1
|
Chang SH, Pai PY, Hsu CH, Marthandam Asokan S, Tsai BCK, Weng WT, Kuo WW, Shih TC, Kao HC, Chen WST, Huang CY. Estimating the impact of drug addiction causes heart damage. Drug Chem Toxicol 2023; 46:1044-1050. [PMID: 36216784 DOI: 10.1080/01480545.2022.2122984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/26/2022] [Accepted: 09/01/2022] [Indexed: 11/03/2022]
Abstract
To date, few studies have investigated the toxicological effects of the combined use of amphetamine and heroin in the heart. Hence, the aim of this study was to identify indicators for clinical evaluation and prevention of cardiac injury induced by the combined use of amphetamine and heroin. Four different groups were analyzed: (1) normal group (n=25;average age=35 ± 6.8); (2) heart disease group (n=25;average age=58 ± 17.2); (3) drug abusers (n = 27; average age = 37 ± 7.7); (4) drug abstainers (previous amphetamine-heroin users who had been drug-free for more than two weeks; n = 22; average age = 35 ± 5.6). The activity of MMPs, and levels of TNF-α, IL-6, GH, IGF-I, and several serum biomarkers were examined to evaluate the impact of drug abuse on the heart. The selected plasma biomarkers and classic cardiac biomarkers were significantly increased compared to the normal group. The zymography data showed the changes in cardiac-remodeling enzymes MMP-9 and MMP-2 among combined users of amphetamine and heroin. The levels of TNF-α and IL-6 only increased in the heart disease group. Growth hormone was increased; however, IGF-I level decreased with drug abuse and the level was not restored by abstinence. We speculated that the amphetamine-heroin users might pose risk to initiate heart disease even though the users abstained for more than two weeks. The activity change of MMP-9 and MMP-2 can be a direct reason affecting heart function. The indirect reason may be related to liver damage by drug abuse reduce IGF-1 production to protect heart function.
Collapse
Affiliation(s)
- Sheng-Huang Chang
- Department of Health, Executive Yuan, Tsao-Tun Psychiatric Center, Nantou, Taiwan
| | - Pei-Ying Pai
- Division of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | - Chiung-Hung Hsu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Shibu Marthandam Asokan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wen-Tsan Weng
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | - Tzu-Ching Shih
- Department of Biomedical Imaging and Radiological Science College of Medicine, China Medical University, Taichung, Taiwan
| | - Hui-Chuan Kao
- Department of Public Health, Tzu Chi University, Hualien, Taiwan
| | - William Shao-Tsu Chen
- Department of Psychiatry, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Human Development and Psychology, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
2
|
Chramiec A, Teles D, Yeager K, Marturano-Kruik A, Pak J, Chen T, Hao L, Wang M, Lock R, Tavakol DN, Lee MB, Kim J, Ronaldson-Bouchard K, Vunjak-Novakovic G. Integrated human organ-on-a-chip model for predictive studies of anti-tumor drug efficacy and cardiac safety. LAB ON A CHIP 2020; 20:4357-4372. [PMID: 32955072 PMCID: PMC8092329 DOI: 10.1039/d0lc00424c] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Traditional drug screening models are often unable to faithfully recapitulate human physiology in health and disease, motivating the development of microfluidic organs-on-a-chip (OOC) platforms that can mimic many aspects of human physiology and in the process alleviate many of the discrepancies between preclinical studies and clinical trials outcomes. Linsitinib, a novel anti-cancer drug, showed promising results in pre-clinical models of Ewing Sarcoma (ES), where it suppressed tumor growth. However, a Phase II clinical trial in several European centers with patients showed relapsed and/or refractory ES. We report an integrated, open setting, imaging and sampling accessible, polysulfone-based platform, featuring minimal hydrophobic compound binding. Two bioengineered human tissues - bone ES tumor and heart muscle - were cultured either in isolation or in the integrated platform and subjected to a clinically used linsitinib dosage. The measured anti-tumor efficacy and cardiotoxicity were compared with the results observed in the clinical trial. Only the engineered tumor tissues, and not monolayers, recapitulated the bone microenvironment pathways targeted by linsitinib, and the clinically-relevant differences in drug responses between non-metastatic and metastatic ES tumors. The responses of non-metastatic ES tumor tissues and heart muscle to linsitinib were much closer to those observed in the clinical trial for tissues cultured in an integrated setting than for tissues cultured in isolation. Drug treatment of isolated tissues resulted in significant decreases in tumor viability and cardiac function. Meanwhile, drug treatment in an integrated setting showed poor tumor response and less cardiotoxicity, which matched the results of the clinical trial. Overall, the integration of engineered human tumor and cardiac tissues in the integrated platform improved the predictive accuracy for both the direct and off-target effects of linsitinib. The proposed approach could be readily extended to other drugs and tissue systems.
Collapse
Affiliation(s)
- Alan Chramiec
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Diogo Teles
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarāes, Braga, Portugal
| | - Keith Yeager
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Alessandro Marturano-Kruik
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Chemistry, Materials and Chemical Engineering “G Natta”, Politecnico de Milano, Milano, Italy
| | - Joseph Pak
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Timothy Chen
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Luke Hao
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Miranda Wang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Roberta Lock
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | - Marcus Busub Lee
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jinho Kim
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA
| | | | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Medicine, Columbia University, New York, NY, USA
| |
Collapse
|
3
|
Short-Term Treatment with Esmolol Reverses Left Ventricular Hypertrophy in Adult Spontaneously Hypertensive Rats via Inhibition of Akt/NF- κB and NFATc4. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2691014. [PMID: 29670896 PMCID: PMC5835291 DOI: 10.1155/2018/2691014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/24/2017] [Accepted: 01/03/2018] [Indexed: 11/20/2022]
Abstract
Our group has previously demonstrated that short-term treatment with esmolol reduces left ventricular hypertrophy (LVH) in spontaneously hypertensive rats (SHRs). The present study aimed to assess the molecular mechanisms related to this effect. Fourteen-month-old male SHRs were treated intravenously with saline as vehicle (SHR) or esmolol (SHR-E) (300 μg/kg/min). Age-matched vehicle-treated male Wistar-Kyoto (WKY) rats served as controls. After 48 hours of treatment, the hearts were harvested and left ventricular tissue was separated and processed for Western blot analysis to determine the levels of Akt, NF-κB, NFATc4, Creb1, Serca2a, Erk1/2, and Sapk/Jnk. Biomarkers of oxidative stress, such as catalase, protein carbonyls, total thiols, and total antioxidant capacity were evaluated. Esmolol reversed the levels of p-NFATc4, p-Akt, and p-NF-κB in SHRs to the phospholevels of these proteins in WKY rats without modifying p-Erk1/2, p-Sapk/Jnk, p-Creb1, or Serca2a in SHR. Compared with SHR, esmolol increased catalase activity and reduced protein carbonyls without modifying total thiols or total antioxidant capacity. Short-term treatment with esmolol reverses LVH in aged SHRs by downregulation of Akt/NF-κB and NFATc4 activity. Esmolol treatment also increases catalase activity and reduces oxidative stress in SHRs with LVH.
Collapse
|
4
|
Chang YM, Chang HH, Kuo WW, Lin HJ, Yeh YL, Padma Viswanadha V, Tsai CC, Chen RJ, Chang HN, Huang CY. Anti-Apoptotic and Pro-Survival Effect of Alpinate Oxyphyllae Fructus (AOF) in a d-Galactose-Induced Aging Heart. Int J Mol Sci 2016; 17:466. [PMID: 27043531 PMCID: PMC4848922 DOI: 10.3390/ijms17040466] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 12/16/2022] Open
Abstract
Aging, a natural biological/physiological phenomenon, is accelerated by reactive oxygen species (ROS) accumulation and identified by a progressive decrease in physiological function. Several studies have shown a positive relationship between aging and chronic heart failure (HF). Cardiac apoptosis was found in age-related diseases. We used a traditional Chinese medicine, Alpinate Oxyphyllae Fructus (AOF), to evaluate its effect on cardiac anti-apoptosis and pro-survival. Male eight-week-old Sprague–Dawley (SD) rats were segregated into five groups: normal control group (NC), d-Galactose-Induced aging group (Aging), and AOF of 50 (AL (AOF low)), 100 (AM (AOF medium)), 150 (AH (AOF high)) mg/kg/day. After eight weeks, hearts were measured by an Hematoxylin–Eosin (H&E) stain, Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-assays and Western blotting. The experimental results show that the cardiomyocyte apoptotic pathway protein expression increased in the d-Galactose-Induced aging groups, with dose-dependent inhibition in the AOF treatment group (AL, AM, and AH). Moreover, the expression of the pro-survival p-Akt (protein kinase B (Akt)), Bcl-2 (B-cell lymphoma 2), anti-apoptotic protein (Bcl-xL) protein decreased significantly in the d-Galactose-induced aging group, with increased performance in the AOF treatment group with levels of p-IGFIR and p-PI3K (Phosphatidylinositol-3′ kinase (PI3K)) to increase by dosage and compensatory performance. On the other hand, the protein of the Sirtuin 1 (SIRT1) pathway expression decreased in the aging groups and showed improvement in the AOF treatment group. Our results suggest that AOF strongly works against ROS-induced aging heart problems.
Collapse
Affiliation(s)
- Yung-Ming Chang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 84001, Taiwan.
- Chinese Medicine Department, E-DA Hospital, Kaohsiung 82445, Taiwan.
- 1PT Biotechnology Co., Ltd., Taichung 433, Taiwan.
| | - Hen-Hong Chang
- Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung 40402, Taiwan.
- Departments of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan.
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung 40447, Taiwan.
| | - Hung-Jen Lin
- Departments of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan.
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Yu-Lan Yeh
- Department of pathology, Changhua Christian Hospital, Changhua 50506, Taiwan.
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 35665, Taiwan.
| | | | - Chin-Chuan Tsai
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 84001, Taiwan.
- Chinese Medicine Department, E-DA Hospital, Kaohsiung 82445, Taiwan.
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan.
| | - Hsin-Nung Chang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
- School of Chinese Medicine, China Medical University, Taichung 40447, Taiwan.
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
5
|
Tocchi A, Quarles EK, Basisty N, Gitari L, Rabinovitch PS. Mitochondrial dysfunction in cardiac aging. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1424-33. [PMID: 26191650 DOI: 10.1016/j.bbabio.2015.07.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/06/2015] [Accepted: 07/09/2015] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases are the leading cause of death in most developed nations. While it has received the least public attention, aging is the dominant risk factor for developing cardiovascular diseases, as the prevalence of cardiovascular diseases increases dramatically with increasing age. Cardiac aging is an intrinsic process that results in impaired cardiac function, along with cellular and molecular changes. Mitochondria play a great role in these processes, as cardiac function is an energetically demanding process. In this review, we examine mitochondrial dysfunction in cardiac aging. Recent research has demonstrated that mitochondrial dysfunction can disrupt morphology, signaling pathways, and protein interactions; conversely, mitochondrial homeostasis is maintained by mechanisms that include fission/fusion, autophagy, and unfolded protein responses. Finally, we describe some of the recent findings in mitochondrial targeted treatments to help meet the challenges of mitochondrial dysfunction in aging.
Collapse
Affiliation(s)
- Autumn Tocchi
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, USA.
| | - Ellen K Quarles
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, USA.
| | - Nathan Basisty
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, USA.
| | - Lemuel Gitari
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, USA.
| | - Peter S Rabinovitch
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, USA.
| |
Collapse
|
6
|
Hu WS, Ting WJ, Chiang WD, Pai P, Yeh YL, Chang CH, Lin WT, Huang CY. The Heart Protection Effect of Alcalase Potato Protein Hydrolysate Is through IGF1R-PI3K-Akt Compensatory Reactivation in Aging Rats on High Fat Diets. Int J Mol Sci 2015; 16:10158-72. [PMID: 25950762 PMCID: PMC4463638 DOI: 10.3390/ijms160510158] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 12/27/2022] Open
Abstract
The prevalence of obesity is high in older adults. Alcalase potato protein hydrolysate (APPH), a nutraceutical food, might have greater benefits and be more economical than hypolipidemic drugs. In this study, serum lipid profiles and heart protective effects were evaluated in high fat diet (HFD) induced hyperlipidemia in aging rats treated with APPH (15, 45 and 75 mg/kg/day) and probucol (500 mg/kg/day). APPH treatments reduced serum triacylglycerol (TG), total cholesterol (TC), and low density lipoprotein (LDL) levels to the normal levels expressed in the control group. Additionally, the IGF1R-PI3K-Akt survival pathway was reactivated, and Fas-FADD (Fas-associated death domain) induced apoptosis was inhibited by APPH treatments (15 and 45 mg/kg/day) in HFD aging rat hearts. APPH (75 mg/kg/day) rather than probucol (500 mg/kg/day) treatment could reduce serum lipids without affecting HDL expression. The heart protective effect of APPH in aging rats with hyperlipidemia was through lowering serum lipids and enhancing the activation of the compensatory IGF1R-PI3K-Akt survival pathway.
Collapse
Affiliation(s)
- Wei-Syun Hu
- PhD Program for Aging, China Medical University, Taichung 40402, Taiwan.
| | - Wei-Jen Ting
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
| | - Wen-Dee Chiang
- Department of Food Science, College of Agriculture, Tunghai University, Taichung 40704, Taiwan.
| | - Peiying Pai
- Division of Cardiology, China Medical University Hospital, Taichung 40402, Taiwan.
| | - Yu-Lan Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua 50006, Taiwan.
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 35664, Taiwan.
| | - Chung-Ho Chang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan Town 35053, Taiwan.
| | - Wan-Teng Lin
- Department of Hospitality Management, College of Agriculture, Tunghai University, Taichung 40704, Taiwan.
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung 40402, Taiwan.
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
7
|
Liang X, Xing W, He J, Fu F, Zhang W, Su F, Liu F, Ji L, Gao F, Su H, Sun X, Zhang H. Magnolol administration in normotensive young spontaneously hypertensive rats postpones the development of hypertension: role of increased PPAR gamma, reduced TRB3 and resultant alleviative vascular insulin resistance. PLoS One 2015; 10:e0120366. [PMID: 25793876 PMCID: PMC4367990 DOI: 10.1371/journal.pone.0120366] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/20/2015] [Indexed: 01/04/2023] Open
Abstract
Patients with prehypertension are more likely to progress to manifest hypertension than those with optimal or normal blood pressure. However, the mechanisms underlying the development from prehypertension to hypertension still remain largely elusive and the drugs for antihypertensive treatment in prehypertension are absent. Here we determined the effects of magnolol (MAG) on blood pressure and aortic vasodilatation to insulin, and investigated the underlying mechanisms. Four-week-old male spontaneous hypertensive rats (SHR) and age-matched normotensive Wistar-Kyoto (WKY) control rats were used. Our results shown that treatment of young SHRs with MAG (100 mg/kg/day, o.g.) for 3 weeks decreased blood pressure, improved insulin-induced aorta vasodilation, restored Akt and eNOS activation stimulated by insulin, and increased PPARγ and decreased TRB3 expressions. In cultured human umbilical vein endothelial cells (HUVECs), MAG incubation increased PPARγ, decreased TRB3 expressions, and restored insulin-induced phosphorylated Akt and eNOS levels and NO production, which was blocked by both PPARγ antagonist and siRNA targeting PPARγ. Improved insulin signaling in HUVECs by MAG was abolished by upregulating TRB3 expression. In conclusion, treatment of young SHRs with MAG beginning at the prehypertensive stage decreases blood pressure via improving vascular insulin resistance that is at least partly attributable to upregulated PPARγ, downregulated TRB3 and consequently increased Akt and eNOS activations in blood vessels in SHRs.
Collapse
Affiliation(s)
- Xiangyan Liang
- Experiment Teaching Center, Fourth Military Medical University, Xi'an, China
| | - Wenjuan Xing
- Department of Physiology, Fourth Military Medical University, Xi'an, China
| | - Jinxiao He
- Department of Pediatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Feng Fu
- Department of Physiology, Fourth Military Medical University, Xi'an, China
| | - Wei Zhang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Feifei Su
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Fange Liu
- Experiment Teaching Center, Fourth Military Medical University, Xi'an, China
| | - Lele Ji
- Experiment Teaching Center, Fourth Military Medical University, Xi'an, China
| | - Feng Gao
- Department of Physiology, Fourth Military Medical University, Xi'an, China
| | - Hui Su
- Department of Geratology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- * E-mail: (HZ); (XS); (HS)
| | - Xin Sun
- Department of Pediatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- * E-mail: (HZ); (XS); (HS)
| | - Haifeng Zhang
- Experiment Teaching Center, Fourth Military Medical University, Xi'an, China
- * E-mail: (HZ); (XS); (HS)
| |
Collapse
|
8
|
Cheng PW, Kang BH, Lu PJ, Lin SS, Ho WY, Chen HH, Hong LZ, Wu YS, Hsiao M, Tseng CJ. Involvement of two distinct signalling pathways in IGF-1-mediated central control of hypotensive effects in normotensive and hypertensive rats. Acta Physiol (Oxf) 2014; 212:28-38. [PMID: 24995704 DOI: 10.1111/apha.12340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/14/2014] [Accepted: 07/01/2014] [Indexed: 01/04/2023]
Abstract
AIMS Insulin-like growth factor-1 (IGF-1) is abundantly expressed in the nucleus tractus solitarii (NTS). In a previous study, we revealed that the induction of nitric oxide (NO) production in the NTS reduces blood pressure (BP). It is well known that both acute administration and chronic administration of IGF-I reduce BP. The aim of this study was to evaluate the short-term hypotensive effect of IGF-1 in the NTS and to delineate the underlying molecular mechanisms of IGF-1 in the NTS of normotensive WKY rats and spontaneously hypertensive rats (SHRs). METHOD Microinjections of the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and the MAP kinase-ERK kinase (MEK) inhibitor PD98059 into the NTS in WKY rats and SHRs were used to study the involvement of IGF-1-induced depressor effects. RESULT An IGF-1 (7.7 pmol) injection into the NTS resulted in a significant decrease in BP and HR in WKY rats and SHRs. Immunoblotting and immunohistochemical analysis showed that the microinjection of LY294002 (0.6 pmol) or PD98059 (3.0 pmol) into the NTS attenuated the IGF-1-induced depressor effects and Akt or ERK phosphorylation in WKY rats. An attenuation effect of LY294002, but not PD98059, was found in the SHRs. However, the mRNA and protein expression levels of the IGF-1R showed no significant differences in the NTS of the WKY rats and the SHRs. CONCLUSION These results suggest that distinct Akt and ERK signalling pathways mediated the IGF-1 control of the central depressor effects in WKY rats and SHRs. ERK signalling defects may be associated with the development of hypertension.
Collapse
Affiliation(s)
- P.-W. Cheng
- Department of Medical Education and Research; Kaohsiung Veterans General Hospital; Kaohsiung Taiwan
| | - B.-H. Kang
- Department of Diving Medicine; Zouying Branch of Kaohsiung Armed Forces General Hospital Kaohsiung; Kaohsiung Taiwan
| | - P.-J. Lu
- Institute of Clinical Medicine; National Cheng-Kung University; Tainan Taiwan
| | - S.-S. Lin
- Institute of Biomedical Sciences; National Sun Yat-Sen University; Kaohsiung Taiwan
| | - W.-Y. Ho
- Division of General Internal Medicine; Department of Internal Medicine; Kaohsiung Medical University Hospital; Kaohsiung Medical University; Kaohsiung Taiwan
| | - H.-H. Chen
- Institute of Clinical Medicine; National Yang-Ming University; Taipei Taiwan
| | - L.-Z. Hong
- Department of Medical Education and Research; Taichung Veterans General Hospital; Taichung Taiwan
| | - Y.-S. Wu
- Department of Medical Education and Research; Kaohsiung Veterans General Hospital; Kaohsiung Taiwan
| | - M. Hsiao
- Genomics Research Center; Academia Sinica; Taipei Taiwan
| | - C.-J. Tseng
- Department of Medical Education and Research; Kaohsiung Veterans General Hospital; Kaohsiung Taiwan
- Institute of Clinical Medicine; National Cheng-Kung University; Tainan Taiwan
- Division of General Internal Medicine; Department of Internal Medicine; Kaohsiung Medical University Hospital; Kaohsiung Medical University; Kaohsiung Taiwan
- Department of Medical Research; China Medical University Hospital; China Medical University; Taichung Taiwan
| |
Collapse
|
9
|
LIN PEIPEI, HSIEH YOUMIIN, KUO WEIWEN, LIN CHIENCHUNG, TSAI FUUJEN, TSAI CHANGHAI, HUANG CHIHYANG, TSAI CHENGCHIH. Inhibition of cardiac hypertrophy by probiotic-fermented purple sweet potato yogurt in spontaneously hypertensive rat hearts. Int J Mol Med 2012; 30:1365-75. [DOI: 10.3892/ijmm.2012.1154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 07/03/2012] [Indexed: 11/05/2022] Open
|
10
|
Sussman MA, Völkers M, Fischer K, Bailey B, Cottage CT, Din S, Gude N, Avitabile D, Alvarez R, Sundararaman B, Quijada P, Mason M, Konstandin MH, Malhowski A, Cheng Z, Khan M, McGregor M. Myocardial AKT: the omnipresent nexus. Physiol Rev 2011; 91:1023-70. [PMID: 21742795 PMCID: PMC3674828 DOI: 10.1152/physrev.00024.2010] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses.
Collapse
Affiliation(s)
- Mark A Sussman
- Department of Biology, San Diego State University, SDSU Heart Institute, San Diego, California 92182, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bau DT, Chang CH, Tsai MH, Chiu CF, Tsou YA, Wang RF, Tsai CW, Tsai RY. Association between DNA repair gene ATM polymorphisms and oral cancer susceptibility. Laryngoscope 2010; 120:2417-22. [DOI: 10.1002/lary.21009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Phosphorylated endothelial NOS Ser1177 via the PI3K/Akt pathway is depressed in the brain of stroke-prone spontaneously hypertensive rat. J Stroke Cerebrovasc Dis 2010; 20:406-12. [PMID: 20813549 DOI: 10.1016/j.jstrokecerebrovasdis.2010.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/06/2010] [Accepted: 01/24/2010] [Indexed: 11/23/2022] Open
Abstract
Stroke-prone spontaneously hypertensive rats (SHRSP) demonstrate impaired endothelium-dependent relaxation and often develop brain injuries. We investigated whether the regulatory mechanism for endothelial NOS (eNOS) phosphorylation and activation is altered in the cerebral cortex of SHRSP at a younger age. Western blot analysis revealed a low ratio of phosphor-eNOS (Ser1177) to total eNOS in SHRSP at 10 weeks of age. In addition, urinary nitric oxide metabolites (ie, nitrate and nitrite) were decreased compared with normal control WKY rats. Likewise, Akt phosphorylation (especially Ser473) was significantly reduced, with no changes in total Akt. Furthermore, the amount of the phosphatidylinositol 3-kinase (PI3K) was upstream of Akt was diminished, although attenuation of the PI3K/Akt pathway was not an effect of mTOR, another downstream target of Akt. Our findings indicate that abnormalities of the PI3K/Akt pathway in the cerebral cortex are involved in the impaired eNOS phosphorylation and activation in SHRSP.
Collapse
|
13
|
Li R, Pourpak A, Morris SW. Inhibition of the insulin-like growth factor-1 receptor (IGF1R) tyrosine kinase as a novel cancer therapy approach. J Med Chem 2010; 52:4981-5004. [PMID: 19610618 DOI: 10.1021/jm9002395] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Rongshi Li
- Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Oncologic Sciences, University of South Florida, 12902 Magnolia Drive, Tampa, FL 33612, USA.
| | | | | |
Collapse
|
14
|
Li R, Zhang H, Wang W, Wang X, Huang Y, Huang C, Gao F. Vascular insulin resistance in prehypertensive rats: role of PI3-kinase/Akt/eNOS signaling. Eur J Pharmacol 2009; 628:140-7. [PMID: 19944677 DOI: 10.1016/j.ejphar.2009.11.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 11/10/2009] [Accepted: 11/17/2009] [Indexed: 10/20/2022]
Abstract
It is well known that systemic insulin resistance is closely associated with the metabolic syndrome including type 2 diabetes and hypertension. However, it remains unclear whether vascular insulin resistance acts as an early etiologic factor for the development of hypertension. Male spontaneously hypertensive rats (SHRs) aged 5 weeks (young) and 15 weeks (adult) were studied and vascular insulin resistance was assessed as the function of isolated aortic vasodilatory response to insulin in vitro. Compared with Wistar-Kyoto (WKY) rats, adult SHRs exhibited significant hypertension with significantly decreased aortic vasodilatation to insulin, whereas young SHRs had normal blood pressure but exhibited similar vascular insulin resistance. Both young and adult SHRs showed significant downregulated expression of PI3-kinase and decreased insulin-stimulated phosphorylations of Akt and eNOS in vascular tissues. Treatment with rosiglitazone (RSG), an insulin sensitizer, for 2 weeks increased vascular PPARgamma expression and restored PI3-kinase/Akt/eNOS-mediated signaling pathway only in young SHRs. More importantly, this treatment improved aortic vasodilatory response to insulin in young but not in adult SHRs. In summary, vascular insulin resistance, characterized by the impairment of PI3-kinase/Akt/eNOS-mediated signaling in vascular endothelium, may play important roles in endothelial dysfunction and subsequent development of hypertension in normotensive young SHRs.
Collapse
Affiliation(s)
- Rong Li
- Department of Geratology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Kuo WW, Chung LC, Liu CT, Wu SP, Kuo CH, Tsai FJ, Tsai CH, Lu MC, Huang CY, Lee SD. Effects of insulin replacement on cardiac apoptotic and survival pathways in streptozotocin-induced diabetic rats. Cell Biochem Funct 2009; 27:479-87. [DOI: 10.1002/cbf.1601] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Reddy AK, Amador-Noguez D, Darlington GJ, Scholz BA, Michael LH, Hartley CJ, Entman ML, Taffet GE. Cardiac function in young and old Little mice. J Gerontol A Biol Sci Med Sci 2008; 62:1319-25. [PMID: 18166681 DOI: 10.1093/gerona/62.12.1319] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We studied cardiac function in young and old, wild-type (WT), and longer-living Little mice using cardiac flow velocities, echocardiographic measurements, and left ventricular (LV) pressure (P) to determine if enhanced reserves were in part responsible for longevity in these mice. Resting/baseline cardiac function, as measured by velocities, LV dimensions, +dP/dt(max), and -dP/dt(max), was significantly lower in young Little mice versus young WT mice. Fractional shortening (FS) increased significantly, and neither +dP/dt(max) nor -dP/dt(max) declined with age in Little mice. In contrast, old WT mice had no change in FS but had significantly lower +dP/dt(max) and -dP/dt(max) versus young WT mice. Significant decreases were observed in the velocity indices of old Little mice versus old WT mice, but other parameters were unchanged. The magnitude of dobutamine stress response remained unchanged with age in Little mice, while that in WT mice decreased. These data suggest that while resting cardiac function in Little mice versus WT mice is lower at young age, it is relatively unaltered with aging. Additionally, cardiac function in response to stress was maintained with age in Little mice but not in their WT counterparts. Thus, some mouse models of increased longevity may not be associated with enhanced reserves.
Collapse
Affiliation(s)
- Anilkumar K Reddy
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Araujo ASR, Enzveiler AT, Schenkel P, Fernandes TRG, Ribeiro MFM, Partata WA, Llesuy S, Belló-Klein A. Oxidative stress activates insulin-like growth factor I receptor protein expression, mediating cardiac hypertrophy induced by thyroxine. Mol Cell Biochem 2007; 303:89-95. [PMID: 17447016 DOI: 10.1007/s11010-007-9459-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 03/20/2007] [Indexed: 10/23/2022]
Abstract
Thyroxine can cause cardiac hypertrophy by activating growth factors, such as IGF-I (insulin-like growth factor-I). Since oxidative stress is enhanced in the hyperthyroidism, it would control protein expression involved in this hypertrophy. Male Wistar rats were divided into four groups: (I) control, (II) vitamin E-supplemented (20 mg/kg/day subcutaneous), (III) hyperthyroid (thyroxine 12 mg/l, in drinking water), and (IV) hyperthyroid + vitamin E. After 4 weeks, the contractility and relaxation indexes of left ventricle (LV), and cardiac mass were increased by 54%, 60%, and 60%, respectively, in hyperthyroid group. An increase in lipid peroxidation (around 40%), and a decrease in total glutathione (by 20%) was induced by thyroxine and avoided by vitamin E administration. Superoxide dismutase (SOD) and glutathione-S-transferase (GST) activities were increased (by 83% and 54%, respectively) in hyperthyroid, and vitamin E avoided changes in SOD. Protein expression of SOD, GST, and IGF-I receptor (IGF-IR) were increased (by 87%, 84%, and 60%, respectively) by thyroxine, and vitamin E promoted a significant reduction in SOD and IGF-IR expression (by 36% and 17%, respectively). These results indicate that oxidative stress is involved in cardiac hypertrophy, and suggest a role for IGF-IR as a mediator of this adaptive response in experimental hyperthyroidism.
Collapse
Affiliation(s)
- A S R Araujo
- Departamento Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Chang MH, Kuo WW, Li PC, Lin DY, Lee SD, Tsai FJ, Jong GP, Lin YM, Huang CY, Wu WJ. Down regulation of IGF-I and IGF-IR gene expression in right atria tissue of ventricular septal defect infants with right atria hypoxemia. Clin Chim Acta 2007; 379:81-6. [PMID: 17300770 DOI: 10.1016/j.cca.2006.12.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 12/13/2006] [Accepted: 12/14/2006] [Indexed: 11/28/2022]
Abstract
BACKGROUND Our previous studies showed serum insulin-like growth factor-I (IGF-I) concentrations significantly decreased in infants with congenital ventricular septal defect (VSD) and that they were associated with increased concentrations of growth hormone. In order to confirm the relationship between IGF-I axis and VSD, we further compared the IGF-I and insulin-like growth factor-I receptor(IGF-IR) gene expressions in the cardiac tissue of VSD infants. METHODS Right atrium biopsies of 27 infants were studied. Five infants not having VSD were classified as controls (Group I). Twenty VSD patients were then divided into 2 groups according to their shunting magnitude index (level of pulmonary vascular resistance compared with systemic vascular resistance, Qp/Qs). VSD patients with minor shunts (Qp/Qs<1.7) were classified as Group II; VSD patients with larger shunts (Qp/Qs> or =2) as Group III. Besides, seven tetralogy of fallot (TOF) with shunt (Qp/Qs>4) infants were classified as the Group IV. A non-radioactive DIG-RNA probe detection system, western blotting and immunohistochemistry were used to detect the gene expression levels and protein products of IGF-I and IGF-IR in the right atrium samples of VSD infants. RESULTS The relative protein levels of IGF-I were 0.96+/-0.05, 0.43+/-0.03, 0.15+/-0.04, 0.12+/-0.03 and IGF-IR were 0.80+/-0.08, 0.57+/-0.03, 0.38+/-0.02, 0.24+/-0.04 in the right atrium of 4 group patients. The relative mRNA levels of IGF-I were 0.95+/-0.01, 0.41+/-0.03, 0.29+/-0.05, 0.15+/-0.01 and IGF-IR were 0.85+/-0.05, 0.56+/-0.03, 0.17+/-0.01, 0.18+/-0.01, respectively. There was a significantly greater but more gradual decrease in protein levels and in mRNA levels of IGF-I and IGF-IR in Group II (p<0.05), Group III and IV (p<0.01) than in Group I. The results of immunohistochemistry also demonstrated a similar decrease in VSD patients. In addition, the decrease of mRNA and protein levels in IGF-I/IGF-IR of VSD patients show related to the saturation of oxygen in the right atrium and the ratio of systolic right ventricular pressure to left ventricular pressure. CONCLUSION We further confirmed the down regulation of IGF-I/IGF-IR in cardiac tissue of VSD infants and the decrease to be associated with shunt magnitude and the severity of hypoxemia in the cardiac chamber of VSD.
Collapse
Affiliation(s)
- Mu-Hsin Chang
- Division of Cardiology, Armed Force Taichung General Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gambier N, Marteau JB, Batt AM, Marie B, Thompson A, Siest G, Foernzler D, Visvikis-Siest S. Interaction between CYP1A1 T3801C and AHR G1661A polymorphisms according to smoking status on blood pressure in the Stanislas cohort. J Hypertens 2006; 24:2199-205. [PMID: 17053541 DOI: 10.1097/01.hjh.0000249697.26983.aa] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND CYP1A1, one of the key enzymes in detoxifying toxic components produced during cigarette smoking, is regulated by aromatic hydrocarbon receptor (AHR). A CYP1A1 T3801C polymorphism, associated with a higher CYP1A1 inducibility and enhanced catalytic activity, has been linked to stroke, triple vessel disease and may, therefore, be associated with blood pressure (BP). The relation of the widely studied G1661A polymorphism of the human AHR gene with BP is unknown. OBJECTIVES To investigate the genetic influence of CYP1A1 T3801C and AHR G1661A polymorphisms on BP in relation to tobacco consumption. DESIGN AND PARTICIPANTS Study participants were selected from a French longitudinal cohort of volunteers for a free health check-up. These individuals (302 men and 311 women) were not taking medication that can affect blood pressure. Information about active smoking status was obtained by a self-administered questionnaire. RESULTS After multiple regression analysis, systolic blood pressure (SBP) and diastolic blood pressure (DBP) did not differ significantly according to their tobacco status excepted for DBP in men. In addition, neither CYP1A1 T3801C nor AHR G1661A polymorphism was linked to blood pressure. However, systolic and diastolic blood pressures differed significantly according to CYP1A1 T3801C genotype between ex-smokers and smokers. Finally, the interaction between CYP1A1 T3801C and AHR G1661A polymorphisms explained a significant difference of SBP and DBP between carriers of both CYP1A1-C3801 and AHR-A1661 alleles. CONCLUSION This study is the first to show an interaction between the CYP1A1 T3801C and AHR G1661A polymorphisms. This interaction could explain the difference in blood pressure level between smokers and non-smokers/ex-smokers but needs to be confirmed in a large sample.
Collapse
Affiliation(s)
- Nicolas Gambier
- INSERM U525, Faculté de Pharmacie, Université Henri Poincaré Nancy 1, Nancy, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Gao H, Liu Y, Lu S, Xiang B, Wang C. Alteration of Insulin-like Growth Factor-1 Expression After Middle Cerebral Artery Occlusion in Monkeys and Rats: Complementary DNA Microarray, Immunohistochemistry, and In Situ Hybridization Studies. J Stroke Cerebrovasc Dis 2006; 15:158-63. [PMID: 17904069 DOI: 10.1016/j.jstrokecerebrovasdis.2006.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Accepted: 05/22/2006] [Indexed: 10/24/2022] Open
Abstract
It is well established that insulin-like growth factor (IGF)-1 has potent neuroprotective effects on cerebral ischemia in the rat and sheep model. In order to investigate whether it has neuroprotective effects on brain insult in human stroke, as one part of serial subhuman primate stroke research, the present study was designed to observe whether IGF-1 messenger RNA (mRNA) and protein is expressed in middle cerebral artery occlusion in monkeys and rats. A total of 12,800 dots complementary DNA microarray, in situ hybridization, and immunohistochemistry were used. Complementary DNA microarray showed that among the nearly 8000 genes, approximately 8% of the total number of genes examined was affected after ischemia/reperfusion injury especially in the growth factor family including IGF-1 in the ischemic region. The decreased IGF-1 mRNA and protein expression was found in the insular striatum, but there was an increased mRNA expression and unchanged protein expression in the hippocampus 24 hours after ischemia. The results suggested that IGF-1 might contribute to the neuroprotective pathway in a pattern different from that of rats, and it might play a role in protection of ischemic injured neuronal cells after monkey focal cerebral ischemia.
Collapse
Affiliation(s)
- Huanmin Gao
- Department of Neurology, Second Affiliated Hospital of Qingdao University Medical College, Shandong, China, Qingdao, China
| | | | | | | | | |
Collapse
|