1
|
Yang C, Zhang Y, Wang R, Cheng B, Wu Y, Fu X. IL-10 +CD19 + regulatory B cells induce CD4 +Foxp3 +regulatory T cells in serum of cervical cancer patients. Autoimmunity 2024; 57:2290909. [PMID: 38084896 DOI: 10.1080/08916934.2023.2290909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/27/2023] [Indexed: 12/18/2023]
Abstract
Increase of regulatory T cells (Tregs) in the tumour microenvironment predicts worse survival of patients with various types of cancer. Recently, B cells play a significant role in the maintenance of Treg cells. However, the relevance of regulatory B cells (Bregs) to tumour immunity in humans remains elusive. Flow cytometry analysis was used to detect the Bregs and Tregs. Double staining results illustrated that the proportion of Bregs and Tregs were prominently higher in cervical cancer than normal tissues. Increase of Bregs and Tregs in cervical cancer microenvironment was associated with poor survival. Furthermore, Bregs cocultured with cervical cancer cell lines increased and induced Tregs. To sum up, the increased expression of Bregs contributes to the differentiation of CD4+ T cells into Tregs in the cervical cancer.
Collapse
Affiliation(s)
- Chunfeng Yang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory for Major Obstetric Diseases; Guangdong Province Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macoa Greater Bay Area Higher Educaiton Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, Shenzhen Baoan Maternal and Child Health Hospital, Shenzhen, China
| | - Yuanyuan Zhang
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Rui Wang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory for Major Obstetric Diseases; Guangdong Province Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macoa Greater Bay Area Higher Educaiton Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bing Cheng
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory for Major Obstetric Diseases; Guangdong Province Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macoa Greater Bay Area Higher Educaiton Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - You Wu
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Xi Fu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory for Major Obstetric Diseases; Guangdong Province Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macoa Greater Bay Area Higher Educaiton Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Huang Z, Liu X, Guo Q, Zhou Y, Shi L, Cai Q, Tang S, Ouyang Q, Zheng J. Extracellular vesicle-mediated communication between CD8 + cytotoxic T cells and tumor cells. Front Immunol 2024; 15:1376962. [PMID: 38562940 PMCID: PMC10982391 DOI: 10.3389/fimmu.2024.1376962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Tumors pose a significant global public health challenge, resulting in numerous fatalities annually. CD8+ T cells play a crucial role in combating tumors; however, their effectiveness is compromised by the tumor itself and the tumor microenvironment (TME), resulting in reduced efficacy of immunotherapy. In this dynamic interplay, extracellular vesicles (EVs) have emerged as pivotal mediators, facilitating direct and indirect communication between tumors and CD8+ T cells. In this article, we provide an overview of how tumor-derived EVs directly regulate CD8+ T cell function by carrying bioactive molecules they carry internally and on their surface. Simultaneously, these EVs modulate the TME, indirectly influencing the efficiency of CD8+ T cell responses. Furthermore, EVs derived from CD8+ T cells exhibit a dual role: they promote tumor immune evasion while also enhancing antitumor activity. Finally, we briefly discuss current prevailing approaches that utilize functionalized EVs based on tumor-targeted therapy and tumor immunotherapy. These approaches aim to present novel perspectives for EV-based tumor treatment strategies, demonstrating potential for advancements in the field.
Collapse
Affiliation(s)
- Zeyu Huang
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xuehui Liu
- Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Qinghao Guo
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yihang Zhou
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Linlin Shi
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qingjin Cai
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shupei Tang
- Department of Shigatse Branch, Xinqiao Hospital, Third Military Medical University, Shigatse, China
| | - Qin Ouyang
- Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
3
|
Yu L, Zeng X, Hu X, Wen Q, Chen P. Advances and challenges in clinical applications of tumor cell-derived extracellular vesicles. Colloids Surf B Biointerfaces 2024; 234:113704. [PMID: 38113751 DOI: 10.1016/j.colsurfb.2023.113704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
Extracellular vesicles (EVs) are a class of substances that feature vesicle-like structures. Initially deemed to be "biological waste", recent studies have highlighted the crucial role of EVs in mediating information communication between cells by transporting bioactive components. Specifically, tumor cell-derived extracellular vesicles (TEVs) contain components that can be utilized for disease diagnosis and as vaccines to activate the immune system. Moreover, since TEVs have a phospholipid bilayer shell and can transport exogenous substances, they are being increasingly explored as drug delivery vehicles in anti-tumor therapy. TEVs have proven highly compatible with their corresponding tumor cells, allowing for efficient drug delivery and exerting killing effects on tumor cells through various mechanisms such as domino effects, lysosomal pathways, and inhibition of drug efflux from tumor tissues. Despite these promising developments, challenges remain in the clinical applications of EVs derived from tumor cells. This paper outlines the current advances and limitations in this field, highlighting the potential of TEVs as a powerful tool for combating cancer.
Collapse
Affiliation(s)
- Li Yu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Oncology, Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, China
| | - Xiaonan Zeng
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiao Hu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Oncology, the Second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Qinglian Wen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ping Chen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
4
|
Xie J, Zheng Z, Tuo L, Deng X, Tang H, Peng C, Zou Y. Recent advances in exosome-based immunotherapy applied to cancer. Front Immunol 2023; 14:1296857. [PMID: 38022585 PMCID: PMC10662326 DOI: 10.3389/fimmu.2023.1296857] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Cancer stands as a prominent contributor to global mortality rates, necessitating immediate attention toward the exploration of its treatment options. Extracellular vesicles have been investigated as a potential cancer therapy in recent years. Among them, exosomes, as cell-derived nanovesicles with functions such as immunogenicity and molecular transfer, offer new possibilities for immunotherapy of cancer. However, multiple studies have shown that exosomes of different cellular origins have different therapeutic effects. The immunomodulatory effects of exosomes include but are not limited to inhibiting or promoting the onset of immune responses, regulating the function of molecular signaling pathways, and serving as carriers of antitumor drugs. Therefore, this mini-review attempts to summarize and evaluate the development of strategies for using exosomes to package exogenous cargos to promote immunotherapy in cancer.
Collapse
Affiliation(s)
- Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zihan Zheng
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ling Tuo
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yutian Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
5
|
Li R, Huang B, Tian H, Sun Z. Immune evasion in esophageal squamous cell cancer: From the perspective of tumor microenvironment. Front Oncol 2023; 12:1096717. [PMID: 36698392 PMCID: PMC9868934 DOI: 10.3389/fonc.2022.1096717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Esophageal cancer (EC) is one of the most life-threatening malignancies worldwide. Esophageal squamous cell carcinoma (ESCC) is the dominant subtype, accounting for approximately 90% of new incident EC each year. Although multidisciplinary treatment strategies have advanced rapidly, patients with ESCC are often diagnosed at advanced stage and the long-term prognosis remains unsatisfactory. In recent decades, immunotherapy, such as immune checkpoint inhibitors (ICIs), tumor vaccines, and chimeric antigen receptor T-cell (CAR-T) therapy, has been successfully used in clinical practice as a novel therapy for treating tumors, bringing new hope to ESCC patients. However, only a small fraction of patients achieved clinical benefits due to primary or acquired resistance. Immune evasion plays a pivotal role in the initiation and progression of ESCC. Therefore, a thorough understanding of the mechanisms by which ESCC cells escape from anti-tumor immunity is necessary for a more effective multidisciplinary treatment strategy. It has been widely recognized that immune evasion is closely associated with the crosstalk between tumor cells and the tumor microenvironment (TME). TME is a dynamic complex and comprehensive system including not only cellular components but also non-cellular components, which influence hallmarks and fates of tumor cells from the outside. Novel immunotherapy targeting tumor-favorable TME represents a promising strategy to achieve better therapeutic responses for patients with ESCC. In this review, we provide an overview of immune evasion in ESCC, mainly focusing on the molecular mechanisms that underlie the role of TME in immune evasion of ESCC. In addition, we also discuss the challenges and opportunities of precision therapy for ESCC by targeting TME.
Collapse
|
6
|
Moreira H, Dobosz A, Cwynar-Zając Ł, Nowak P, Czyżewski M, Barg M, Reichert P, Królikowska A, Barg E. Unraveling the role of Breg cells in digestive tract cancer and infectious immunity. Front Immunol 2022; 13:981847. [PMID: 36618354 PMCID: PMC9816437 DOI: 10.3389/fimmu.2022.981847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/02/2022] [Indexed: 12/25/2022] Open
Abstract
Over the past two decades, regulatory B cells (Breg cells or Bregs) have emerged as an immunosuppressive subset of B lymphocytes playing a key role in inflammation, infection, allergy, transplantation, and cancer. However, the involvement of Bregs in various pathological conditions of the gastrointestinal tract is not fully understood and is the subject of much recent research. In this review, we aimed to summarize the current state of knowledge about the origin, phenotype, and suppressive mechanisms of Bregs. The relationship between the host gut microbiota and the function of Bregs in the context of the disturbance of mucosal immune homeostasis is also discussed. Moreover, we focused our attention on the role of Bregs in certain diseases and pathological conditions related to the digestive tract, especially Helicobacter pylori infection, parasitic diseases (leishmaniasis and schistosomiasis), and gastrointestinal neoplasms. Increasing evidence points to a relationship between the presence and number of Bregs and the severity and progression of these pathologies. As the number of cases is increasing year by year, also among young people, it is extremely important to understand the role of these cells in the digestive tract.
Collapse
Affiliation(s)
- Helena Moreira
- Department of Medical Sciences Foundation, Wroclaw Medical University, Wroclaw, Poland,*Correspondence: Helena Moreira, ; Agnieszka Dobosz,
| | - Agnieszka Dobosz
- Department of Medical Sciences Foundation, Wroclaw Medical University, Wroclaw, Poland,*Correspondence: Helena Moreira, ; Agnieszka Dobosz,
| | - Łucja Cwynar-Zając
- Department of Medical Sciences Foundation, Wroclaw Medical University, Wroclaw, Poland
| | - Paulina Nowak
- Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Marek Czyżewski
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Marta Barg
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Paweł Reichert
- Department of Trauma Surgery, Clinical Department of Trauma and Hand Surgery, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Aleksandra Królikowska
- Ergonomics and Biomedical Monitoring Laboratory, Department of Physiotherapy, Faculty of Health Sciences, Wroclaw Medical University, Wroclaw, Poland
| | - Ewa Barg
- Department of Medical Sciences Foundation, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
7
|
Fang P, Zhou J, Liang Z, Yang Y, Luan S, Xiao X, Li X, Zhang H, Shang Q, Zeng X, Yuan Y. Immunotherapy resistance in esophageal cancer: Possible mechanisms and clinical implications. Front Immunol 2022; 13:975986. [PMID: 36119033 PMCID: PMC9478443 DOI: 10.3389/fimmu.2022.975986] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022] Open
Abstract
Esophageal cancer (EC) is a common malignant gastrointestinal (GI) cancer in adults. Although surgical technology combined with neoadjuvant chemoradiotherapy has advanced rapidly, patients with EC are often diagnosed at an advanced stage and the five-year survival rate remains unsatisfactory. The poor prognosis and high mortality in patients with EC indicate that effective and validated therapy is of great necessity. Recently, immunotherapy has been successfully used in the clinic as a novel therapy for treating solid tumors, bringing new hope to cancer patients. Several immunotherapies, such as immune checkpoint inhibitors (ICIs), chimeric antigen receptor T-cell therapy, and tumor vaccines, have achieved significant breakthroughs in EC treatment. However, the overall response rate (ORR) of immunotherapy in patients with EC is lower than 30%, and most patients initially treated with immunotherapy are likely to develop acquired resistance (AR) over time. Immunosuppression greatly weakens the durability and efficiency of immunotherapy. Because of the heterogeneity within the immune microenvironment and the highly disparate oncological characteristics in different EC individuals, the exact mechanism of immunotherapy resistance in EC remains elusive. In this review, we provide an overview of immunotherapy resistance in EC, mainly focusing on current immunotherapies and potential molecular mechanisms underlying immunosuppression and drug resistance in immunotherapy. Additionally, we discuss prospective biomarkers and novel methods for enhancing the effect of immunotherapy to provide a clear insight into EC immunotherapy.
Collapse
Affiliation(s)
- Pinhao Fang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Jianfeng Zhou
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiwen Liang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yushang Yang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Siyuan Luan
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Xiao
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaokun Li
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Hanlu Zhang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Qixin Shang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxi Zeng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Yuan
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yong Yuan,
| |
Collapse
|
8
|
Jangholi A, Müller Bark J, Kenny L, Vasani S, Rao S, Dolcetti R, Punyadeera C. Exosomes at the crossroad between therapeutic targets and therapy resistance in head and neck squamous cell carcinoma. Biochim Biophys Acta Rev Cancer 2022; 1877:188784. [PMID: 36028150 DOI: 10.1016/j.bbcan.2022.188784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022]
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are aggressive and clinically challenging tumours that require a multidisciplinary management approach. Despite significant therapy improvements, HNSCC patients have a poor prognosis with a 5-year survival rate of about 65%. As recently recognised key players in cancer, exosomes are extracellular vesicles (EVs) with a diameter of nearly 50-120 nm which transport information from one cell to another. Exosomes are actively involved in various aspects of tumour initiation, development, metastasis, immune regulation, therapy resistance, and therapeutic applications. However, current knowledge of the role of exosomes in the pathophysiological processes of HNSCC is still in its infancy, and additional studies are needed. In this review, we summarise and discuss the relevance of exosomes in mediating local immunosuppression and therapy resistance of HNSCC. We also review the most recent studies that have explored the therapeutic potential of exosomes as cancer vaccines, drug carriers or tools to reverse the drug resistance of HNSCC.
Collapse
Affiliation(s)
- Abolfazl Jangholi
- Centre for Biomedical Technologies, The School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, Australia; The School of Environment and Science, Griffith Institute for Drug Discovery (GRIDD), Griffith University, Brisbane, Australia
| | - Juliana Müller Bark
- The School of Environment and Science, Griffith Institute for Drug Discovery (GRIDD), Griffith University, Brisbane, Australia
| | - Lizbeth Kenny
- Royal Brisbane and Women's Hospital, Cancer Care Services, Herston, Australia; Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Sarju Vasani
- Royal Brisbane and Women's Hospital, Cancer Care Services, Herston, Australia; Department of Otolaryngology, Royal Brisbane and Women's Hospital, Herston, Australia
| | - Sudha Rao
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Riccardo Dolcetti
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia; Department of Microbiology and Immunology, The University of Melbourne, Victoria 3010, Australia; The University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Chamindie Punyadeera
- The School of Environment and Science, Griffith Institute for Drug Discovery (GRIDD), Griffith University, Brisbane, Australia; Menzies Health Institute Queensland (MIHQ), Griffith University, Gold Coast, Australia.
| |
Collapse
|
9
|
Exosome-Mediated Immunosuppression in Tumor Microenvironments. Cells 2022; 11:cells11121946. [PMID: 35741075 PMCID: PMC9221707 DOI: 10.3390/cells11121946] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Exosomes are membranous structures secreted by nearly all cell types. As critical messengers for intercellular communication, exosomes deliver bioactive cargoes to recipient cells and are involved in multiple physiopathological processes, including immunoregulation. Our pioneering study revealed that cancer cells release programmed death-ligand 1-positive exosomes into the circulation to counter antitumor immunity systemically via T cells. Tumor cell-derived exosomes (TDEs) also play an immunosuppressive role in other immunocytes, including dendritic cells (DCs), macrophages, natural killer (NK) cells, and myeloid-derived suppressor cells (MDSCs). Moreover, exosomes secreted by nontumor cells in the tumor microenvironments (TMEs) also exert immunosuppressive effects. This review systematically provides a summary of the immunosuppression induced by exosomes in tumor microenvironments, which modulates tumor growth, invasion, metastasis, and immunotherapeutic resistance. Additionally, therapeutic strategies targeting the molecular mechanism of exosome-mediated tumor development, which may help overcome several obstacles, such as immune tolerance in oncotherapy, are also discussed. Detailed knowledge of the specific functions of exosomes in antitumor immunity may contribute to the development of innovative treatments.
Collapse
|
10
|
Rodrigues-Junior DM, Tsirigoti C, Lim SK, Heldin CH, Moustakas A. Extracellular Vesicles and Transforming Growth Factor β Signaling in Cancer. Front Cell Dev Biol 2022; 10:849938. [PMID: 35493080 PMCID: PMC9043557 DOI: 10.3389/fcell.2022.849938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Complexity in mechanisms that drive cancer development and progression is exemplified by the transforming growth factor β (TGF-β) signaling pathway, which suppresses early-stage hyperplasia, yet assists aggressive tumors to achieve metastasis. Of note, several molecules, including mRNAs, non-coding RNAs, and proteins known to be associated with the TGF-β pathway have been reported as constituents in the cargo of extracellular vesicles (EVs). EVs are secreted vesicles delimited by a lipid bilayer and play critical functions in intercellular communication, including regulation of the tumor microenvironment and cancer development. Thus, this review aims at summarizing the impact of EVs on TGF-β signaling by focusing on mechanisms by which EV cargo can influence tumorigenesis, metastatic spread, immune evasion and response to anti-cancer treatment. Moreover, we emphasize the potential of TGF-β-related molecules present in circulating EVs as useful biomarkers of prognosis, diagnosis, and prediction of response to treatment in cancer patients.
Collapse
Affiliation(s)
| | - Chrysoula Tsirigoti
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Sai Kiang Lim
- Institute of Molecular and Cell Biology (A*-STAR), Singapore, Singapore
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- *Correspondence: Aristidis Moustakas,
| |
Collapse
|
11
|
Mikhael M, Pasha B, Chela H, Tahan V, Daglilar E. Immunological and Metabolic Alterations in Esophageal Cancer. Endocr Metab Immune Disord Drug Targets 2022; 22:579-589. [PMID: 35086463 DOI: 10.2174/1871530322666220127113752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/25/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022]
Abstract
Esophageal cancer is one of the most common types of gastrointestinal malignancies that is encountered. It has a global distribution and affects males and females and is linked to significant morbidity and mortality. The mechanisms underlying pathophysiology are multifactorial and involve the interaction of genetic and environmental factors. This review article describes the immunological and metabolic changes that occur in malignancy of the esophagus.
Collapse
Affiliation(s)
- Mary Mikhael
- University of Missouri Department of Internal Medicine, Columbia, Missouri, USA
| | - Bilal Pasha
- University of Missouri Department of Internal Medicine, Columbia, Missouri, USA
| | - Harleen Chela
- Division of Gastroenterology and Hepatology,2 Columbia, Missouri, USA
| | - Veysel Tahan
- Division of Gastroenterology and Hepatology,2 Columbia, Missouri, USA
| | - Ebubekir Daglilar
- Division of Gastroenterology and Hepatology,2 Columbia, Missouri, USA
| |
Collapse
|
12
|
The Role of Exosomes and Their Applications in Cancer. Int J Mol Sci 2021; 22:ijms222212204. [PMID: 34830085 PMCID: PMC8622108 DOI: 10.3390/ijms222212204] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023] Open
Abstract
Exosomes are very small extracellular vesicles secreted by multiple cell types and are extensively distributed in various biological fluids. Recent research indicated that exosomes can participate in regulating the tumor microenvironment and impacting tumor proliferation and progression. Due to the extensive enrollment in cancer development, exosomes have become a focus of the search for a new therapeutic method for cancer. Exosomes can be utilized for the therapeutic delivery of small molecules, proteins and RNAs to target cancer cells with a high efficiency. Exosome-carried proteins, lipids and nucleic acids are being tested as promising biomarkers for cancer diagnosis and prognosis, even as potential treatment targets for cancer. Moreover, different sources of exosomes exhibit multiple performances in cancer applications. In this review, we elaborate on the specific mechanism by which exosomes affect the communication between tumors and the microenvironment and state the therapeutic and diagnostic applications of exosomes in cancers.
Collapse
|
13
|
Li Q, Cai S, Li M, Salma KI, Zhou X, Han F, Chen J, Huyan T. Tumor-Derived Extracellular Vesicles: Their Role in Immune Cells and Immunotherapy. Int J Nanomedicine 2021; 16:5395-5409. [PMID: 34408415 PMCID: PMC8364351 DOI: 10.2147/ijn.s313912] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/16/2021] [Indexed: 12/24/2022] Open
Abstract
Nowadays, tumor has been the serious threat to human health and life. To further explore the mechanism of tumor genesis and development is necessarily for developing the effective treatment strategy. Extracellular vesicles are the vesicles secreted by almost all types of cells, and they play an important part in intercellular communication by transporting their cargoes. Immune cells are the vital components of the human defense system, which defense against infection and tumor through cytotoxicity, immune surveillance, and clearance. However, via release tumor-derived extracellular vesicles, tumor could induce immune cells dysfunction to facilitate its proliferation and metastasis. Studies have shown that tumor-derived extracellular vesicles play dual role on immune cells by their specific cargoes. Here, we reviewed the effects of tumor-derived extracellular vesicles on immune cells in recent years and also summarized their research progress in the tumor immunotherapy and diagnosis.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory for Space Biosciences and Biotechnology, Institute of Special Environment Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Suna Cai
- Key Laboratory for Space Biosciences and Biotechnology, Institute of Special Environment Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Mengjiao Li
- Key Laboratory for Space Biosciences and Biotechnology, Institute of Special Environment Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Kab Ibrahim Salma
- Key Laboratory for Space Biosciences and Biotechnology, Institute of Special Environment Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Xiaojie Zhou
- Key Laboratory for Space Biosciences and Biotechnology, Institute of Special Environment Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Feiyu Han
- Shanxi Weiqidaguangming Pharmaceutical Co., Ltd, The First Medical Park, Economic & Technology Development Zone, Datong, 037000, People's Republic of China
| | - Jinzhao Chen
- Shanxi Weiqidaguangming Pharmaceutical Co., Ltd, The First Medical Park, Economic & Technology Development Zone, Datong, 037000, People's Republic of China
| | - Ting Huyan
- Key Laboratory for Space Biosciences and Biotechnology, Institute of Special Environment Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.,Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| |
Collapse
|
14
|
Extracellular Vesicles and Their Role in the Spatial and Temporal Expansion of Tumor-Immune Interactions. Int J Mol Sci 2021; 22:ijms22073374. [PMID: 33806053 PMCID: PMC8036938 DOI: 10.3390/ijms22073374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) serve as trafficking vehicles and intercellular communication tools. Their cargo molecules directly reflect characteristics of their parental cell. This includes information on cell identity and specific cellular conditions, ranging from normal to pathological states. In cancer, the content of EVs derived from tumor cells is altered and can induce oncogenic reprogramming of target cells. As a result, tumor-derived EVs compromise antitumor immunity and promote cancer progression and spreading. However, this pro-oncogenic phenotype is constantly being challenged by EVs derived from the local tumor microenvironment and from remote sources. Here, we summarize the role of EVs in the tumor–immune cross-talk that includes, but is not limited to, immune cells in the tumor microenvironment. We discuss the potential of remotely released EVs from the microbiome and during physical activity to shape the tumor–immune cross-talk, directly or indirectly, and confer antitumor activity. We further discuss the role of proinflammatory EVs in the temporal development of the tumor–immune interactions and their potential use for cancer diagnostics.
Collapse
|
15
|
Rincón-Riveros A, Lopez L, Villegas EV, Antonia Rodriguez J. Regulation of Antitumor Immune Responses by Exosomes Derived from Tumor and Immune Cells. Cancers (Basel) 2021; 13:847. [PMID: 33671415 PMCID: PMC7922229 DOI: 10.3390/cancers13040847] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 12/18/2022] Open
Abstract
Exosomes are lipid membrane-enclosed vesicles released by all cell types that act at the paracrine or endocrine level to favor cell differentiation, tissue homeostasis, organ remodeling and immune regulation. Their biosynthesis begins with a cell membrane invagination which generates an early endosome that matures to a late endosome. By inward budding of the late endosome membrane, a multivesicular body (MVB) with intraluminal vesicles (ILVs) is generated. The fusion of MVBs with the plasma membrane releases ILVs into the extracellular space as exosomes, ranging in size from 30 to 100 nm in diameter. The bilipid exosome membrane is rich in cholesterol, ceramides and phosphatidylserine and can be loaded with DNA, RNA, microRNAs, proteins and lipids. It has been demonstrated that exosome secretion is a common mechanism used by the tumor to generate an immunosuppressive microenvironment that favors cancer development and progression, allowing tumor escape from immune control. Due to their ability to transport proteins, lipids and nucleic acids from the cell that gave rise to them, exosomes can be used as a source of biomarkers with great potential for clinical applications in diagnostic, prognostic or therapeutic areas. This article will review the latest research findings on exosomes and their contribution to cancer development.
Collapse
Affiliation(s)
- Andrés Rincón-Riveros
- Bioinformatics and Systems Biology Group, Institute for Genetics, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - Liliana Lopez
- Department of Statistics, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - E Victoria Villegas
- Biology Program, Faculty of Natural Sciences, Universidad del Rosario, Bogotá 111221, Colombia;
| | | |
Collapse
|
16
|
Shkair L, Garanina EE, Stott RJ, Foster TL, Rizvanov AA, Khaiboullina SF. Membrane Microvesicles as Potential Vaccine Candidates. Int J Mol Sci 2021; 22:1142. [PMID: 33498909 PMCID: PMC7865840 DOI: 10.3390/ijms22031142] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
The prevention and control of infectious diseases is crucial to the maintenance and protection of social and public healthcare. The global impact of SARS-CoV-2 has demonstrated how outbreaks of emerging and re-emerging infections can lead to pandemics of significant public health and socio-economic burden. Vaccination is one of the most effective approaches to protect against infectious diseases, and to date, multiple vaccines have been successfully used to protect against and eradicate both viral and bacterial pathogens. The main criterion of vaccine efficacy is the induction of specific humoral and cellular immune responses, and it is well established that immunogenicity depends on the type of vaccine as well as the route of delivery. In addition, antigen delivery to immune organs and the site of injection can potentiate efficacy of the vaccine. In light of this, microvesicles have been suggested as potential vehicles for antigen delivery as they can carry various immunogenic molecules including proteins, nucleic acids and polysaccharides directly to target cells. In this review, we focus on the mechanisms of microvesicle biogenesis and the role of microvesicles in infectious diseases. Further, we discuss the application of microvesicles as a novel and effective vaccine delivery system.
Collapse
Affiliation(s)
- Layaly Shkair
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (L.S.); (E.E.G.); (A.A.R.)
| | - Ekaterina E. Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (L.S.); (E.E.G.); (A.A.R.)
- M.M. Shemyakin-Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Robert J. Stott
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK; (R.J.S.); (T.L.F.)
| | - Toshana L. Foster
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK; (R.J.S.); (T.L.F.)
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (L.S.); (E.E.G.); (A.A.R.)
| | - Svetlana F. Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (L.S.); (E.E.G.); (A.A.R.)
- Department of Microbiology and Immunology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
17
|
Extracellular Vesicles Orchestrate Immune and Tumor Interaction Networks. Cancers (Basel) 2020; 12:cancers12123696. [PMID: 33317058 PMCID: PMC7763968 DOI: 10.3390/cancers12123696] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Significant strides have been made to describe the pervasive role of extracellular vesicles (EVs) in health and disease. This work provides an insightful and unifying mechanistic understanding of EVs in immunity and tumorigenesis. This is achieved by dissecting the role of EVs within the continuum of immune cell physiology, immune–infection responses, and the immune–tumor microenvironment. Our work synthesizes important topical findings on immune EV signaling in mediating immune–tumor interaction networks. Abstract Extracellular vesicles (EVs) are emerging as potent and intricate intercellular communication networks. From their first discovery almost forty years ago, several studies have bolstered our understanding of these nano-vesicular structures. EV subpopulations are now characterized by differences in size, surface markers, cargo, and biological effects. Studies have highlighted the importance of EVs in biology and intercellular communication, particularly during immune and tumor interactions. These responses can be equally mediated at the proteomic and epigenomic levels through surface markers or nucleic acid cargo signaling, respectively. Following the exponential growth of EV studies in recent years, we herein synthesize new aspects of the emerging immune–tumor EV-based intercellular communications. We also discuss the potential role of EVs in fundamental immunological processes under physiological conditions, viral infections, and tumorigenic conditions. Finally, we provide insights on the future prospects of immune–tumor EVs and suggest potential avenues for the use of EVs in diagnostics and therapeutics.
Collapse
|
18
|
Kugeratski FG, Kalluri R. Exosomes as mediators of immune regulation and immunotherapy in cancer. FEBS J 2020; 288:10-35. [PMID: 32910536 DOI: 10.1111/febs.15558] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022]
Abstract
Exosomes are nanosized extracellular vesicles of endosomal origin that enclose a multitude of functional biomolecules. Exosomes have emerged as key players of intercellular communication in physiological and pathological conditions. In cancer, depending on the context, exosomes can oppose or potentiate the development of an aggressive tumor microenvironment, thereby impacting tumor progression and clinical outcome. Increasing evidence has established exosomes as important mediators of immune regulation in cancer, as they deliver a plethora of signals that can either support or restrain immunosuppression of lymphoid and myeloid cell populations in tumors. Here, we review the current knowledge related to exosome-mediated regulation of lymphoid (T lymphocytes, B lymphocytes, and NK cells) and myeloid (macrophages, dendritic cells, monocytes, myeloid-derived suppressor cells, and neutrophils) cell populations in cancer. We also discuss the translational potential of engineered exosomes as immunomodulatory agents for cancer therapy.
Collapse
Affiliation(s)
- Fernanda G Kugeratski
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Bioengineering, Rice University, Houston, TX, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
19
|
Zhang X, Li F, Tang Y, Ren Q, Xiao B, Wan Y, Jiang S. miR-21a in exosomes from Lewis lung carcinoma cells accelerates tumor growth through targeting PDCD4 to enhance expansion of myeloid-derived suppressor cells. Oncogene 2020; 39:6354-6369. [DOI: 10.1038/s41388-020-01406-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/08/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
|
20
|
Knox MC, Ni J, Bece A, Bucci J, Chin Y, Graham PH, Li Y. A Clinician's Guide to Cancer-Derived Exosomes: Immune Interactions and Therapeutic Implications. Front Immunol 2020; 11:1612. [PMID: 32793238 PMCID: PMC7387430 DOI: 10.3389/fimmu.2020.01612] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Understanding of the role of immunity in the regulation of cancer growth continues to rapidly increase. This is fuelled by the impressive results yielded in recent years by immune checkpoint inhibitors, which block regulatory pathways to increase immune-mediated cancer destruction. Exosomes are cell-secreted membranous nanoscale vesicles that play important roles in regulating physiological and pathophysiological processes. Cancer-derived exosomes (CDEXs) and their biologically-active cargos have been proven to have varied effects in malignant progression, including the promotion of angiogenesis, metastasis, and favorable microenvironment modification. More recently, there is an increasing appreciation of their role in immune evasion. In addition to CDEXs, there are immune-derived exosomes that facilitate communication between immune cells in the non-malignant setting. Investigation of cancer-mediated mechanisms behind interruption or modification of these normal exosomal pathways may provide further understanding of how malignant immune evasion is accomplished. Accumulating evidence indicates that immune-active CDEXs also have the potential to impact clinical oncological management. Whilst immune checkpoint inhibitors have well-established pharmacologically-targeted pathways involving the immune system, other widely used treatments such as radiation and cytotoxic chemotherapies do not. Thus, investigating exosomes in immunotherapy is important for the development of next-generation combination therapies. In this article, we review the ways in which CDEXs impact individual immune cell types and how this contributes to the development of immune evasion. We discuss the relevance of lymphocytes and myeloid-lineage cells in the control of malignancy. In addition, we highlight the ways that CDEXs and their immune effects can impact current cancer therapies and the resulting clinical implications.
Collapse
Affiliation(s)
- Matthew C Knox
- Department of Radiation Oncology, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Jie Ni
- Department of Radiation Oncology, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Andrej Bece
- Department of Radiation Oncology, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Joseph Bucci
- Department of Radiation Oncology, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Yaw Chin
- Department of Radiation Oncology, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Peter H Graham
- Department of Radiation Oncology, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Yong Li
- Department of Radiation Oncology, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia.,School of Basic Medical Sciences, Zhengzhou University, Henan, China
| |
Collapse
|
21
|
Tumor-derived extracellular vesicles: Regulators of tumor microenvironment and the enlightenment in tumor therapy. Pharmacol Res 2020; 159:105041. [PMID: 32580030 DOI: 10.1016/j.phrs.2020.105041] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023]
Abstract
In recent decades, extracellular vesicles (EVs) have been proven to establish an important bridge of communication between cells or cells and their microenvironment. It is well known that EVs play crucial roles in many human diseases, especially in tumors. Tumor-derived EVs (TEVs) are not only involved in epithelial-mesenchymal transition and extracellular matrix remodeling to promote the invasion and metastasis, but also contribute to the suppression of antitumor immune responses by carrying different inhibitory molecules. In this review, we mainly discuss the effects of TEVs on the remodeling of tumor microenvironment through immune and non-immune associated mechanisms. We summarize the latest studies about utilizing EVs in clinical diagnosis and therapeutic drug delivery as well. In addition, the perspective of tumor therapy by targeting EVs is discussed in this review.
Collapse
|
22
|
Comprehensive Analysis of Tumor-Infiltrating Immune Cells and Relevant Therapeutic Strategy in Esophageal Cancer. DISEASE MARKERS 2020; 2020:8974793. [PMID: 32454908 PMCID: PMC7238334 DOI: 10.1155/2020/8974793] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/11/2020] [Indexed: 02/07/2023]
Abstract
A growing body of evidence has indicated that behaviors of cancers are defined by not only intrinsic activities of tumor cells but also tumor-infiltrating immune cells (TIICs) in the tumor microenvironment. However, it still lacks a well-structured and comprehensive analysis of TIICs and its therapeutic value in esophageal cancer (EC). The proportions of 22 TIICs were evaluated between 150 normal tissues and 141 tumor tissues of EC by the CIBERSORT algorithm. Besides, correlation analyses between proportions of TIICs and clinicopathological characters, including age, gender, histologic grade, tumor location, histologic type, LRP1B mutation, TP53 mutation, tumor stage, lymph node stage, and TNM stage, were conducted. We constructed a risk score model to improve prognostic capacity with 5 TIICs by least absolute shrinkage and selection operator (lasso) regression analysis. The risk score = −1.86∗plasma + 2.56∗T cell follicular helper − 1.37∗monocytes − 3.64∗activated dendritic cells − 2.24∗resting mast cells (immune cells in the risk model mean the proportions of immune cell infiltration in EC). Patients in the high-risk group had significantly worse overall survival than these in the low-risk group (HR: 2.146, 95% CI: 1.243-3.705, p = 0.0061). Finally, we identified Semustine and Sirolimus as two candidate compounds for the treatment of EC based on CMap analysis. In conclusion, the proportions of TIICs may be important to the progression, prognosis, and treatment of EC.
Collapse
|
23
|
The Role of Extracellular Vesicles in the Hallmarks of Cancer and Drug Resistance. Cells 2020; 9:cells9051141. [PMID: 32384712 PMCID: PMC7290603 DOI: 10.3390/cells9051141] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) mediate intercellular signaling and communication, allowing the intercellular exchange of proteins, lipids, and genetic material. Their recognized role in the maintenance of the physiological balance and homeostasis seems to be severely disturbed throughout the carcinogenesis process. Indeed, the modus operandi of cancer implies the highjack of the EV signaling network to support tumor progression in many (if not all) human tumor malignancies. We have reviewed the current evidence for the role of EVs in affecting cancer hallmark traits by: (i) promoting cell proliferation and escape from apoptosis, (ii) sustaining angiogenesis, (iii) contributing to cancer cell invasion and metastasis, (iv) reprogramming energy metabolism, (v) transferring mutations, and (vi) modulating the tumor microenvironment (TME) by evading immune response and promoting inflammation. Special emphasis was given to the role of EVs in the transfer of drug resistant traits and to the EV cargo responsible for this transfer, both between cancer cells or between the microenvironment and tumor cells. Finally, we reviewed evidence for the increased release of EVs by drug resistant cells. A timely and comprehensive understanding of how tumor EVs facilitate tumor initiation, progression, metastasis and drug resistance is instrumental for the development of innovative EV-based therapeutic approaches for cancer.
Collapse
|
24
|
Abstract
Esophageal cancer (EC) seriously threatens human health, and a promising new avenue for EC treatment involves cancer immunotherapy. To improve the efficacy of EC immunotherapy and to develop novel strategies for EC prognosis prediction or clinical treatment, understanding the immune landscapes in EC is required. EC cells harbor abundant tumor antigens, including tumor-associated antigens and neoantigens, which have the ability to initiate dendritic cell-mediated tumor-killing cytotoxic T lymphocytes in the early stage of cancer development. As EC cells battle the immune system, they obtain an ability to suppress antitumor immunity through immune checkpoints, secreted factors, and negative regulatory immune cells. Cancer-associated fibroblasts also contribute to the immune evasion of EC cells. Some factors of the immune landscape in EC tumor microenvironment are associated with cancer development, patient survival, or treatment response. Based on the immune landscape, peptide vaccines, adoptive T cell therapy, and immune checkpoint blockade can be used for EC immunotherapy. Combined strategies are required for better clinical outcome in EC. This review provides directions to design novel and effective strategies for prognosis prediction and immunotherapy in EC.
Collapse
Affiliation(s)
- Tu-Xiong Huang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology and Shenzhen International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, P. R. China
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology and Shenzhen International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, P. R. China.
| |
Collapse
|
25
|
Patras L, Banciu M. Intercellular Crosstalk Via Extracellular Vesicles in Tumor Milieu as Emerging Therapies for Cancer Progression. Curr Pharm Des 2019; 25:1980-2006. [DOI: 10.2174/1381612825666190701143845] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023]
Abstract
:Increasing evidence has suggested that extracellular vesicles (EV) mediated bidirectional transfer of functional molecules (such as proteins, different types of RNA, and lipids) between cancer cells and tumor stromal cells (immune cells, endothelial cells, fibroblasts, stem cells) and strongly contributed to the reinforcement of cancer progression. Thus, intercellular EV-mediated signaling in tumor microenvironment (TME) is essential in the modulation of all processes that support and promote tumor development like immune suppression, angiogenesis, invasion and metastasis, and resistance of tumor cells to anticancer treatments.:Besides EV potential to revolutionize our understanding of the cancer cell-stromal cells crosstalk in TME, their ability to selectively transfer different cargos to recipient cells has created excitement in the field of tumortargeted delivery of specific molecules for anticancer treatments. Therefore, in tight connection with previous findings, this review brought insight into the dual role of EV in modulation of TME. Thus, on one side EV create a favorable phenotype of tumor stromal cells for tumor progression; however, as a future new class of anticancer drug delivery systems EV could re-educate the TME to overcome main supportive processes for malignancy progression.
Collapse
Affiliation(s)
- Laura Patras
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
26
|
Valizadeh A, Sanaei R, Rezaei N, Azizi G, Fekrvand S, Aghamohammadi A, Yazdani R. Potential role of regulatory B cells in immunological diseases. Immunol Lett 2019; 215:48-59. [PMID: 31442542 DOI: 10.1016/j.imlet.2019.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/04/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022]
Abstract
Regulatory B cells (Bregs) are immune-modulating cells that affect the immune system by producing cytokines or cellular interactions. These cells have immunomodulatory effects on the immune system by cytokine production. The abnormalities in Bregs could be involved in various disorders such as autoimmunity, chronic infectious disease, malignancies, allergies, and primary immunodeficiencies are immune-related scenarios. Ongoing investigation could disclose the biology and the exact phenotype of these cells and also the assigned mechanisms of action of each subset, as a result, potential therapeutic strategies for treating immune-related anomalies. In this review, we collect the findings of human and mouse Bregs and the therapeutic efforts to change the pathogenicity of these cells in diverse disease.
Collapse
Affiliation(s)
- Amir Valizadeh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Roozbeh Sanaei
- Immunology Research Center (IRC), Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
27
|
Role of Regulatory B Cells in the Progression of Cervical Cancer. Mediators Inflamm 2019; 2019:6519427. [PMID: 31316301 PMCID: PMC6604409 DOI: 10.1155/2019/6519427] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/16/2019] [Accepted: 05/29/2019] [Indexed: 12/25/2022] Open
Abstract
This study is to investigate the role of regulatory B (Breg) cells in cervical cancer. In total, 70 cases of cervical cancer, 52 cases of cervical intraepithelial neoplasia (CIN), and 40 normal controls were enrolled. The percentage of Breg cells was detected by flow cytometry. Serum levels of IL-10 were measured by ELISA. The correlation between Breg cells and the clinical characterizations of cervical cancer was analyzed. The inhibition effect of Breg cells on CD8+ T cells was tested by blocking IL-10 in vitro. The percentage of CD19+CD5+CD1d+ Breg cells and the level of IL-10 of patients with cervical cancer or CIN were significantly higher than those in the control group (P < 0.05). And the postoperative levels of Breg cells and IL-10 were significantly lower than the preoperative levels (P < 0.05). Breg cells and the IL-10 level were positively correlated in cervical cancer patients (r = 0.516). In addition, the Breg cell percentage was closely related to the FIGO stages, lymph node metastasis, tumor differentiation, HPV infection, and the tumor metastasis of cervical cancer (P < 0.05). The Breg cell percentage was negatively correlated with CD8+ T cells of cervical cancer patients (r = -0.669). The level of IL-10 in the culture supernatant of Bregs treated with CpG was significantly higher than that of non-Bregs (P < 0.05). After coculture with Bregs, the quantity of CD8+ T cells to secrete perforin and Granzyme B was significantly decreased, and this effect was reversed after blocking IL-10 by a specific antibody. Breg cells are elevated in cervical cancer and associated with disease progression and metastasis. Moreover, they can inhibit the cytotoxicity of CD8+ T cells.
Collapse
|
28
|
Coexistence of regulatory B cells and regulatory T cells in tumor-infiltrating lymphocyte aggregates is a prognostic factor in patients with breast cancer. Breast Cancer 2018; 26:180-189. [PMID: 30244409 DOI: 10.1007/s12282-018-0910-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 09/14/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Tumors can acquire tolerance to tumor immunity and develop enhanced proliferation. Regulatory B cells (Bregs), whose role in immune tolerance is similar to that of regulatory T cells (Tregs), appear to be involved in tumor immunity. Recently, Bregs were found to induce Tregs against tumor immunity. However, the platform for the coexistence of Bregs and Tregs in cancer patients and its clinical significance remain unclear; thus, they were evaluated in breast cancer patients. METHODS In 489 breast cancer patients, CD25- and IL10-positive Bregs and Foxp3-positive Tregs were immunohistochemically evaluated in tumor-infiltrating lymphocyte aggregates (TIL aggregates) that consisted of CD19-positive B-cell follicles and CD3-positive T-cell parafollicles. Then the correlations of the localization and existence of these cells with metastasis-free survival (MFS) were evaluated in breast cancer patients. RESULTS TIL aggregates were observed in marginal regions of tumors in breast cancer patients. In the TIL aggregates, the existence of Bregs was closely related to that of Tregs (p < 0.0001). On multivariate analysis, the coexistence of Bregs and Tregs in TIL aggregates was correlated with MFS in breast cancer patients (p = 0.007). Furthermore, MFS was significantly shorter for patients with the coexistence of Tregs and Bregs in TIL aggregates than in those with Tregs alone without Bregs (p = 0.0475). CONCLUSIONS The present results suggest that Bregs are related to the induction of Tregs in TIL aggregates and the development of metastasis of breast cancer cells. Bregs are expected to be a new diagnostic and therapeutic target in breast cancer patients.
Collapse
|
29
|
Sedgwick AE, D'Souza-Schorey C. The biology of extracellular microvesicles. Traffic 2018; 19:319-327. [PMID: 29479795 PMCID: PMC6922305 DOI: 10.1111/tra.12558] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 12/11/2022]
Abstract
The study of extracellular vesicles (EVs) is a rapidly evolving field, owing in large part to recent advances in the realization of their significant contributions to normal physiology and disease. Once discredited as cell debris, these membrane vesicles have now emerged as mediators of intercellular communication by interaction with target cells, drug and gene delivery, and as potentially versatile platforms of clinical biomarkers as a result of their distinctive protein, nucleic acid and lipid cargoes. While there are multiple classes of EVs released from almost all cell types, here we focus primarily on the biogenesis, fate and functional cargoes of microvesicles (MVs). MVs regulate many important cellular processes including facilitating cell invasion, cell growth, evasion of immune response, stimulating angiogenesis, drug resistance and many others.
Collapse
Affiliation(s)
- Alanna E Sedgwick
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | | |
Collapse
|
30
|
Alipoor SD, Mortaz E, Varahram M, Movassaghi M, Kraneveld AD, Garssen J, Adcock IM. The Potential Biomarkers and Immunological Effects of Tumor-Derived Exosomes in Lung Cancer. Front Immunol 2018; 9:819. [PMID: 29720982 PMCID: PMC5915468 DOI: 10.3389/fimmu.2018.00819] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/04/2018] [Indexed: 12/21/2022] Open
Abstract
Lung cancer remains the leading cause of cancer-related deaths worldwide. Despite considerable achievements in lung cancer diagnosis and treatment, the global control of the disease remains problematic. In this respect, greater understanding of the disease pathology is crucially needed for earlier diagnosis and more successful treatment to be achieved. Exosomes are nano-sized particles secreted from most cells, which allow cross talk between cells and their surrounding environment via transferring their cargo. Tumor cells, just like normal cells, also secrete exosomes that are termed Tumor-Derived Exosome or tumor-derived exosome (TEX). TEXs have gained attention for their immuno-modulatory activities, which strongly affect the tumor microenvironment and antitumor immune responses. The immunological activity of TEX influences both the innate and adaptive immune systems including natural killer cell activity and regulatory T-cell maturation as well as numerous anti-inflammatory responses. In the context of lung cancer, TEXs have been studied in order to better understand the mechanisms underlying tumor metastasis and progression. As such, TEX has the potential to act both as a biomarker for lung cancer diagnosis as well as the response to therapy.
Collapse
Affiliation(s)
- Shamila D Alipoor
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Varahram
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Movassaghi
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aletta D Kraneveld
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Nutricia Research Centre for Specialized Nutrition, Utrecht, Netherlands
| | - Ian M Adcock
- Airways Disease Section, Imperial College London, National Heart & Lung Institute, London, United Kingdom.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
31
|
Maia J, Caja S, Strano Moraes MC, Couto N, Costa-Silva B. Exosome-Based Cell-Cell Communication in the Tumor Microenvironment. Front Cell Dev Biol 2018. [PMID: 29515996 PMCID: PMC5826063 DOI: 10.3389/fcell.2018.00018] [Citation(s) in RCA: 452] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tumors are not isolated entities, but complex systemic networks involving cell-cell communication between transformed and non-transformed cells. The milieu created by tumor-associated cells may either support or halt tumor progression. In addition to cell-cell contact, cells communicate through secreted factors via a highly complex system involving characteristics such as ligand concentration, receptor expression and integration of diverse signaling pathways. Of these, extracellular vesicles, such as exosomes, are emerging as novel cell-cell communication mediators in physiological and pathological scenarios. Exosomes, membrane vesicles of endocytic origin released by all cells (both healthy and diseased), ranging in size from 30 to 150 nm, transport all the main biomolecules, including lipids, proteins, DNAs, messenger RNAs and microRNA, and perform intercellular transfer of components, locally and systemically. By acting not only in tumor cells, but also in tumor-associated cells such as fibroblasts, endothelium, leukocytes and progenitor cells, tumor- and non-tumor cells-derived exosomes have emerged as new players in tumor growth and invasion, tumor-associated angiogenesis, tissue inflammation and immunologic remodeling. In addition, due to their property of carrying molecules from their cell of origin to the peripheral circulation, exosomes have been increasingly studied as sources of tumor biomarkers in liquid biopsies. Here we review the current literature on the participation of exosomes in the communication between tumor and tumor-associated cells, highlighting the role of this process in the setup of tumor microenvironments that modulate tumor initiation and metastasis.
Collapse
Affiliation(s)
- Joana Maia
- Systems Oncology Group, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Sergio Caja
- Systems Oncology Group, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | | | - Nuno Couto
- Systems Oncology Group, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Bruno Costa-Silva
- Systems Oncology Group, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| |
Collapse
|
32
|
Shen M, Sun Q, Wang J, Pan W, Ren X. Positive and negative functions of B lymphocytes in tumors. Oncotarget 2018; 7:55828-55839. [PMID: 27331871 PMCID: PMC5342456 DOI: 10.18632/oncotarget.10094] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/04/2016] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence indicated that B lymphocytes exerted complex functions in tumor immunity. On the one hand, B lymphocytes can inhibit tumor development through antibody generation, antigen presentation, tumor tissue interaction, and direct killing. On the other hand, B lymphocytes have tumor-promoting functions. A typical type of B lymphocytes, termed regulatory B cells, is confirmed to attenuate immune response in a tumor environment. In this paper, we summarize the current understanding of B-cell functions in tumor immunology, which may shed light on potential therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Meng Shen
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Qian Sun
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Jian Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Wei Pan
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xiubao Ren
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|
33
|
Barteneva NS, Baiken Y, Fasler-Kan E, Alibek K, Wang S, Maltsev N, Ponomarev ED, Sautbayeva Z, Kauanova S, Moore A, Beglinger C, Vorobjev IA. Extracellular vesicles in gastrointestinal cancer in conjunction with microbiota: On the border of Kingdoms. Biochim Biophys Acta Rev Cancer 2017; 1868:372-393. [DOI: 10.1016/j.bbcan.2017.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/26/2017] [Accepted: 06/26/2017] [Indexed: 12/16/2022]
|
34
|
Alessandrini F, Pezzè L, Ciribilli Y. LAMPs: Shedding light on cancer biology. Semin Oncol 2017; 44:239-253. [PMID: 29526252 DOI: 10.1053/j.seminoncol.2017.10.013] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 10/27/2017] [Accepted: 10/29/2017] [Indexed: 01/09/2023]
Abstract
Lysosomes are important cytoplasmic organelles whose critical functions in cells are increasingly being understood. In particular, despite the long-standing accepted concept about the role of lysosomes as cellular machineries solely assigned to degradation, it has been demonstrated that they play active roles in homeostasis and even in cancer biology. Indeed, it is now well documented that during the process of cellular transformation and cancer progression lysosomes are changing localization, composition, and volume and, through the release of their enzymes, lysosomes can also enhance cancer aggressiveness. LAMPs (lysosome associated membrane proteins) represent a family of glycosylated proteins present predominantly on the membrane of lysosomes whose expression can vary among different tissues, suggesting a separation of functions. In this review we focus on the functions and roles of the different LAMP family members, with a particular emphasis on cancer progression and metastatic spread. LAMP proteins are involved in many different aspects of cell biology and can influence cellular processes such as phagocytosis, autophagy, lipid transport, and aging. Interestingly, for all the five members identified so far (LAMP1, LAMP2, LAMP3, CD68/Macrosialin/LAMP4, and BAD-LAMP/LAMP5), a role in cancer has been suggested. While this is well documented for LAMP1 and LAMP2, the involvement of the other three proteins in cancer progression and aggressiveness has recently been proposed and remains to be elucidated. Here we present different examples about how LAMP proteins can influence and support tumor growth and metastatic spread, emphasizing the impact of each single member of the family.
Collapse
Affiliation(s)
- Federica Alessandrini
- Laboratory of Molecular Cancer Genetics, Centre for Integrative Biology (CIBIO), University of Trento, Povo (TN), Italy
| | - Laura Pezzè
- Laboratory of Molecular Cancer Genetics, Centre for Integrative Biology (CIBIO), University of Trento, Povo (TN), Italy
| | - Yari Ciribilli
- Laboratory of Molecular Cancer Genetics, Centre for Integrative Biology (CIBIO), University of Trento, Povo (TN), Italy.
| |
Collapse
|
35
|
Sato Y, Gonda K, Harada M, Tanisaka Y, Arai S, Mashimo Y, Iwano H, Sato H, Ryozawa S, Takahashi T, Sakuramoto S, Shibata M. Increased neutrophil-to-lymphocyte ratio is a novel marker for nutrition, inflammation and chemotherapy outcome in patients with locally advanced and metastatic esophageal squamous cell carcinoma. Biomed Rep 2017; 7:79-84. [PMID: 28685065 DOI: 10.3892/br.2017.924] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/22/2017] [Indexed: 12/14/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common types of cancer, and its progression is strongly influenced by the presence of inflammation. Recently, there has been growing interest in the host inflammatory response, and increasing evidence has indicated that the neutrophil-to-lymphocyte ratio (NLR), a useful marker of systemic inflammation, may be an effective prognostic indicator in various types of malignant diseases. In the present study, 260 patients with ESCC were enrolled, including 110 who received chemoradiation therapy (CRT) involving irradiation and chemotherapy of 5-fluorouracil and cisplatin, and 150 received chemotherapy using 5-fluorouracil and cisplatin (FP). The patients of each group were both divided into two groups according to their NLR: High NLR (NLR>3.0) and low NLR (NLR≤3.0). Serum levels of prealbumin and retinol binding protein, which are nutritional parameters, were both significantly inversely correlated with NLR in patients treated with CRT, and patients treated with FP. Levels of CRP, a marker of inflammation, were significantly correlated with NLR, and stimulation indices, markers of immune reactions, were inversely correlated with NLR in both of CRT patients and FP patients. In patients treated with CRT, a partial response was significantly higher in patients with a low NLR and with progressive disease compared to those with a high NLR. In patients treated with FP, a partial response was also significantly higher in patients with a low NLR and with progressive disease compared to those with a high NLR. The overall survival of patients with CRT and FP were both significantly worse in patients with a high NLR than in those with a low NLR. NLR may serve as a useful marker of the tumor response, immune suppression, malnutrition and prognosis upon CRT or FP in patients with locally advanced or metastatic ESCC.
Collapse
Affiliation(s)
- Yu Sato
- Department of Surgery, Toho University Sakura Medical Center, Sakura, Chiba 285-8741, Japan.,Department of Gastroenterological Oncology, Saitama Medical University International Medical Center, Hidaka, Saitama 350-1298, Japan
| | - Kenji Gonda
- Department of Gastroenterological Oncology, Saitama Medical University International Medical Center, Hidaka, Saitama 350-1298, Japan.,Department of Surgery, Japan Community Healthcare Organization, Nihonmatsu Hospital, Nihonmatsu, Fukushima 964-8501, Japan
| | - Maiko Harada
- Department of Gastroenterology, Saitama Medical University International Medical Center, Hidaka, Saitama 350-1298, Japan
| | - Yuki Tanisaka
- Department of Gastroenterology, Saitama Medical University International Medical Center, Hidaka, Saitama 350-1298, Japan
| | - Shin Arai
- Department of Gastroenterology, Saitama Medical University International Medical Center, Hidaka, Saitama 350-1298, Japan
| | - Yumi Mashimo
- Department of Gastroenterology, Saitama Medical University International Medical Center, Hidaka, Saitama 350-1298, Japan
| | - Hirotoshi Iwano
- Department of Gastroenterology, Saitama Medical University International Medical Center, Hidaka, Saitama 350-1298, Japan
| | - Hiroshi Sato
- Department of Surgery, Saitama Medical University International Medical Center, Hidaka, Saitama 350-1298, Japan
| | - Shomei Ryozawa
- Department of Gastroenterology, Saitama Medical University International Medical Center, Hidaka, Saitama 350-1298, Japan
| | - Takao Takahashi
- Department of Palliative Medicine, Saitama Medical University International Medical Center, Hidaka, Saitama 350-1298, Japan
| | - Shinichi Sakuramoto
- Department of Surgery, Saitama Medical University International Medical Center, Hidaka, Saitama 350-1298, Japan
| | - Masahiko Shibata
- Department of Advanced Cancer Immunotherapy, Fukushima Medical University, Fukushima, Fukushima 960-1259, Japan
| |
Collapse
|
36
|
Abstract
Exosomes are a kind of cell-released membrane-form structures which contain proteins, lipids, and nucleic acids. These vesicular organelles play a key role in intercellular communication. Numerous experiments demonstrated that tumor-related exosomes (TEXs) can induce immune surveillance in the microenvironment in vivo and in vitro. They can interfere with the maturation of DC cells, impair NK cell activation, induce myeloid-derived suppressor cells, and educate macrophages into protumor phenotype. They can also selectively induce effector T cell apoptosis via Fas/FasL interaction and enhance regulatory T cell proliferation and function by releasing TGF-β. In this review, we focus on the TEX-induced immunosuppression and microenvironment change. Based on the truth that TEXs play crucial roles in suppressing the immune system, studies on modification of exosomes as immunotherapy strategies will also be discussed.
Collapse
|
37
|
Goldman N, Valiuskyte K, Londregan J, Swider A, Somerville J, Riggs JE. Macrophage regulation of B cell proliferation. Cell Immunol 2017; 314:54-62. [PMID: 28238361 DOI: 10.1016/j.cellimm.2017.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/07/2017] [Accepted: 02/12/2017] [Indexed: 12/11/2022]
Abstract
Unlike organized lymphoid tissue, the tumor microenvironment (TME) often includes a high proportion of immunosuppressive macrophages. We model the TME by culturing peritoneal cavity (PerC) cells that naturally have a high macrophage to lymphocyte ratio. Prior studies revealed that, following TCR ligation, PerC T cell proliferation is suppressed due to IFNγ-triggered inducible nitric oxide synthase expression. In this study we assessed the ability of PerC B cells to respond to surrogate activating signals in the presence of high numbers of macrophages. Surface IgM (BCR) ligation led to cyclooxygenase-mediated, and TLR-4 ligation to IL10-mediated, suppression of PerC B cell proliferation. In contrast, PerC B cells had a robust response to CD40 ligation, which could overcome the suppression generated by the BCR or TLR-4 response. However, the CD40 response was suppressed by concurrent TCR ligation. These results reveal the challenges of promoting B and T cell responses in macrophage-rich conditions that model the TME.
Collapse
Affiliation(s)
- Naomi Goldman
- Department of Biology, Rider University, Lawrenceville, NJ 08648, USA
| | | | | | - Adam Swider
- Department of Biology, Rider University, Lawrenceville, NJ 08648, USA
| | - John Somerville
- Department of Biology, Rider University, Lawrenceville, NJ 08648, USA
| | - James E Riggs
- Department of Biology, Rider University, Lawrenceville, NJ 08648, USA.
| |
Collapse
|
38
|
Czernek L, Düchler M. Functions of Cancer-Derived Extracellular Vesicles in Immunosuppression. Arch Immunol Ther Exp (Warsz) 2017; 65:311-323. [PMID: 28101591 PMCID: PMC5511306 DOI: 10.1007/s00005-016-0453-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/18/2016] [Indexed: 12/29/2022]
Abstract
Extracellular vesicles, including exosomes, constitute an important element of intercellular communication by carrying a variety of molecules from producer to target cells. The transport of mRNA and miRNA can directly modulate gene expression in the target cells. The miRNA content in exosomes is characteristic for the cell from which the vesicles were derived enabling the usage of exosomes as biomarkers for the diagnosis various diseases, including cancer. Cancer-derived exosomes support the survival and progression of tumors in many ways and also contribute to the neutralization of the anti-cancer immune response. Exosomes participate in all known mechanisms by which cancer evades the immune system. They influence the differentiation and activation of immune suppressor cells, they modulate antigen presentation, and are able to induce T-cell apoptosis. Although cancer-derived exosomes mainly suppress the immune system and facilitate tumor progression, they are also important sources of tumor antigens with potential clinical application in stimulating immune responses. This review summarizes how exosomes assist cancer to escape immune recognition and to acquire control over the immune system.
Collapse
Affiliation(s)
- Liliana Czernek
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Markus Düchler
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland.
| |
Collapse
|
39
|
Zhou Z, Gong L, Wang X, Hu Z, Wu G, Tang X, Peng X, Tang S, Meng M, Feng H. The role of regulatory B cells in digestive system diseases. Inflamm Res 2016; 66:303-309. [PMID: 27878329 DOI: 10.1007/s00011-016-1007-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/01/2016] [Accepted: 11/09/2016] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION The past decade has provided striking insights into a newly identified subset of B cells known as regulatory B cells (Bregs). In addition to producing antibody, Bregs also regulate diseases via cytokine production and antigen presentation. This subset of B cells has protective and potentially therapeutic effects. However, the particularity of Bregs has caused some difficulties in conducting research on their roles. Notably, human B10 cells, which are Bregs that produce interleukin 10, share phenotypic characteristics with other previously defined B cell subsets, and currently, there is no known surface phenotype that is unique to B10 cells. METHODS An online search was performed in the PubMed and Web of Science databases for articles published providing evidences on the role of regulatory B cells in digestive system diseases. RESULTS AND CONCLUSIONS Abundant evidence has demonstrated that Bregs play a regulatory role in inflammatory, autoimmune, and tumor diseases, and regulatory B cells play different roles in different diseases, but future work needs to determine the mechanisms by which Bregs are activated and how these cells affect their target cells.
Collapse
Affiliation(s)
- Zhenyu Zhou
- Division of Gastroenterology, Wuxi No.2 Hospital Affiliated with Nanjing Medical University, Zhong Shan Road 68, Wuxi, Jiang Su Province, China
| | - Lei Gong
- Division of Gastroenterology, Wuxi No.2 Hospital Affiliated with Nanjing Medical University, Zhong Shan Road 68, Wuxi, Jiang Su Province, China
| | - Xiaoyun Wang
- Division of Gastroenterology, Wuxi No.2 Hospital Affiliated with Nanjing Medical University, Zhong Shan Road 68, Wuxi, Jiang Su Province, China.
| | - Zhen Hu
- Division of Gastroenterology, Wuxi No.2 Hospital Affiliated with Nanjing Medical University, Zhong Shan Road 68, Wuxi, Jiang Su Province, China
| | - Gaojue Wu
- Division of Gastroenterology, Wuxi No.2 Hospital Affiliated with Nanjing Medical University, Zhong Shan Road 68, Wuxi, Jiang Su Province, China
| | - Xuejun Tang
- Division of Gastroenterology, Wuxi No.2 Hospital Affiliated with Nanjing Medical University, Zhong Shan Road 68, Wuxi, Jiang Su Province, China
| | - Xiaobin Peng
- Division of Gastroenterology, Wuxi No.2 Hospital Affiliated with Nanjing Medical University, Zhong Shan Road 68, Wuxi, Jiang Su Province, China
| | - Shuan Tang
- Division of Gastroenterology, Wuxi No.2 Hospital Affiliated with Nanjing Medical University, Zhong Shan Road 68, Wuxi, Jiang Su Province, China
| | - Miao Meng
- Division of Gastroenterology, Wuxi No.2 Hospital Affiliated with Nanjing Medical University, Zhong Shan Road 68, Wuxi, Jiang Su Province, China
| | - Hui Feng
- Division of Gastroenterology, Wuxi No.2 Hospital Affiliated with Nanjing Medical University, Zhong Shan Road 68, Wuxi, Jiang Su Province, China
| |
Collapse
|
40
|
Micro RNA-98 interferes with expression interleukin-10 in peripheral B cells of patients with lung cancer. Sci Rep 2016; 6:32754. [PMID: 27605397 PMCID: PMC5015073 DOI: 10.1038/srep32754] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/08/2016] [Indexed: 12/25/2022] Open
Abstract
Interleukin (IL)-10-producing B cells (B10 cells) plays an important role in the tumor tolerance. High frequency of peripheral B10 cell was reported in patients with lung cancer recently. Micro RNA (miR) regulates some gene expression. This study test a hypothesis that miR-98 suppresses the expression of IL-10 in B cells of subjects with lung cancer. The results showed that the levels of miR-98 were significantly less in peripheral B cells of patients with lung cancer than that in healthy subjects. IL-10 mRNA levels in peripheral B cells were significantly higher in lung cancer patients as compared with healthy controls. A negative correlation was identified between miR-98 and IL-10 in peripheral B cells. Serum IL-13 was higher in lung cancer patients than that in healthy controls. The levels of IL-13 were also negatively correlated with IL-10 in B cells. Exposure B10 cells to IL-13 in the culture or over expression of miR-98 reduced the expression of IL-10 in B cells. Administration with miR-98-laden liposomes inhibited the lung cancer growth in a mouse model. In conclusion, up regulation of miR-98 inhibits the expression of IL-10 in B cells, which may contribute to inhibit the lung cancer tolerance in the body.
Collapse
|
41
|
Metabolic exchanges within tumor microenvironment. Cancer Lett 2015; 380:272-80. [PMID: 26546872 DOI: 10.1016/j.canlet.2015.10.027] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/27/2015] [Accepted: 10/27/2015] [Indexed: 12/30/2022]
Abstract
Tumor progression toward malignancy often requires a metabolic rewiring of cancer cells to meet changes in metabolic demand to forefront nutrient and oxygen withdrawal, together with strong anabolic requests to match high proliferation rate. Tumor microenvironment highly contributes to metabolic rewiring of cancer cells, fostering complete nutrient exploitation, favoring OXPHOS of lipids and glutamine at the expense of glycolysis and enhancing exchanges via extracellular microvesicles or exosomes of proteins, lipids and small RNAs among tumor and stromal cells. Noteworthy, the same molecular drivers of metabolic reprogramming within tumor and stroma are also able to elicit motility, survival and self-renewal on cancer cells, thereby sustaining successful escaping strategies to circumvent the hostile hypoxic, acidic and inflammatory environment. This review highlights the emerging role of nutrients and vesicle-mediated exchanges among tumor and stromal cells, defining their molecular pathways and offering new perspectives to develop treatments targeting this complex metabolic rewiring.
Collapse
|