| | - Yi Yu
- Institute of Functional Nano & Soft Materials
(FUNSOM), Soochow University, Suzhou, Jiangsu 215123,
China
| | - Tianle Leng
- Dougherty Valley High School,
10550 Albion Rd, San Ramon, California 94582, United States
| | - Youyong Li
- Institute of Functional Nano & Soft Materials
(FUNSOM), Soochow University, Suzhou, Jiangsu 215123,
China
- Macao Institute of Materials Science and Engineering,
Macau University of Science and Technology, Taipa, 999078
Macau, SAR, China
| | - Shuit-Tong Lee
- Institute of Functional Nano & Soft Materials
(FUNSOM), Soochow University, Suzhou, Jiangsu 215123,
China
- Macao Institute of Materials Science and Engineering,
Macau University of Science and Technology, Taipa, 999078
Macau, SAR, China
| |
Collapse
|
21
|
Gokce C, Gurcan C, Besbinar O, Unal MA, Yilmazer A. Emerging 2D materials for antimicrobial applications in the pre- and post-pandemic era. NANOSCALE 2022; 14:239-249. [PMID: 34935015 DOI: 10.1039/d1nr06476b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Infectious diseases caused by viral or bacterial pathogens are one of the most serious threats to humanity. Moreover, they may lead to pandemics, as we have witnessed severely with the coronavirus disease 2019 (COVID-19). Nanotechnology, including technological developments of nano-sized materials, has brought great opportunities to control the spreading of such diseases. In the family of nano-sized materials, two-dimensional (2D) materials with intrinsic physicochemical properties can efficiently favor antimicrobial activity and maintain a safer environment to protect people against pathogens. For this purpose, they can be used alone or combined for the disinfection process of microbes, antiviral or antibacterial surface coatings, air filtering of medical equipment like face masks, or antimicrobial drug delivery systems. At the same time, they are promising candidates to deal with the issues of conventional antimicrobial approaches such as low efficacy and high cost. This review covers the antiviral or antibacterial activities of 2D materials and highlights their current and possible future applications. Considering their intrinsic properties, 2D materials will become part of the leading antimicrobial technologies for combating future pandemics anytime soon.
Collapse
Affiliation(s)
- Cemile Gokce
- Department of Biomedical Engineering, Ankara University, Golbasi, Ankara, Turkey.
| | - Cansu Gurcan
- Department of Biomedical Engineering, Ankara University, Golbasi, Ankara, Turkey.
- Stem Cell Institute, Ankara University, Balgat, Ankara, Turkey
| | - Omur Besbinar
- Department of Biomedical Engineering, Ankara University, Golbasi, Ankara, Turkey.
- Stem Cell Institute, Ankara University, Balgat, Ankara, Turkey
| | | | - Acelya Yilmazer
- Department of Biomedical Engineering, Ankara University, Golbasi, Ankara, Turkey.
- Stem Cell Institute, Ankara University, Balgat, Ankara, Turkey
| |
Collapse
|
22
|
Ebrahimi M, Asadi M, Akhavan O. Graphene-based Nanomaterials in Fighting the Most Challenging Viruses and Immunogenic Disorders. ACS Biomater Sci Eng 2021; 8:54-81. [PMID: 34967216 DOI: 10.1021/acsbiomaterials.1c01184] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Viral diseases have long been among the biggest challenges for healthcare systems around the world. The recent Coronavirus Disease 2019 (COVID-19) pandemic is an example of how complicated the situation can get if we are not prepared to combat a viral outbreak in time, which brings up the need for quick and affordable biosensing platforms and vast knowledge of potential antiviral effects and drug/gene delivery opportunities. The same challenges have also existed for nonviral immunogenic disorders. Nanomedicine is considered a novel candidate for effectively overcoming these worldwide challenges. Among the versatile nanomaterials commonly used in biomedical applications, graphene has recently earned much attention thanks to its special and inspiring physicochemical properties, such as its large surface area, efficient thermal/electrical properties, carbon-based chemical purity with controllable biocompatibility, easy functionalization, capability of single-molecule detection, anticancer characteristics, 3D template feature in tissue engineering, and, in particular, antibacterial/antiviral activities. In this Review, the most important and challenging viruses of our era, such as human immunodeficiency virus, Ebola, SARS-CoV-2, norovirus, and hepatitis virus, and immunogenic disorders, such as asthma, Alzheimer's disease, and Parkinson's disease, in which graphene-based nanomaterials can effectively take part in the prevention, detection, treatment, medication, and health effect issues, have been covered and discussed.
Collapse
Affiliation(s)
- Mahsa Ebrahimi
- Department of Physics, Sharif University of Technology, 11155-9161 Tehran, Islamic Republic of Iran
| | - Mohamad Asadi
- Department of Electrical Engineering, Sharif University of Technology, 11155-4363 Tehran, Islamic Republic of Iran
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, 11155-9161 Tehran, Islamic Republic of Iran
| |
Collapse
|
23
|
Gul MM, Ahmad KS. Review elucidating graphene derivatives (GO/rGO) supported metal sulfides based hybrid nanocomposites for efficient photocatalytic dye degradation. REV INORG CHEM 2021. [DOI: 10.1515/revic-2021-0039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Abstract
Photocatalysis by utilizing semiconductors for the removal of toxic pollutants has gained tremendous interest for remediation purposes. The organic pollutants usually include; pesticides, dyes and other phenolic compounds. An imperative restraint associated with the photocatalytic effectiveness of the catalyst is the rapid recombination of the light generated electrons and holes. The particle agglomeration and electron-hole recombination hinders the rate of pollutant removal. For decades, researchers have used metal-sulfides efficiently for photocatalytic dye degradation. The recent use of hybrid nanomaterials with the combination of graphene derivatives such as graphene oxide and reduced graphene oxide (GO/rGO)-metal sulfide has gained interest. These composites have displayed an impressive upsurge in the photocatalytic activity of materials. The current review describes the various researches on dye photodegradation by employing (GO/rGO)-metal sulfide, exhibiting a boosted potential for photocatalytic dye degradation. A comprehensive study on (CuS, ZnS and CdS)–GO/rGO hybrid composites have been discussed in detail for effective photocatalytic dye degradation in this review. Astonishingly improved dye degradation rates were observed in all these studies employing such hybrid composites. The several studies described in the review highlighted the varying degradation rates based on diverse research parameters and efficacy of graphene derivatives for enhancement of photocatalytic activity.
Collapse
Affiliation(s)
- Mahwash Mahar Gul
- Department of Environmental Sciences , Fatima Jinnah Women University , The Mall , 46000 , Pakistan
| | - Khuram Shahzad Ahmad
- Department of Environmental Sciences , Fatima Jinnah Women University , The Mall , 46000 , Pakistan
| |
Collapse
|
24
|
Rehman F, Memon FH, Bhatti Z, Iqbal M, Soomro F, Ali A, Thebo KH. Graphene-based composite membranes for isotope separation: challenges and opportunities. REV INORG CHEM 2021. [DOI: 10.1515/revic-2021-0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Graphene-based membranes have got significant attention in wastewater treatment, desalination, gas separation, pervaporation, fuel cell, energy storage applications due to their supreme properties. Recently, studies have confirmed that graphene based membranes can also use for separation of isotope due to their ideal thickness, large surface area, good affinity, 2D structure etc. Herein, we review the latest groundbreaking progresses in both theoretically and experimentally chemical science and engineering of both nanoporous and lamellar graphene-based membrane for separation of different isotopes. Especially focus will be given on the current issues, engineering hurdles, and limitations of membranes designed for isotope separation. Finally, we offer our experiences on how to overcome these issues, and present an ideas for future improvement and research directions. We hope, this article is provide a timely knowledge and information to scientific communities, and those who are already working in this direction.
Collapse
Affiliation(s)
- Faisal Rehman
- Department of Mechatronics Engineering , College of EME, National University of Sciences and Technology (NUST) , Peshawar Road , Rawalpindi , Pakistan
| | - Fida Hussain Memon
- Department of Electrical Engineering , Sukkur IBA University , Sindh , Pakistan
| | - Zubeda Bhatti
- Department of Physics and Electronics , Shah Abdul Latif University , Khairpur Mirs , 66020 , Pakistan
| | - Muzaffar Iqbal
- Department of Chemistry , Faculty of Natural Science, The University of Haripur KPK , Haripur , 22620 , Pakistan
| | - Faheeda Soomro
- Department of Linguistics and Human Sciences , Begum Nusrat Bhutto Women University , Sukkur Sindh Pakistan
| | - Akbar Ali
- Department of Molecular Engineering , Faculty of Process and Environmental Engineering, Lodz University of Technology , Lodz , Poland
| | - Khalid Hussain Thebo
- Institute of Metal Research, Chinese Academy of Sciences (UCAS) , Shenyang , China
| |
Collapse
|
25
|
Mahar I, Memon FH, Lee JW, Kim KH, Ahmed R, Soomro F, Rehman F, Memon AA, Thebo KH, Choi KH. Two-Dimensional Transition Metal Carbides and Nitrides (MXenes) for Water Purification and Antibacterial Applications. MEMBRANES 2021; 11:869. [PMID: 34832099 PMCID: PMC8623976 DOI: 10.3390/membranes11110869] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022]
Abstract
Two-dimensional (2D) materials such as graphene, graphene oxide (GO), metal carbides and nitrides (MXenes), transition metal dichalcogenides (TMDS), boron nitride (BN), and layered double hydroxide (LDH) metal-organic frameworks (MOFs) have been widely investigated as potential candidates in various separation applications because of their high mechanical strength, large surface area, ideal chemical and thermal stability, simplicity, ease of functionalization, environmental comparability, and good antibacterial performance. Recently, MXene as a new member of the 2D polymer family has attracted significant attention in water purification, desalination, gas separation, antibacterial, and antifouling applications. Herein, we review the most recent progress in the fabrication, preparation, and modification methods of MXene-based lamellar membranes with the emphasis on applications for water purification and desalination. Moreover, the antibacterial properties of MXene-based membranes show a significant potential for commercial use in water purification. Thus, this review provides a directional guide for future development in this emerging technology.
Collapse
Affiliation(s)
- Inamullah Mahar
- National Centre of Excellence in Analytical Chemistry (NCEAC), University of Sindh, Jamshoro 76060, Sindh, Pakistan; (I.M.); (A.A.M.)
| | - Fida Hussain Memon
- Department of Electrical Engineering, Sukkur IBA University, Sukkur 65200, Sindh, Pakistan;
- Advanced Micro Mechatronics Lab., Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Korea; (J.-W.L.); (K.H.K.)
| | - Jae-Wook Lee
- Advanced Micro Mechatronics Lab., Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Korea; (J.-W.L.); (K.H.K.)
| | - Kyung Hwan Kim
- Advanced Micro Mechatronics Lab., Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Korea; (J.-W.L.); (K.H.K.)
| | - Rafique Ahmed
- Institute of Composite Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China;
| | - Faheeda Soomro
- Department of Linguistics and Human Sciences, Begum Nusrat Bhutto Women University, Sukkur 65200, Sindh, Pakistan;
| | - Faisal Rehman
- Department of Mechatronics Engineering, College of EME, National University of Sciences and Technology (NUST), Peshawar Road, Rawalpindi 43701, Punjab, Pakistan;
| | - Ayaz Ali Memon
- National Centre of Excellence in Analytical Chemistry (NCEAC), University of Sindh, Jamshoro 76060, Sindh, Pakistan; (I.M.); (A.A.M.)
| | - Khalid Hussain Thebo
- Institute of Metal Research, Chinese Academy of Sciences (CAS), Shenyang 110016, China
| | - Kyung Hyun Choi
- Advanced Micro Mechatronics Lab., Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Korea; (J.-W.L.); (K.H.K.)
| |
Collapse
|
26
|
Bhatti SA, Memon FH, Rehman F, Bhatti Z, Naqvi T, Thebo KH. Recent progress in decontamination system against chemical and biological materials: challenges and future perspectives. REV INORG CHEM 2021. [DOI: 10.1515/revic-2021-0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abstract
Environmental contamination is one of the key issues of developing countries in recent days, and several types of methods and technologies have been developed to overcome these issues. This paper highlights the importance of decontamination in a contaminated environment that normally precedes protection, detection and identification followed by medical support. Further, this paper especially focuses on individual and collective NBC decontamination required on navy ships and correspondingly presents solutions (viable and economical) through the use of indigenously developed decontamination equipment. The paper also highlights the integration of various decontamination technologies with pre-existing ship decontamination systems, indicating the need for various decontaminants. Finally, we will also focus on new decontamination systems based on nanomaterials and enzymes and their utilization.
Collapse
Affiliation(s)
- Saeed Akhtar Bhatti
- Department of Defence & Strategic Studies , Quaid-i-Azam University , Islamabad , 45320 , Pakistan
| | - Fida Hussain Memon
- Department of Electrical Engineering , Sukkur IBA University , Sukkur , Sindh , Pakistan
| | - Faisal Rehman
- Department of Mechatronics Engineering , College of EME, National University of Sciences and Technology (NUST) , Peshawar Road , Rawalpindi , Pakistan
| | - Zubeda Bhatti
- Department of Physics and Electronics , Shah Abdul Latif University , Khairpur Mirs , 66020 , Pakistan
| | - Tehsin Naqvi
- Department of Defence & Strategic Studies , Quaid-i-Azam University , Islamabad , 45320 , Pakistan
| | - Khalid Hussain Thebo
- Institute of Metal Research, Chinese Academy of Sciences (UCAS) , Shenyang , China
| |
Collapse
|
27
|
Khan J, Ullah H, Sajjad M, Bahadar A, Bhatti Z, Soomro F, Hussain Memon F, Iqbal M, Rehman F, Hussain Thebo K. High yield synthesis of transition metal fluorides (CoF2, NiF2, and NH4MnF3) nanoparticles with excellent electrochemical performance. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108751] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Mallakpour S, Azadi E, Hussain CM. Fight against COVID-19 pandemic with the help of carbon-based nanomaterials. NEW J CHEM 2021. [DOI: 10.1039/d1nj01333e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have considered the newest momentous outcomes in carbon-based nanomaterials for utility in controlling and fighting the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | - Elham Azadi
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | | |
Collapse
|