1
|
Chacar S, Abdi A, Almansoori K, Alshamsi J, Al Hageh C, Zalloua P, Khraibi AA, Holt SG, Nader M. Role of CaMKII in diabetes induced vascular injury and its interaction with anti-diabetes therapy. Rev Endocr Metab Disord 2024; 25:369-382. [PMID: 38064002 PMCID: PMC10943158 DOI: 10.1007/s11154-023-09855-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 03/16/2024]
Abstract
Diabetes mellitus is a metabolic disorder denoted by chronic hyperglycemia that drives maladaptive structural changes and functional damage to the vasculature. Attenuation of this pathological remodeling of blood vessels remains an unmet target owing to paucity of information on the metabolic signatures of this process. Ca2+/calmodulin-dependent kinase II (CaMKII) is expressed in the vasculature and is implicated in the control of blood vessels homeostasis. Recently, CaMKII has attracted a special attention in view of its chronic upregulated activity in diabetic tissues, yet its role in the diabetic vasculature remains under investigation.This review highlights the physiological and pathological actions of CaMKII in the diabetic vasculature, with focus on the control of the dialogue between endothelial (EC) and vascular smooth muscle cells (VSMC). Activation of CaMKII enhances EC and VSMC proliferation and migration, and increases the production of extracellular matrix which leads to maladaptive remodeling of vessels. This is manifested by activation of genes/proteins implicated in the control of the cell cycle, cytoskeleton organization, proliferation, migration, and inflammation. Endothelial dysfunction is paralleled by impaired nitric oxide signaling, which is also influenced by CaMKII signaling (activation/oxidation). The efficiency of CaMKII inhibitors is currently being tested in animal models, with a focus on the genetic pathways involved in the regulation of CaMKII expression (microRNAs and single nucleotide polymorphisms). Interestingly, studies highlight an interaction between the anti-diabetic drugs and CaMKII expression/activity which requires further investigation. Together, the studies reviewed herein may guide pharmacological approaches to improve health-related outcomes in patients with diabetes.
Collapse
Affiliation(s)
- Stephanie Chacar
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
- Center for Biotechnology, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
| | - Abdulhamid Abdi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Khalifa Almansoori
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Jawaher Alshamsi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Cynthia Al Hageh
- Department of Molecular Biology and Genetics, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Pierre Zalloua
- Department of Molecular Biology and Genetics, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
| | - Ali A Khraibi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
| | - Stephen G Holt
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- SEHA Kidney Care, SEHA, Abu Dhabi, UAE
| | - Moni Nader
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
- Center for Biotechnology, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Zuo X, Liu Z, Ma J, Ding Y, Cai S, Wu C, Zhang J, Zhu Q. Wnt 5a mediated inflammatory injury of renal tubular epithelial cells dependent on calcium signaling pathway in Trichloroethylene sensitized mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:114019. [PMID: 36030685 DOI: 10.1016/j.ecoenv.2022.114019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Patients with trichloroethene-induced Trichloroethylene hypersensitivity syndrome (THS) often present kidney injury. However, the role of Wnt 5a/Ca2+ pathway in renal tubular injury in Trichloroethylene (TCE) sensitized mice remains unclear. This study aimed to investigate how Wnt 5a/Ca2+ pathway induced renal tubular epithelial cell injury in TCE sensitized mice. A total of 84 female BALB/c Specific Pathogen Free mice aged 6-8 weeks were used to establish TCE sensitized mouse models. Renal histology and serum levels of α1-MG and β2-MG were used to assess the renal injury. The renal protein levels of Wnt 5a, ROR2, FZD5, PLC, p-CaMKII, IκB α, p-IκB α, NF-κB(p65), TNF α, IL 6 and IL 1β were measured. The levels of serum α1-MG and β2-MG and TNF α, IL 6 and IL 1β levels in the kidney tissue were significantly increased in TCE sensitized positive group. However, Box5 pretreatment inhibited the expression of PLC, p-CaMKII, p65 and attenuated the injury of renal tubular epithelial cells and suppressed the upregulated expression of the above cytokines. In addition, KN93 also reduced nuclear translocation of p65 and renal injury as well as the elevated cytokines by inhibiting CaMKII. These data identify Wnt 5a binding to ROR2 and FZD5, p65 nuclear translocation, and inflammatory cytokine release as a novel mechanism for renal tubular epithelial cells injury by sensitization with TCE. Box5 or KN93 pretreatment can block the expression of inflammatory cytokines and reduce the injury of renal tubular epithelial cells.
Collapse
Affiliation(s)
- Xulei Zuo
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Zhibing Liu
- Institute of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Jinru Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Yani Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Shuyang Cai
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Changhao Wu
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Jiaxiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China; Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China.
| | - Qixing Zhu
- Institute of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China.
| |
Collapse
|
3
|
Allegrini D, Raimondi R, Borgia A, Sorrentino T, Montesano G, Tsoutsanis P, Cancian G, Verma Y, De Rosa FP, Romano MR. Curcumin in Retinal Diseases: A Comprehensive Review from Bench to Bedside. Int J Mol Sci 2022; 23:ijms23073557. [PMID: 35408920 PMCID: PMC8998602 DOI: 10.3390/ijms23073557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Recent evidence in basic science is leading to a growing interest in the possible role of curcumin in treating retinal diseases. Curcumin has been demonstrated to be able to modulate gene transcription and reduce ganglion cell apoptosis, downgrade VEGF, modulate glucose levels and decrease vascular dysfunction. So far, the use of curcumin has been limited by poor bioavailability; to overcome this issue, different types of carriers have been used. Multiple recent studies disclosed the efficacy of using curcumin in treating different retinal conditions. The aim of this review is to comprehensively review and discuss the role of curcumin in retinal diseases from bench to bedside.
Collapse
Affiliation(s)
- Davide Allegrini
- Eye Center, Humanitas Gavazzeni-Castelli, 24128 Bergamo, Italy; (D.A.); (P.T.); (M.R.R.)
- Department of Biomedical Sciences, Humanitas University, 20100 Milano, Italy; (A.B.); (T.S.); (G.C.); (Y.V.); (F.P.D.R.)
| | - Raffaele Raimondi
- Department of Biomedical Sciences, Humanitas University, 20100 Milano, Italy; (A.B.); (T.S.); (G.C.); (Y.V.); (F.P.D.R.)
- Correspondence:
| | - Alfredo Borgia
- Department of Biomedical Sciences, Humanitas University, 20100 Milano, Italy; (A.B.); (T.S.); (G.C.); (Y.V.); (F.P.D.R.)
| | - Tania Sorrentino
- Department of Biomedical Sciences, Humanitas University, 20100 Milano, Italy; (A.B.); (T.S.); (G.C.); (Y.V.); (F.P.D.R.)
| | - Giovanni Montesano
- Optometry and Visual Sciences Department, University of London, London WC1E 7HU, UK;
| | - Panos Tsoutsanis
- Eye Center, Humanitas Gavazzeni-Castelli, 24128 Bergamo, Italy; (D.A.); (P.T.); (M.R.R.)
| | - Giuseppe Cancian
- Department of Biomedical Sciences, Humanitas University, 20100 Milano, Italy; (A.B.); (T.S.); (G.C.); (Y.V.); (F.P.D.R.)
| | - Yash Verma
- Department of Biomedical Sciences, Humanitas University, 20100 Milano, Italy; (A.B.); (T.S.); (G.C.); (Y.V.); (F.P.D.R.)
| | - Francesco Paolo De Rosa
- Department of Biomedical Sciences, Humanitas University, 20100 Milano, Italy; (A.B.); (T.S.); (G.C.); (Y.V.); (F.P.D.R.)
| | - Mario R. Romano
- Eye Center, Humanitas Gavazzeni-Castelli, 24128 Bergamo, Italy; (D.A.); (P.T.); (M.R.R.)
- Department of Biomedical Sciences, Humanitas University, 20100 Milano, Italy; (A.B.); (T.S.); (G.C.); (Y.V.); (F.P.D.R.)
| |
Collapse
|
4
|
Guo X, Deng Y, Zhan L, Shang J, Liu H. O‑GlcNAcylation contributes to intermittent hypoxia‑associated vascular dysfunction via modulation of MAPKs but not CaMKII pathways. Mol Med Rep 2021; 24:744. [PMID: 34435655 PMCID: PMC8430318 DOI: 10.3892/mmr.2021.12384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/28/2021] [Indexed: 11/10/2022] Open
Abstract
Intermittent hypoxia (IH) leads to vascular dysfunction, and O-linked-β-N-acetylglucosamine (O-GlcNAc)ylation may regulate vascular reactivity through the modulation of intracellular signaling. The present study hypothesized that O-GlcNAc modifications contributed to the vascular effects of acute IH (AIH) and chronic IH (CIH) through the MAPK and Ca2+/calmodulin-dependent kinase II (CaMKII) pathways. Rat aortic and mesenteric segments were incubated with DMSO, O-GlcNAcase (OGA) or O-GlcNAc transferase (OGT) inhibitor under either normoxic or AIH conditions for 3 h, and arterial function was then assessed. Meanwhile, arteries isolated from control and CIH rats were exposed to 3 h of incubation under normoxic conditions using DMSO, OGA or OGT as an inhibitor, before assessing arterial reactivity. CIH was found to increase the expression of vascular O-GlcNAc protein and OGT, phosphorylate p38 MAPK and ERK1/2, and decrease OGA levels, but it had no effects on phosphorylated CaMKII levels. OGA inhibition increased global O-GlcNAcylation and the phosphorylation of p38 MAPK, ERK1/2 and CaMKII, whereas OGT blockade had the opposite effects. OGA inhibition preserved acetylcholine-induced relaxation in AIH arteries, whereas OGT blockade attenuated the relaxation responses of arteries under normoxic conditions or undergoing AIH treatments. However, the impairment of acetylcholine dilation in CIH mesenteric arteries was improved. CIH artery contraction was increased following angiotensin II (Ang II) exposure. Blockade of p38 MAPK and ERK1/2, but not CaMKII, attenuated Ang II-induced contractile responses in CIH arteries isolated from the non-OGT inhibitor-treated groups. OGT inhibition significantly blocked contractile responses to Ang II and abolished the inhibitory effects of MAPK inhibitors. These findings indicated that O-GlcNAcylation regulates IH-induced vascular dysfunction, at least partly by modulating MAPK, but not CaMKII, signaling pathways.
Collapse
Affiliation(s)
- Xueling Guo
- Department of Critical Care Medicine, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Yan Deng
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of The Ministry of Health, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Linghui Zhan
- Department of Critical Care Medicine, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Jin Shang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of The Ministry of Health, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of The Ministry of Health, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
5
|
Shraim BA, Moursi MO, Benter IF, Habib AM, Akhtar S. The Role of Epidermal Growth Factor Receptor Family of Receptor Tyrosine Kinases in Mediating Diabetes-Induced Cardiovascular Complications. Front Pharmacol 2021; 12:701390. [PMID: 34408653 PMCID: PMC8365470 DOI: 10.3389/fphar.2021.701390] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus is a major debilitating disease whose global incidence is progressively increasing with currently over 463 million adult sufferers and this figure will likely reach over 700 million by the year 2045. It is the complications of diabetes such as cardiovascular, renal, neuronal and ocular dysfunction that lead to increased patient morbidity and mortality. Of these, cardiovascular complications that can result in stroke and cardiomyopathies are 2- to 5-fold more likely in diabetes but the underlying mechanisms involved in their development are not fully understood. Emerging research suggests that members of the Epidermal Growth Factor Receptor (EGFR/ErbB/HER) family of tyrosine kinases can have a dual role in that they are beneficially required for normal development and physiological functioning of the cardiovascular system (CVS) as well as in salvage pathways following acute cardiac ischemia/reperfusion injury but their chronic dysregulation may also be intricately involved in mediating diabetes-induced cardiovascular pathologies. Here we review the evidence for EGFR/ErbB/HER receptors in mediating these dual roles in the CVS and also discuss their potential interplay with the Renin-Angiotensin-Aldosterone System heptapeptide, Angiotensin-(1-7), as well the arachidonic acid metabolite, 20-HETE (20-hydroxy-5, 8, 11, 14-eicosatetraenoic acid). A greater understanding of the multi-faceted roles of EGFR/ErbB/HER family of tyrosine kinases and their interplay with other key modulators of cardiovascular function could facilitate the development of novel therapeutic strategies for treating diabetes-induced cardiovascular complications.
Collapse
Affiliation(s)
- Bara A Shraim
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Moaz O Moursi
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Ibrahim F Benter
- Faculty of Medicine, Eastern Mediterranean University, Famagusta, North Cyprus
| | - Abdella M Habib
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Saghir Akhtar
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
6
|
Shen Y, Guo S, Chen G, Ding Y, Wu Y, Tian W. Hyperglycemia Induces Osteoclastogenesis and Bone Destruction Through the Activation of Ca 2+/Calmodulin-Dependent Protein Kinase II. Calcif Tissue Int 2019; 104:390-401. [PMID: 30506439 DOI: 10.1007/s00223-018-0499-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/24/2018] [Indexed: 02/07/2023]
Abstract
Hyperglycemia induces osteoclastogenesis and bone resorption through complicated, undefined mechanisms. Ca2+/calmodulin-dependent protein kinase II (CaMKII) promotes osteoclastogenesis, and could be activated by hyperglycemia. Here, we investigated whether CaMKII is involved in hyperglycemia-induced osteoclastogenesis and subsequent bone resorption. Osteoclast formation, bone resorption, CaMKII expression and phosphorylation were measured under high glucose in vitro and in streptozotocin-induced hyperglycemia rats with or without CaMKII inhibitor KN93. The results showed that 25 mmol/L high glucose in vitro promoted cathepsin K and tartrate-resistant acid phosphatase expression (p < 0.05) and osteoclast formation (p < 0.01) associated with enhancing β isoform expression (p < 0.05) and CaMKII phosphorylation (p < 0.001). Hyperglycemia promoted the formation of osteoclasts and resorption of trabecular and alveolar bone, and inhibited sizes of femur and mandible associated with enhanced CaMKII phosphorylation (p < 0.001) in rats. All these changes could be alleviated by KN93. These findings imply that CaMKII participates not only in hyperglycemia-induced osteoclastogenesis and subsequent bone resorption, but also in the hyperglycemia-induced developmental inhibition of bone.
Collapse
Affiliation(s)
- Yanxin Shen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Shujuan Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Guoqing Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yi Ding
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
7
|
Hegyi B, Bers DM, Bossuyt J. CaMKII signaling in heart diseases: Emerging role in diabetic cardiomyopathy. J Mol Cell Cardiol 2019; 127:246-259. [PMID: 30633874 DOI: 10.1016/j.yjmcc.2019.01.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023]
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) is upregulated in diabetes and significantly contributes to cardiac remodeling with increased risk of cardiac arrhythmias. Diabetes is frequently associated with atrial fibrillation, coronary artery disease, and heart failure, which may further enhance CaMKII. Activation of CaMKII occurs downstream of neurohormonal stimulation (e.g. via G-protein coupled receptors) and involve various posttranslational modifications including autophosphorylation, oxidation, S-nitrosylation and O-GlcNAcylation. CaMKII signaling regulates diverse cellular processes in a spatiotemporal manner including excitation-contraction and excitation-transcription coupling, mechanics and energetics in cardiac myocytes. Chronic activation of CaMKII results in cellular remodeling and ultimately arrhythmogenic alterations in Ca2+ handling, ion channels, cell-to-cell coupling and metabolism. This review addresses the detrimental effects of the upregulated CaMKII signaling to enhance the arrhythmogenic substrate and trigger mechanisms in the heart. We also briefly summarize preclinical studies using kinase inhibitors and genetically modified mice targeting CaMKII in diabetes. The mechanistic understanding of CaMKII signaling, cardiac remodeling and arrhythmia mechanisms may reveal new therapeutic targets and ultimately better treatment in diabetes and heart disease in general.
Collapse
Affiliation(s)
- Bence Hegyi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, Davis, CA, USA.
| | - Julie Bossuyt
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| |
Collapse
|
8
|
Ebenebe OV, Heather A, Erickson JR. CaMKII in Vascular Signalling: "Friend or Foe"? Heart Lung Circ 2017; 27:560-567. [PMID: 29409723 DOI: 10.1016/j.hlc.2017.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/21/2017] [Accepted: 12/04/2017] [Indexed: 02/07/2023]
Abstract
Signalling mechanisms within and between cells of the vasculature enable function and maintain homeostasis. However, a number of these mechanisms also contribute to the pathophysiology of vascular disease states. The multifunctional signalling molecule calcium/calmodulin-dependent kinase II (CaMKII) has been shown to have critical functional effects in many tissue types. For example, CaMKII is known to have a dual role in cardiac physiology and pathology. The function of CaMKII within the vasculature is incompletely understood, but emerging evidence points to potential physiological and pathological roles. This review discusses the evidence for CaMKII signalling within the vasculature, with the aim to better understand both positive and potentially deleterious effects of CaMKII activation in vascular tissue.
Collapse
Affiliation(s)
- Obialunanma V Ebenebe
- Department of Physiology, School of Medical Sciences and HeartOtago, University of Otago, Dunedin, Otago, New Zealand
| | - Alison Heather
- Department of Physiology, School of Medical Sciences and HeartOtago, University of Otago, Dunedin, Otago, New Zealand
| | - Jeffrey R Erickson
- Department of Physiology, School of Medical Sciences and HeartOtago, University of Otago, Dunedin, Otago, New Zealand.
| |
Collapse
|
9
|
Li J, Wang P, Zhu Y, Chen Z, Shi T, Lei W, Yu S. Curcumin Inhibits Neuronal Loss in the Retina and Elevates Ca²⁺/Calmodulin-Dependent Protein Kinase II Activity in Diabetic Rats. J Ocul Pharmacol Ther 2015. [PMID: 26207889 DOI: 10.1089/jop.2015.0006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
PURPOSE To determine whether curcumin offers neuroprotection to minimize the apoptosis of neural cells in the retina of diabetic rats. METHODS Streptozotocin (STZ)-induced diabetic rats and control rats were used in this study. A subgroup of STZ-induced diabetic rats were treated with curcumin for 12 weeks. Retinal histology, apoptosis of neural cells in the retina, electroretinograms, and retinal glutamate content were evaluated after 12 weeks. Retinal levels of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), phospho-CaMKII (p-CaMKII), and cleaved caspase-3 were determined by Western blot analysis. RESULTS The amplitudes a-wave, b-wave, and oscillatory potential were reduced by diabetes, but curcumin treatment suppressed this reduction of amplitudes. Curcumin also prevented cell loss from the outer nuclear, inner nuclear, and ganglion cell layers. Apoptosis of retinal neurons was detected in diabetic rats. The concentration of glutamate in the retina was higher in diabetic rats, but was significantly reduced in the curcumin-treated group. Furthermore, p-CaMKII and cleaved caspase-3 expression were upregulated in the diabetic retina, but reduced in curcumin-treated rats. CONCLUSIONS Curcumin attenuated diabetes-induced apoptosis in retinal neurons by reducing the glutamate level and downregulating CaMKII. Thus, curcumin might be used to prevent neuronal damage in the retina of patients with diabetes mellitus.
Collapse
Affiliation(s)
- Jun Li
- Department of Ophthalmology, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical University , Lishui, Zhejiang Province, People's Republic of China
| | - Peipei Wang
- Department of Ophthalmology, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical University , Lishui, Zhejiang Province, People's Republic of China
| | - Yanxia Zhu
- Department of Ophthalmology, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical University , Lishui, Zhejiang Province, People's Republic of China
| | - Zhen Chen
- Department of Ophthalmology, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical University , Lishui, Zhejiang Province, People's Republic of China
| | - Tianyan Shi
- Department of Ophthalmology, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical University , Lishui, Zhejiang Province, People's Republic of China
| | - Wensheng Lei
- Department of Ophthalmology, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical University , Lishui, Zhejiang Province, People's Republic of China
| | - Songping Yu
- Department of Ophthalmology, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical University , Lishui, Zhejiang Province, People's Republic of China
| |
Collapse
|
10
|
ET-1-induced growth promoting responses involving ERK1/2 and PKB signaling and Egr-1 expression are mediated by Ca2+/CaM-dependent protein kinase-II in vascular smooth muscle cells. Cell Calcium 2013; 54:428-35. [DOI: 10.1016/j.ceca.2013.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/04/2013] [Accepted: 10/06/2013] [Indexed: 11/22/2022]
|
11
|
Shi J, Geshi N, Takahashi S, Kiyonaka S, Ichikawa J, Hu Y, Mori Y, Ito Y, Inoue R. Molecular determinants for cardiovascular TRPC6 channel regulation by Ca2+/calmodulin-dependent kinase II. J Physiol 2013; 591:2851-66. [PMID: 23529130 DOI: 10.1113/jphysiol.2013.251249] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The molecular mechanism underlying Ca(2+)/calmodulin (CaM)-dependent kinase II (CaMKII)-mediated regulation of the mouse transient receptor potential channel TRPC6 was explored by chimera, deletion and site-directed mutagenesis approaches. Induction of currents (ICCh) in TRPC6-expressing HEK293 cells by a muscarinic agonist carbachol (CCh; 100 μm) was strongly attenuated by a CaMKII-specific peptide, autocamtide-2-related inhibitory peptide (AIP; 10 μm). TRPC6/C7 chimera experiments showed that the TRPC6 C-terminal sequence is indispensable for ICCh to be sensitive to AIP-induced CaMKII inhibition. Further, deletion of a distal region (Gln(855)-Glu(877)) of the C-terminal CaM/inositol-1,4,5-trisphosphate receptor binding domain (CIRB) of TRPC6 was sufficient to abolish ICCh. Systematic alanine scanning for potential CaMKII phosphorylation sites revealed that Thr(487) was solely responsible for the activation of the TRPC6 channel by receptor stimulation. The abrogating effect of the alanine mutation of Thr(487) (T487A) was reproduced with other non-polar amino acids, namely glutamine or asparagine, while being partially rescued by phosphomimetic mutations with glutamate or aspartate. The cellular expression and distribution of TRPC6 channels did not significantly change with these mutations. Electrophysiological and immunocytochemical data with the Myc-tagged TRPC6 channel indicated that Thr(487) is most likely located at the intracellular side of the cell membrane. Overexpression of T487A caused significant reduction of endogenous TRPC6-like current induced by Arg(8)-vasopressin in A7r5 aortic myocytes. Based on these results, we propose that the optimal spatial arrangement of a C-terminal domain (presumably the distal CIRB region) around a single CaMKII phosphorylation site Thr(487) may be essential for CaMKII-mediated regulation of TRPC6 channels. This mechanism may be of physiological significance in a native environment such as in vascular smooth muscle cells.
Collapse
Affiliation(s)
- Juan Shi
- Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Nanakuma 7-45-1, Johnan-ku, Fukuoka 814-0180, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ferhatovic L, Banozic A, Kostic S, Kurir TT, Novak A, Vrdoljak L, Heffer M, Sapunar D, Puljak L. Expression of Calcium/Calmodulin-Dependent Protein Kinase II and Pain-Related Behavior in Rat Models of Type 1 and Type 2 Diabetes. Anesth Analg 2013; 116:712-21. [DOI: 10.1213/ane.0b013e318279b540] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Increased iNOS activity in vascular smooth muscle cells from diabetic rats: Potential role of Ca2+/calmodulin-dependent protein kinase II delta 2 (CaMKIIδ2). Atherosclerosis 2013. [DOI: 10.1016/j.atherosclerosis.2012.10.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Micaroni M. Calcium around the Golgi apparatus: implications for intracellular membrane trafficking. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:439-60. [PMID: 22453953 DOI: 10.1007/978-94-007-2888-2_18] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As with other complex cellular functions, intracellular membrane transport involves the coordinated engagement of a series of organelles and machineries; in the last couple of decades more importance has been given to the role of calcium (Ca(2+)) in the regulation of membrane trafficking, which is directly involved in coordinating the endoplasmic reticulum-to-Golgi-to-plasma membrane delivery of cargo. Consequently, the Golgi apparatus (GA) is now considered not just the place proteins mature in as they move to their final destination(s), but it is increasingly viewed as an intracellular Ca(2+) store. In the last few years the mechanisms regulating the homeostasis of Ca(2+) in the GA and its role in membrane trafficking have begun to be elucidated. Here, these recent discoveries that shed light on the role Ca(2+) plays as of trigger of different steps during membrane trafficking has been reviewed. This includes recruitment of proteins and SNARE cofactors to the Golgi membranes, which are both fundamental for the membrane remodeling and the regulation of fusion/fission events occurring during the passage of cargo across the GA. I conclude by focusing attention on Ca(2+) homeostasis dysfunctions in the GA and their related pathological implications.
Collapse
Affiliation(s)
- Massimo Micaroni
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, 4072 Brisbane, St. Lucia, QLD, Australia.
| |
Collapse
|
15
|
Kim YH, Kim YS, Park SY, Park CH, Choi WS, Cho GJ. CaMKII regulates pericyte loss in the retina of early diabetic mouse. Mol Cells 2011; 31:289-93. [PMID: 21331776 PMCID: PMC3932701 DOI: 10.1007/s10059-011-0038-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 12/30/2010] [Accepted: 02/10/2011] [Indexed: 01/01/2023] Open
Abstract
Inducible nitric oxide synthase (iNOS) is an essential mediator in diabetic vascular lesions and known to be regulated by activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). The aim of this study was to investigate whether CaMKII affects iNOS-mediated pericyte death in the retina of diabetic mice with early stage disease. Total- and phospho-CaMKII, iNOS, and active caspase-3 protein levels were assessed by Western blotting, and CaMKII activity was measured by kinase assay. iNOS-related pericyte death was assessed by double immunofluorescent staining for iNOS and α-smooth muscle actin, followed by the TUNEL assay. Autocamtide-2-related inhibitory peptide (AIP), a specific inhibitor of CaMKII, was injected into the right vitreous 2 days before sacrifice of mice, to examine the effect of CaMKII inactivation in diabetic retinas. The levels of total- and phospho-CaMKII, iNOS, and active caspase-3 protein, and CaMKII activity were significantly increased in the diabetic retinas compared with those of control retinas. Furthermore, TUNEL-positive signals colocalized with iNOS-immunoreactive pericytes in the same retinas. However, inactivation of CaMKII by AIP treatment inhibited all these changes, which was accompanied by less pericyte loss. Our results demonstrate that CaMKII contributes to iNOS-related death of pericytes in the diabetic retina and that inactivation of this enzyme may be a potential treatment for retinal vascular lesion.
Collapse
Affiliation(s)
| | | | | | | | - Wan Sung Choi
- Department of Anatomy and Neurobiology, School of Medicine, Brain Korea 21 Biomedical Center, Gyeongsang National University, Jinju 660-751, Korea
| | - Gyeong Jae Cho
- Department of Anatomy and Neurobiology, School of Medicine, Brain Korea 21 Biomedical Center, Gyeongsang National University, Jinju 660-751, Korea
| |
Collapse
|
16
|
Usui T, Okada M, Hara Y, Yamawaki H. Exploring calmodulin-related proteins, which mediate development of hypertension, in vascular tissues of spontaneous hypertensive rats. Biochem Biophys Res Commun 2011; 405:47-51. [DOI: 10.1016/j.bbrc.2010.12.120] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 12/23/2010] [Indexed: 10/18/2022]
|
17
|
Li H, Li W, Gupta AK, Mohler PJ, Anderson ME, Grumbach IM. Calmodulin kinase II is required for angiotensin II-mediated vascular smooth muscle hypertrophy. Am J Physiol Heart Circ Physiol 2009; 298:H688-98. [PMID: 20023119 DOI: 10.1152/ajpheart.01014.2009] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite our understanding that medial smooth muscle hypertrophy is a central feature of vascular remodeling, the molecular pathways underlying this pathology are still not well understood. Work over the past decade has illustrated a potential role for the multifunctional calmodulin-dependent kinase CaMKII in smooth muscle cell contraction, growth, and migration. Here we demonstrate that CaMKII is enriched in vascular smooth muscle (VSM) and that CaMKII inhibition blocks ANG II-dependent VSM cell hypertrophy in vitro and in vivo. Specifically, systemic CaMKII inhibition with KN-93 prevented ANG II-mediated hypertension and medial hypertrophy in vivo. Adenoviral transduction with the CaMKII peptide inhibitor CaMKIIN abrogated ANG II-induced VSM hypertrophy in vitro, which was augmented by overexpression of CaMKII-delta2. Finally, we identify the downstream signaling components critical for ANG II- and CaMKII-mediated VSM hypertrophy. Specifically, we demonstrate that CaMKII induces VSM hypertrophy by regulating histone deacetylase 4 (HDAC4) activity, thereby stimulating activity of the hypertrophic transcription factor MEF2. MEF2 transcription is activated by ANG II in vivo and abrogated by the CaMKII inhibitor KN-93. Together, our studies identify a complete pathway for ANG II-triggered arterial VSM hypertrophy and identify new potential therapeutic targets for chronic human hypertension.
Collapse
Affiliation(s)
- Hui Li
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | |
Collapse
|
18
|
Changes in expression and activity of the secretory pathway Ca2+ ATPase 1 (SPCA1) in A7r5 vascular smooth muscle cells cultured at different glucose concentrations. Biosci Rep 2009; 29:397-404. [PMID: 19527224 PMCID: PMC2752273 DOI: 10.1042/bsr20090058] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Diabetes mellitus-related vascular disease is often associated with both a dysregulation of Ca2+ homoeostasis and enhanced secretory activity in VSMCs (vascular smooth muscle cells). Here, we employ a commonly used rat cell line for VSMCs (A7r5 cells) to investigate the effects of glucose on the expression and activity of the SPCA1 (secretory pathway Ca2+-ATPase 1; also known as ATP2C1), which is a P-type Ca2+ pump located in the Golgi apparatus that plays a key role in the secretory pathway. Our results show that mRNA expression levels of SPCA1 are significantly increased in A7r5 cells cultured in high glucose (25.0 mM)-supplemented medium compared with normal glucose (5.55 mM)-supplemented medium. SPCA1 protein expression levels and thapsigargin-insensitive Ca2+-dependent ATPase activity were also consistent with a higher than normal expression level of SPCA1 in high-glucose-cultured A7r5 cells. Analysis of AVP (arginine-vasopressin)-induced cytosolic Ca2+ transients in A7r5 cells (after pre-treatment with thapsigargin) showed faster rise and decay phases in cells grown in high glucose medium compared with cells grown in normal glucose medium, supporting the observation of increased SPCA expression/activity. The significant levels of both Ca2+-ATPase activity and AVP-induced Ca2+ transients, in the presence of thapsigargin, indicate that SPCA must play a significant role in Ca2+ uptake within VSMCs. We therefore propose that, if such increases in SPCA expression and activity also occur in primary VSMCs, this may play a substantial role in the aetiology of diabetes mellitus-associated vascular disease, due to alterations in Ca2+ homoeostasis within the Golgi apparatus.
Collapse
|
19
|
Benter IF, Benboubetra M, Hollins AJ, Yousif MHM, Canatan H, Akhtar S. Early inhibition of EGFR signaling prevents diabetes-induced up-regulation of multiple gene pathways in the mesenteric vasculature. Vascul Pharmacol 2009; 51:236-45. [PMID: 19577003 DOI: 10.1016/j.vph.2009.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Revised: 06/12/2009] [Accepted: 06/23/2009] [Indexed: 01/29/2023]
Abstract
Diabetes mellitus is associated with vascular complications including an impairment of vascular function and alterations in the reactivity of blood vessels to vasoactive hormones. However, the signaling mechanisms leading to vascular dysfunction in diabetes are not fully understood. This microarray-based study was designed to identify differential gene expression between the normal and diabetic mesenteric vasculature and to investigate the effect of inhibiting epidermal growth factor receptor (EGFR) signaling on global gene expression in the mesenteric bed of streptozotocin (STZ)-induced diabetic rats. Transcriptome analysis was performed in triplicate using oligonucleotide microarrays housing 10,000 rat genes on the mesenteric bed of normal, diabetic, and diabetic rats treated with AG1478, a selective inhibitor of EGFR. Four weeks of diabetes led to a profound alteration in gene expression within the mesenteric bed with 1167 of the 3074 annotated genes being up-regulated and 141 genes down-regulated by at least 2-fold. The up-regulated gene ontologies included receptor tyrosine kinases, G-protein coupled receptors and ion channel activity. In particular, significant overexpressions of colipase, phospholipase A2, carboxypeptidases, and receptor tyrosine kinases such as EGFR, erbB2 and fibroblast growth factor receptor were observed in diabetes mesenteric vasculature. A 4-week intraperitoneal treatment of diabetic animals with AG1478 (1.2 mg/kg/alt diem) beginning on the same day as STZ injection prevented up-regulation of the majority (approximately 95%) of the genes associated with STZ diabetes including those apparently "unrelated" to the known EGFR pathway without correction of hyperglycemia. These results suggest that activation of EGFR signaling is a key initiating step that leads to induction of multiple signaling pathways in the development of diabetes-induced vascular dysfunction. Thus, therapeutic targeting of EGFR may represent a novel strategy for the prevention and/or treatment of vascular dysfunction in diabetes.
Collapse
Affiliation(s)
- Ibrahim F Benter
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Safat, Kuwait.
| | | | | | | | | | | |
Collapse
|
20
|
Benter IF, Canatan H, Benboubetra M, Yousif MHM, Akhtar S. Global upregulation of gene expression associated with renal dysfunction in DOCA-salt-induced hypertensive rats occurs via signaling cascades involving epidermal growth factor receptor: a microarray analysis. Vascul Pharmacol 2009; 51:101-9. [PMID: 19410658 DOI: 10.1016/j.vph.2009.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 04/10/2009] [Accepted: 04/17/2009] [Indexed: 12/20/2022]
Abstract
Renal dysfunction is a major cause of morbidity and mortality in patients with hypertension. In an attempt to understand the molecular mechanisms leading to renal dysfunction and in particular that of epidermal growth factor receptor (EGFR) and RasGTPase signaling, we analyzed global gene expression changes in the kidneys of deoxycorticosterone acetate (DOCA)-salt-induced hypertensive rats with and without treatment with AG1478, a selective inhibitor of EGFR tyrosine kinase, or FPTIII, a farnesyl transferase inhibitor known to inhibit RasGTPase. Microarray-based global gene expression analysis was performed in triplicate for each rat kidney taken from normotensive Wistar rats, DOCA-salt hypertensive (DH) rats, DH rats treated with AG1478, or DH rats treated with FPTIII. From the initial data set of 10,163 gene spots per group, upregulation of 2398 genes and downregulation of only 50 genes by more than 2-fold was observed in hypertensive rat kidneys compared to non-diseased controls. Interestingly, treatment of animals with AG1478 or FPTIII prevented upregulation of more than 97% of genes associated with hypertension in the rat kidney. Analysis of proteinuria, renal artery responsiveness and histopathology studies confirmed that DOCA-salt hypertensive rats had developed kidney damage over the study period and that this kidney dysfunction could be significantly prevented upon AG1478 or FPTIII treatment without normalising blood pressure. Taken together, our data imply that signaling cascades involving EGFR and/or RasGTPase pathways are key contributors to the induction of renal damage in hypertension and these and potentially other downstream effector molecules may serve as novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ibrahim F Benter
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, PO Box 24923, Safat 13110, Kuwait.
| | | | | | | | | |
Collapse
|