1
|
Niharika, Garg M. Understanding the autophagic functions in cancer stem cell maintenance and therapy resistance. Expert Rev Mol Med 2024; 26:e23. [PMID: 39375840 PMCID: PMC11488345 DOI: 10.1017/erm.2024.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/25/2023] [Accepted: 06/25/2024] [Indexed: 10/09/2024]
Abstract
Complex tumour ecosystem comprising tumour cells and its associated tumour microenvironment (TME) constantly influence the tumoural behaviour and ultimately impact therapy failure, disease progression, recurrence and poor overall survival of patients. Crosstalk between tumour cells and TME amplifies the complexity by creating metabolic changes such as hypoxic environment and nutrient fluctuations. These changes in TME initiate stem cell-like programmes in cancer cells, contribute to tumoural heterogeneity and increase tumour robustness. Recent studies demonstrate the multifaceted role of autophagy in promoting fibroblast production, stemness, cancer cell survival during longer periods of dormancy, eventual growth of metastatic disease and disease resistance. Recent ongoing studies examine autophagy/mitophagy as a powerful survival strategy in response to environmental stress including nutrient deprivation, hypoxia and environmental stress in TME. It prevents irreversible senescence, promotes dormant stem-like state, induces epithelial-mesenchymal transition and increases migratory and invasive potential of tumour cells. The present review discusses various theories and mechanisms behind the autophagy-dependent induction of cancer stem cell (CSC) phenotype. Given the role of autophagic functions in CSC aggressiveness and therapeutic resistance, various mechanisms and studies based on suppressing cellular plasticity by blocking autophagy as a powerful therapeutic strategy to kill tumour cells are discussed.
Collapse
Affiliation(s)
- Niharika
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| | - Minal Garg
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| |
Collapse
|
2
|
Pei SL, Chen RS, Chen MH. Roles of centrioles in neural attraction of dental pulp stem cells. J Formos Med Assoc 2024; 123:934-941. [PMID: 38155028 DOI: 10.1016/j.jfma.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND/PURPOSE Human nerve development is vital, affecting trauma recovery and dental issues. Early embryonic clues link nerves to tooth development via factors like Wnt and Hedgehog pathways. Centrosomes play a role, and centriole issues can disrupt oral development, as in oral facial digital syndrome type 1. This study aimed to delve deeper into the role and influence of centrioles on the development of dental nerves. METHODS Cell migration assessed by co-culturing mouse neural tissue and human dental pulp stem cells (DPSCs). Centrioles were fluorescently stained, and their positions observed with confocal microscopy. Centrinone was employed to inhibit centriole activity, evaluating its impact on cell mobility under activity inhibition. RESULTS As the distance between nerve tissue and DPSCs decreased, more DPSCs had centrioles near nerve tissue. Co-culture with nerve tissue increased DPSCs migration toward it. In contrast, DPSCs cultured alone or with fibroblasts showed weaker migration, indicating neural tissue's attractive influence. The addition of 125 nM centrinone halted cell migration and centriole polymerization. After centrinone removal over two days, centrioles returned to normal, suggesting continued motility inhibition. CONCLUSION Centrioles direct cell movement and polarization. There are two scenarios: centrioles at the cell center with the nucleus moving backward (as in NIH3T3 cells) and both cells and centrioles moving forward (as in DPSCs). DPSCs' attraction to neural tissue may shed light on nerve guidance by tooth germs, aiding embryonic cell differentiation into nerves. However, further in vivo and in vitro studies are needed to confirm the specific mechanism.
Collapse
Affiliation(s)
- Shan-Li Pei
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Rung-Shu Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Min-Huey Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
3
|
Cheng H, Chu J, Yang Y, Li Y, Wang M, Wu H, Wang M, Su J, Li Q. Paris polyphylla saponins II inhibits invasive, migration and epithelial-mesenchymal transition of melanoma cells through activation of autophagy. Toxicon 2024; 237:107558. [PMID: 38072315 DOI: 10.1016/j.toxicon.2023.107558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
Malignant melanoma is a kind of malignant tumor derived from normal epidermal melanocytes or original nevus cells. It has a high degree of malignancy, rapid progress, dangerous condition, and poor prognosis. In recent years, the innovation of traditional Chinese medicine has broadened the scope and effect of tumor treatment. It is a hotspot and breakthrough to find new anti-tumor invasion and migration drugs from natural plants or traditional Chinese medicine. This study explored the role of PPII in promoting autophagy to inhibit EMT of melanoma cells, the role of the PI3K/Akt signaling pathway in the invasion and migration of melanoma cells induced by PPII. We found that PPII effectively inhibited the proliferation, invasion and migration of melanoma B16 and B16F10 in vitro, and induced autophagy. We also established the xenograft tumor and metastatic tumor model of C57BL/6 mice with B16F10 cells. Results showed that PPII effectively inhibited the growth of transplanted tumors, induced autophagy and inhibited the expression level of EMT related protein; Metastasis experiment showed that PPII inhibited the invasion and migration of B16F10, the effect of inhibiting lung metastasis is the most significant. Further mechanism studies showed that the inhibition of PPII on melanoma invasion and migration is related to its induction of autophagy and then inhibition of EMT.
Collapse
Affiliation(s)
- Hui Cheng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230038, China.
| | - Jing Chu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230038, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yuting Yang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230038, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yueyue Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230038, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Meng Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Huan Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Manman Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Jingjing Su
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230038, China.
| | - Qinglin Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230038, China.
| |
Collapse
|
4
|
Odarenko KV, Zenkova MA, Markov AV. The Nexus of Inflammation-Induced Epithelial-Mesenchymal Transition and Lung Cancer Progression: A Roadmap to Pentacyclic Triterpenoid-Based Therapies. Int J Mol Sci 2023; 24:17325. [PMID: 38139154 PMCID: PMC10743660 DOI: 10.3390/ijms242417325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Its high mortality is partly due to chronic inflammation that accompanies the disease and stimulates cancer progression. In this review, we analyzed recent studies and highlighted the role of the epithelial-mesenchymal transition (EMT) as a link between inflammation and lung cancer. In the inflammatory tumor microenvironment (iTME), fibroblasts, macrophages, granulocytes, and lymphocytes produce inflammatory mediators, some of which can induce EMT. This leads to increased invasiveness of tumor cells and self-renewal of cancer stem cells (CSCs), which are associated with metastasis and tumor recurrence, respectively. Based on published data, we propose that inflammation-induced EMT may be a potential therapeutic target for the treatment of lung cancer. This prospect is partially realized in the development of EMT inhibitors based on pentacyclic triterpenoids (PTs), described in the second part of our study. PTs reduce the metastatic potential and stemness of tumor cells, making PTs promising candidates for lung cancer therapy. We emphasize that the high diversity of molecular mechanisms underlying inflammation-induced EMT far exceeds those that have been implicated in drug development. Therefore, analysis of information on the relationship between the iTME and EMT is of great interest and may provide ideas for novel treatment approaches for lung cancer.
Collapse
Affiliation(s)
- Kirill V. Odarenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (M.A.Z.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (M.A.Z.)
| | - Andrey V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (M.A.Z.)
| |
Collapse
|
5
|
Sengul F, Vatansev H, Ozturk B. Investigation the effects of bee venom and H-dental-derived mesenchymal stem cells on non-small cell lung cancer cells (A549). Mol Biol Rep 2023; 51:2. [PMID: 38057592 DOI: 10.1007/s11033-023-09002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/13/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Lung cancer, one of the most common oncological diseases worldwide, continues to be the leading cause of cancer-related deaths. The development of new approaches for lung cancer, which still has a low survival rate despite medical advances, is of great importance. METHODS AND RESULTS In this study, bee venom (BV), conditioned medium of MSCs isolated from dental follicles (MSC-CM) and cisplatin were applied at different doses and their effects on A549 cell line were evaluated. Dental follicles were used as a source of MSCs source and differentiation kits, and characterization studies (flow cytometry) were performed. Cell viability was measured by the MTT method and apoptosis was measured by an Annexin V-FITC/PI kit on flow cytometer. IC50 dose values were determined according to the 24th hour and were determined as 15.8 µg/mL for BV, 10.78% for MSC-CM and 5.77 µg/mL for cisplatin. IC50 values found for BV and MSC-CM were also given in combination and the effects were observed. It was found that the applied substances caused BV to decrease in cell viability and induced apoptosis in cells. In addition to the induction of apoptosis in BV, MSC-CM, and combined use, all three applications led to an increase in Bax protein expression and a decrease in Bcl-2 protein expression. The molecular mechanism of anticancer activity through inhibition of Bax and Bcl-2 proteins and the NF-κB signaling pathway may be suggested. CONCLUSION Isolated MSCs in our study showed anticancer activity and BV and MSC-CM showed synergistic antiproliferative and apoptotic effects.
Collapse
Affiliation(s)
- Fatma Sengul
- Department of Biochemistry, Faculty of Pharmacy, University of Adiyaman, Central Classroom C Block Floor:3, 02040, Adiyaman, Turkey.
| | - Husamettin Vatansev
- Department of Medical Biochemistry, Faculty of Medicine, University of Selçuk, Alaeddin Keykubat Campus, 42131, Konya, Turkey
| | - Bahadir Ozturk
- Department of Medical Biochemistry, Faculty of Medicine, University of Selçuk, Alaeddin Keykubat Campus, 42131, Konya, Turkey
| |
Collapse
|
6
|
Frerichs LM, Frerichs B, Petzsch P, Köhrer K, Windolf J, Bittersohl B, Hoffmann MJ, Grotheer V. Tumorigenic effects of human mesenchymal stromal cells and fibroblasts on bladder cancer cells. Front Oncol 2023; 13:1228185. [PMID: 37781195 PMCID: PMC10534007 DOI: 10.3389/fonc.2023.1228185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/11/2023] [Indexed: 10/03/2023] Open
Abstract
Background Patients with muscle-invasive bladder cancer face a poor prognosis due to rapid disease progression and chemoresistance. Thus, there is an urgent need for a new therapeutic treatment. The tumor microenvironment (TME) has crucial roles in tumor development, growth, progression, and therapy resistance. TME cells may also survive standard treatment of care and fire up disease recurrence. However, whether specific TME components have tumor-promoting or tumor-inhibitory properties depends on cell type and cancer entity. Thus, a deeper understanding of the interaction mechanisms between the TME and cancer cells is needed to develop new cancer treatment approaches that overcome therapy resistance. Little is known about the function and interaction between mesenchymal stromal cells (MSC) or fibroblasts (FB) as TME components and bladder cancer cells. Methods We investigated the functional impact of conditioned media (CM) from primary cultures of different donors of MSC or FB on urothelial carcinoma cell lines (UCC) representing advanced disease stages, namely, BFTC-905, VMCUB-1, and UMUC-3. Underlying mechanisms were identified by RNA sequencing and protein analyses of cancer cells and of conditioned media by oncoarrays. Results Both FB- and MSC-CM had tumor-promoting effects on UCC. In some experiments, the impact of MSC-CM was more pronounced. CM augmented the aggressive phenotype of UCC, particularly of those with epithelial phenotype. Proliferation and migratory and invasive capacity were significantly increased; cisplatin sensitivity was reduced. RNA sequencing identified underlying mechanisms and molecules contributing to the observed phenotype changes. NRF2 and NF-κB signaling was affected, contributing to improved cisplatin detoxification. Likewise, interferon type I signaling was downregulated and regulators of epithelial mesenchymal transition (EMT) were increased. Altered protein abundance of CXCR4, hyaluronan receptor CD44, or TGFβ-signaling was induced by CM in cancer cells and may contribute to phenotypical changes. CM contained high levels of CCL2/MCP-1, MMPs, and interleukins which are well known for their impact on other cancer entities. Conclusions The CM of two different TME components had overlapping tumor-promoting effects and increased chemoresistance. We identified underlying mechanisms and molecules contributing to the aggressiveness of bladder cancer cells. These need to be further investigated for targeting the TME to improve cancer therapy.
Collapse
Affiliation(s)
- Lucie M. Frerichs
- Department of Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Bastian Frerichs
- Department of Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Heinrich-Heine-University, Düsseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Heinrich-Heine-University, Düsseldorf, Germany
| | - Joachim Windolf
- Department of Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Bernd Bittersohl
- Department of Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Michèle J. Hoffmann
- Department of Urology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Vera Grotheer
- Department of Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
7
|
Luo R, Wei Y, Chen P, Zhang J, Wang L, Wang W, Wang P, Tian W. Mesenchymal Stem Cells Inhibit Epithelial-to-Mesenchymal Transition by Modulating the IRE1 α Branch of the Endoplasmic Reticulum Stress Response. Stem Cells Int 2023; 2023:4483776. [PMID: 37545482 PMCID: PMC10397497 DOI: 10.1155/2023/4483776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/06/2023] [Accepted: 07/08/2023] [Indexed: 08/08/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is the most common idiopathic interstitial lung disease, and it carries a poor prognosis due to a lack of efficient diagnosis methods and treatments. Epithelial-mesenchymal transition (EMT) plays a key role in IPF pathogenesis. Endoplasmic reticulum (ER) stress contributes to fibrosis via EMT-mediated pathways. Mesenchymal stem cell (MSC) transplantation is a promising treatment strategy for pulmonary fibrosis and ameliorates lung fibrosis in animal models via paracrine effects. However, the specific mechanisms underlying the effect of transplanted MSCs are not known. We previously reported that MSCs attenuate endothelial injury by modulating ER stress and endothelial-to-mesenchymal transition. The present study investigated whether modulation of ER stress- and EMT-related pathways plays essential roles in MSC-mediated alleviation of IPF. Methods and Results We constructed a A549 cell model of transforming growth factor-β1 (TGF-β1)-induced fibrosis. TGF-β1 was used to induce EMT in A549 cells, and MSC coculture decreased EMT, as indicated by increased E-cadherin levels and decreased vimentin levels. ER stress participated in TGF-β1-induced EMT in A549 cells, and MSCs inhibited the expression of XBP-1s, XBP-1u, and BiP, which was upregulated by TGF-β1. Inhibition of ER stress contributed to MSC-mediated amelioration of EMT in A549 cells, and modulation of the IRE1α-XBP1 branch of the ER stress pathway may have played an important role in this effect. MSC transplantation alleviated bleomycin (BLM)-induced pulmonary fibrosis in mice. MSC treatment decreased the expression of ER stress- and EMT-related genes and proteins, and the most obvious effect of MSC treatment was inhibition of the IRE1α/XBP1 pathway. Conclusions The present study demonstrated that MSCs decrease EMT by modulating ER stress and that blockade of the IRE1α-XBP1 pathway may play a critical role in this effect. The current study provides novel insight for the application of MSCs for IPF treatment and elucidates the mechanism underlying the preventive effects of MSCs against pulmonary fibrosis.
Collapse
Affiliation(s)
- Ruixi Luo
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Stem Cell Therapy Research Center, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yaqiong Wei
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Peng Chen
- Clinical Basis of Traditional Chinese Medicine Teaching and Research Section, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jing Zhang
- Institute of Experimental Animals, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - La Wang
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wenjia Wang
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ping Wang
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Weiyi Tian
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
8
|
Ding W, Zhang K, Li Q, Xu L, Ma Y, Han F, Zhu L, Sun X. Advances in Understanding the Roles of Mesenchymal Stem Cells in Lung Cancer. Cell Reprogram 2023; 25:20-31. [PMID: 36594933 DOI: 10.1089/cell.2022.0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Lung cancer is the most common and deadliest type of cancer worldwide. Research concerning lung cancer has made considerable progress in recent decades, but lung cancer remains the leading cause of malignancy-related mortality rate. Mesenchymal stem cells (MSCs) mainly exist in fat, umbilical cord blood, bone marrow, bone, and muscle. MSCs are a primary component of the tumor microenvironment (TME). Recent studies have shown that MSCs have roles in lung cancer-related proliferation, invasion, migration, and angiogenesis, but the underlying mechanisms are poorly understood. Because MSCs can migrate to the TME, there is increasing attention toward the use of MSCs in drugs or gene vectors for cancer treatment. This review summarizes the roles and effects of MSCs in lung cancer, while addressing clinical applications of MSCs in lung cancer treatment.
Collapse
Affiliation(s)
- Wenli Ding
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China.,Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.,Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China.,Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Qinying Li
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China.,Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Linfei Xu
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yanhui Ma
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China.,Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.,Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Liang Zhu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China.,Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China.,Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
9
|
Valencia K, Echepare M, Teijeira Á, Pasquier A, Bértolo C, Sainz C, Tamayo I, Picabea B, Bosco G, Thomas R, Agorreta J, López-Picazo JM, Frigola J, Amat R, Calvo A, Felip E, Melero I, Montuenga LM. DSTYK inhibition increases the sensitivity of lung cancer cells to T cell-mediated cytotoxicity. J Exp Med 2022; 219:213507. [PMID: 36169652 PMCID: PMC9524203 DOI: 10.1084/jem.20220726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/22/2022] [Accepted: 08/29/2022] [Indexed: 12/13/2022] Open
Abstract
Lung cancer remains the leading cause of cancer-related death worldwide. We identify DSTYK, a dual serine/threonine and tyrosine non-receptor protein kinase, as a novel actionable target altered in non-small cell lung cancer (NSCLC). We also show DSTYK's association with a lower overall survival (OS) and poorer progression-free survival (PFS) in multiple patient cohorts. Abrogation of DSTYK in lung cancer experimental systems prevents mTOR-dependent cytoprotective autophagy, impairs lysosomal biogenesis and maturation, and induces accumulation of autophagosomes. Moreover, DSTYK inhibition severely affects mitochondrial fitness. We demonstrate in vivo that inhibition of DSTYK sensitizes lung cancer cells to TNF-α-mediated CD8+-killing and immune-resistant lung tumors to anti-PD-1 treatment. Finally, in a series of lung cancer patients, DSTYK copy number gain predicts lack of response to the immunotherapy. In summary, we have uncovered DSTYK as new therapeutic target in lung cancer. Prioritization of this novel target for drug development and clinical testing may expand the percentage of NSCLC patients benefiting from immune-based treatments.
Collapse
Affiliation(s)
- Karmele Valencia
- Program in Solid Tumors, Center for Applied Medical Research (CIMA)-University of Navarra, Pamplona, Spain.,Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Navarra Health Research Institute (IDISNA), Pamplona, Spain.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Mirari Echepare
- Program in Solid Tumors, Center for Applied Medical Research (CIMA)-University of Navarra, Pamplona, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain.,Navarra Health Research Institute (IDISNA), Pamplona, Spain
| | - Álvaro Teijeira
- Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Navarra Health Research Institute (IDISNA), Pamplona, Spain.,Program of Immunology and Immunotherapy, CIMA-University of Navarra, Pamplona, Spain
| | - Andrea Pasquier
- Program in Solid Tumors, Center for Applied Medical Research (CIMA)-University of Navarra, Pamplona, Spain.,Navarra Health Research Institute (IDISNA), Pamplona, Spain
| | - Cristina Bértolo
- Program in Solid Tumors, Center for Applied Medical Research (CIMA)-University of Navarra, Pamplona, Spain
| | - Cristina Sainz
- Program in Solid Tumors, Center for Applied Medical Research (CIMA)-University of Navarra, Pamplona, Spain.,Navarra Health Research Institute (IDISNA), Pamplona, Spain
| | - Ibon Tamayo
- Navarra Health Research Institute (IDISNA), Pamplona, Spain.,Computational Biology program, CIMA-University of Navarra, Pamplona, Spain
| | - Beñat Picabea
- Program in Solid Tumors, Center for Applied Medical Research (CIMA)-University of Navarra, Pamplona, Spain
| | - Graziella Bosco
- Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany
| | - Roman Thomas
- Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany.,Department of Pathology, University Hospital Cologne, Cologne, Germany.,German Cancer Research Center, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Jackeline Agorreta
- Program in Solid Tumors, Center for Applied Medical Research (CIMA)-University of Navarra, Pamplona, Spain.,Department of Health Sciences, Biochemistry Area, Public University of Navarra, Pamplona, Spain
| | | | - Joan Frigola
- Thoracic Cancers Translational Genomics Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ramon Amat
- Thoracic Cancers Translational Genomics Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Alfonso Calvo
- Program in Solid Tumors, Center for Applied Medical Research (CIMA)-University of Navarra, Pamplona, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain.,Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Navarra Health Research Institute (IDISNA), Pamplona, Spain
| | - Enriqueta Felip
- Thoracic Cancers Translational Genomics Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Oncology Department, Hospital Universitari Vall d'Hebron and Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ignacio Melero
- Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Navarra Health Research Institute (IDISNA), Pamplona, Spain.,Department of Oncology, Clinica Universidad de Navarra, Pamplona, Spain
| | - Luis M Montuenga
- Program in Solid Tumors, Center for Applied Medical Research (CIMA)-University of Navarra, Pamplona, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain.,Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Navarra Health Research Institute (IDISNA), Pamplona, Spain
| |
Collapse
|
10
|
Shao L, Zhu Y, Liao B, Wang G, Huang L, Yu L, Bai D. Effects of Curcumin-mediated photodynamic therapy on autophagy and Epithelial-mesenchymal transition of lung cancer cells. Photodiagnosis Photodyn Ther 2022; 38:102849. [PMID: 35390521 DOI: 10.1016/j.pdpdt.2022.102849] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND This study aimed to investigated whether Curcumin-mediated PDT suppress EMT in lung cancer cells, and explore the roles of autophagy in the process of regulating EMT. METHODS Lung cancer cell viability was assessed by CCK-8 assay. The expression of epithelial marker and mesenchymal markers, the conversion of LC3-I to LC3-II and the levels of p62 and beclin1 in A549 and SPCA1 cells were measured by Western blotting assay. The Wound healing and Transwell assays were used to detect the migration and invasion abilities of the A549 and SPCA1 cells. Autophagosome formation was detected via observing the colocalization of Lamp-2 with LC3 in A549 cells, and the autophagy ultrastructure was observed by TEM. RESULTS Curcumin-PDT inhibited EMT, migration and invasion and induced autophagy in lung cancer cells. Curcumin-PDT induced autophagy was involved in the process of PDT inhibiting EMT, but it presented a promoting effect of EMT in lung cancer cells. Curcumin-PDT combined with CQ further inhibited EMT, invasion and migration of lung cancer cells. CONCLUSIONS The role of PDT-induced autophagy in the regulation of EMT was determined to be a promoting effect in lung cancer. Therefore, Curcumin-mediated PDT combined with autophagy inhibitor further suppressed EMT of lung cancer cells, and may represent a potential strategy against invasion and migration of lung cancer.
Collapse
Affiliation(s)
- Lan Shao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Ying Zhu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Bo Liao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Gailan Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Liyi Huang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Lehua Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Dingqun Bai
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
11
|
Mesenchymal Stem Cells and their Derived Exosomes Promote Malignant Phenotype of Polyploid Non-Small-Cell Lung Cancer Cells through AMPK Signaling Pathway. Anal Cell Pathol 2022; 2022:8708202. [PMID: 35419253 PMCID: PMC9001126 DOI: 10.1155/2022/8708202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/20/2022] Open
Abstract
Chemotherapy is an important method for the treatment of non-small-cell lung cancer (NSCLC), but it can lead to side effects and polyploid cancer cells. The polyploid cancer cells can live and generate daughter cancer cells via budding. Mesenchymal stem cells (MSCs) are pluripotent stem cells with repair and regeneration functions and can resist tissue damage caused by tumor therapy. This study is aimed at investigating the effects of MSCs and their derived exosomes on the biological characteristics of polyploid NSCLC cells and the potential mechanisms. We found that MSC conditioned medium (CM), MSCs, and MSC-exosomes had no effect on cell proliferation of the polyploid A549 and H1299 cells. Compared with the control group, MSCs and MSC-exosomes significantly promoted epithelial mesenchymal transformation, cell migration, antiapoptosis, and autophagy in the polyploid A549 and H1299 by activating AMPK signaling pathway, but no significant changes were observed in MSC-CM treatment. These results revealed that MSCs and MSC-exosomes promoted malignant phenotype of polyploid NSCLC cells through the AMPK signaling pathway.
Collapse
|
12
|
Tumor Cell Glycolysis—At the Crossroad of Epithelial–Mesenchymal Transition and Autophagy. Cells 2022; 11:cells11061041. [PMID: 35326492 PMCID: PMC8947107 DOI: 10.3390/cells11061041] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/10/2022] Open
Abstract
Upregulation of glycolysis, induction of epithelial–mesenchymal transition (EMT) and macroautophagy (hereafter autophagy), are phenotypic changes that occur in tumor cells, in response to similar stimuli, either tumor cell-autonomous or from the tumor microenvironment. Available evidence, herein reviewed, suggests that glycolysis can play a causative role in the induction of EMT and autophagy in tumor cells. Thus, glycolysis has been shown to induce EMT and either induce or inhibit autophagy. Glycolysis-induced autophagy occurs both in the presence (glucose starvation) or absence (glucose sufficiency) of metabolic stress. In order to explain these, in part, contradictory experimental observations, we propose that in the presence of stimuli, tumor cells respond by upregulating glycolysis, which will then induce EMT and inhibit autophagy. In the presence of stimuli and glucose starvation, upregulated glycolysis leads to adenosine monophosphate-activated protein kinase (AMPK) activation and autophagy induction. In the presence of stimuli and glucose sufficiency, upregulated glycolytic enzymes (e.g., aldolase or glyceraldehyde 3-phosphate dehydrogenase) or decreased levels of glycolytic metabolites (e.g., dihydroxyacetone phosphate) may mimic a situation of metabolic stress (herein referred to as “pseudostarvation”), leading, directly or indirectly, to AMPK activation and autophagy induction. We also discuss possible mechanisms, whereby glycolysis can induce a mixed mesenchymal/autophagic phenotype in tumor cells. Subsequently, we address unresolved problems in this field and possible therapeutic consequences.
Collapse
|
13
|
Xu Z, Gao H, Zhang Y, Feng W, Miao Y, Xu Z, Li W, Chen F, Lv Z, Huo J, Liu W, Shen X, Zong Y, Zhao J, Lu A. CCL7 and TGF-β secreted by MSCs play opposite roles in regulating CRC metastasis in a KLF5/CXCL5 dependent manner. Mol Ther 2022; 30:2327-2341. [DOI: 10.1016/j.ymthe.2022.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/12/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022] Open
|
14
|
Rosner M, Hengstschläger M. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:26-34. [PMID: 35641164 PMCID: PMC8895487 DOI: 10.1093/stcltm/szab003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/12/2021] [Indexed: 12/03/2022] Open
Abstract
It is the hope of clinicians and patients alike that stem cell-based therapeutic products will increasingly become applicable remedies for many diseases and injuries. Whereas some multipotent stem cells are already routinely used in regenerative medicine, the efficacious and safe clinical translation of pluripotent stem cells is still hampered by their inherent immunogenicity and tumorigenicity. In addition, stem cells harbor the paracrine potential to affect the behavior of cells in their microenvironment. On the one hand, this property can mediate advantageous supportive effects on the overall therapeutic concept. However, in the last years, it became evident that both, multipotent and pluripotent stem cells, are capable of inducing adjacent cells to become motile. Not only in the context of tumor development but generally, deregulated mobilization and uncontrolled navigation of patient’s cells can have deleterious consequences for the therapeutic outcome. A more comprehensive understanding of this ubiquitous stem cell feature could allow its proper clinical handling and could thereby constitute an important building block for the further development of safe therapies.
Collapse
Affiliation(s)
- Margit Rosner
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
- Corresponding author: Markus Hengstschläger, PhD, Professor, Institute of Medical Genetics, Medical University of Vienna, Währinger Strasse 10, 1090 Vienna, Austria. Tel: +43 1 40160 56500; Fax: +43 1 40160 956501;
| |
Collapse
|
15
|
Garg M. Epithelial Plasticity, Autophagy and Metastasis: Potential Modifiers of the Crosstalk to Overcome Therapeutic Resistance. Stem Cell Rev Rep 2021; 16:503-510. [PMID: 32125607 DOI: 10.1007/s12015-019-09945-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) initiates malignant transformation of cancer cells and is responsible for the generation of heterogenic subsets of cancer stem cells (CSCs). Signals in the form of environmental cues and paracrine factors within tumor microenvironment (TME) niche, support the possibility of generation of pool of CSCs with two distinct functional transition states. Cyclic CSCs with predominant epithelial phenotype, self-renew and differentiate into mature cancer cells. Subsets of autophagic/ non-cyclic CSCs with predominant mesenchymal phenotype have capacity to invade, metastasize, resist to apoptosis, escape immunosurveillance, survive chemotherapies and are majorly responsible for cancer mortality. Differences in phenotypic plasticity may form the basis of differential impact of therapeutic outcomes on heterogeneous subpopulations of CSCs. Activation of autophagy is responsible for the recycling of damaged organelles and protein aggregates, regulates EMT, confers the survival advantage to neoplastic cells to anti-cancer therapies, significantly affects the invasive potential of cancer cells and supports their metastatic dissemination in a tissue and tumor stage dependent manner. Therapy resistance is the primary obstacle in the complete ablation of tumor cells. Combinational treatments based on targeting autophagic CSCs and inhibiting EMT regulators may represent potential anticancer strategies for the prevention of cancer invasion, metastatic spread and disease relapse.
Collapse
Affiliation(s)
- Minal Garg
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, India.
| |
Collapse
|
16
|
Suo F, Pan M, Li Y, Yan Q, Hu H, Hou L. Mesenchymal Stem Cells Cultured in 3D System Inhibit Non-Small Cell Lung Cancer Cells through p38 MAPK and CXCR4/AKT Pathways by IL-24 Regulating. Mol Biol 2021. [DOI: 10.1134/s0026893321030110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Wang W, Lei W, Jiang L, Gao S, Hu S, Zhao ZG, Niu CY, Zhao ZA. Therapeutic mechanisms of mesenchymal stem cells in acute respiratory distress syndrome reveal potentials for Covid-19 treatment. J Transl Med 2021; 19:198. [PMID: 33971907 PMCID: PMC8107778 DOI: 10.1186/s12967-021-02862-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
The mortality rate of critically ill patients with acute respiratory distress syndrome (ARDS) is 30.9% to 46.1%. The emergence of the coronavirus disease 2019 (Covid-19) has become a global issue with raising dire concerns. Patients with severe Covid-19 may progress toward ARDS. Mesenchymal stem cells (MSCs) can be derived from bone marrow, umbilical cord, adipose tissue and so on. The easy accessibility and low immunogenicity enable MSCs for allogeneic administration, and thus they were widely used in animal and clinical studies. Accumulating evidence suggests that mesenchymal stem cell infusion can ameliorate ARDS. However, the underlying mechanisms of MSCs need to be discussed. Recent studies showed MSCs can modulate immune/inflammatory cells, attenuate endoplasmic reticulum stress, and inhibit pulmonary fibrosis. The paracrine cytokines and exosomes may account for these beneficial effects. In this review, we summarize the therapeutic mechanisms of MSCs in ARDS, analyzed the most recent animal experiments and Covid-19 clinical trial results, discussed the adverse effects and prospects in the recent studies, and highlight the potential roles of MSC therapy for Covid-19 patients with ARDS.
Collapse
Affiliation(s)
- Wendi Wang
- Institute of Microcirculation, Hebei North University, 11 Diamond South-road, Keji Building, Room 213, Zhangjiakou, 075000, Hebei, China.,Department of Pathophysiology of Basic Medical College, Hebei North University, Zhangjiakou, 075000, Hebei, China.,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, 050017, Hebei, China.,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, 075000, Hebei, China.,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Lina Jiang
- Institute of Microcirculation, Hebei North University, 11 Diamond South-road, Keji Building, Room 213, Zhangjiakou, 075000, Hebei, China.,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, 050017, Hebei, China.,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, 075000, Hebei, China
| | - Siqi Gao
- Institute of Microcirculation, Hebei North University, 11 Diamond South-road, Keji Building, Room 213, Zhangjiakou, 075000, Hebei, China.,Department of Pathophysiology of Basic Medical College, Hebei North University, Zhangjiakou, 075000, Hebei, China.,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, 050017, Hebei, China.,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, 075000, Hebei, China.,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Zi-Gang Zhao
- Institute of Microcirculation, Hebei North University, 11 Diamond South-road, Keji Building, Room 213, Zhangjiakou, 075000, Hebei, China. .,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, 050017, Hebei, China. .,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, 075000, Hebei, China. .,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, 075000, Hebei, China.
| | - Chun-Yu Niu
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, 050017, Hebei, China. .,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, 075000, Hebei, China. .,Basic Medical College, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Zhen-Ao Zhao
- Institute of Microcirculation, Hebei North University, 11 Diamond South-road, Keji Building, Room 213, Zhangjiakou, 075000, Hebei, China. .,Department of Pathophysiology of Basic Medical College, Hebei North University, Zhangjiakou, 075000, Hebei, China. .,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, 050017, Hebei, China. .,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, 075000, Hebei, China. .,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, 075000, Hebei, China.
| |
Collapse
|
18
|
Du Q, Ye X, Lu SR, Li H, Liu HY, Zhai Q, Yu B. Exosomal miR-30a and miR-222 derived from colon cancer mesenchymal stem cells promote the tumorigenicity of colon cancer through targeting MIA3. J Gastrointest Oncol 2021; 12:52-68. [PMID: 33708424 DOI: 10.21037/jgo-20-513] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Multipotent mesenchymal stem cells (MSCs) derived from virus tumors have been reported to contribute to malignant cell growth, invasion, and metastasis. However, the mechanism of communication between MSCs and colon cancer cells is poorly understood. Recent studies have suggested that exosomes are an important player in crosstalk between cells and could significantly suppress the invasion ability of human cancer cells (hCCs) when transfected with a microRNA inhibitor. However, to date, no study has illuminated the miRNA changes in exosomes derived from hCC-MSCs. Methods Colon cancer stem cells were cultured in medium and passaged to develop fibroblast-like morphology. Exosomes were collected using ExoQuick precipitation and exosome morphology was visualized by transmission electron microscopy. Small RNA sequencing was analyzed using an Illumina HiSeq4000 analyzer, and the expression of MIA3 was assessed by real-time PCR and Western blot. The functional roles of miR-30a and miR-222 in colon cancer cells were evaluated through cell and animal experiments. Results Our results showed that the characteristics of MSC-like cells (hCC-MSCs) derived from human colon cancer stem cells were comparable to those of bone marrow-derived MSCs, including surface antigens and the ability to multi-differentiate to osteocytes and adipocytes. Furthermore, we screened the microRNA (miRNA) profiles of exosomes derived from hCC-MSCs and the corresponding parent hCC-MSCs. We found a significant enrichment in the miR-30a and miR-222 level in hCC-MSC-derived exosomes. Furthermore, in vitro and in vivo experiments demonstrated that miR-30a and miR-222 bound to their shared downstream target, MIA3, to promote the ability of colon cells to proliferate, migrate, and metastasize, thus evidencing their functional roles as oncogenic miRNAs. Conclusions These data suggest that hCC-MSC-secreted exosomes promote colon cancer cell proliferation and metastasis through delivering miR-30a and miR-222. Subsequently, exosomal miR-30a and miR-222 simultaneously target MIA3, suppress its expression, and promote colon cell proliferation, migration, and metastasis.
Collapse
Affiliation(s)
- Qiong Du
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xuan Ye
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sheng-Rong Lu
- Department of Pharmacy, The Central Hospital of Min-Hang District, Shanghai, China
| | - Huan Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong-Yue Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qing Zhai
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Pharmacy, The Central Hospital of Min-Hang District, Shanghai, China.,Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Yu
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Zhang Q, Yang L, Guan G, Cheng P, Cheng W, Wu A. LOXL2 Upregulation in Gliomas Drives Tumorigenicity by Activating Autophagy to Promote TMZ Resistance and Trigger EMT. Front Oncol 2020; 10:569584. [PMID: 33194658 PMCID: PMC7658417 DOI: 10.3389/fonc.2020.569584] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/05/2020] [Indexed: 12/27/2022] Open
Abstract
Glioma is the most prevalent primary brain tumor in adults and has an extremely unfavorable prognosis. As a member of the lysyl oxidase (LOX) family, lysyl-oxidase-like-2 (LOXL2) is known to play different roles in different tumors. However, the role of LOXL2 in glioma has not yet been fully elucidated. In the present study, we detected that LOXL2 was considerably upregulated in glioma and that LOXL2 upregulation was evidently related to glioma WHO grade, malignant molecular subtypes, and poor prognosis in glioma patients. Additionally, we found that LOXL2 not only promoted glioma cells proliferation, migration, invasion, and induced the epithelial-to-mesenchymal transition (EMT) process, but also reduced the sensitivity of glioma cells to temozolomide (TMZ). Furthermore, we identified that LOXL2 reduced TMZ sensitivity and induced EMT in glioma via the activation of autophagy. Mechanistically, LOXL2 enhanced Atg7 expression by promoting the phosphorylation of Erk1/2, leading to the activation of autophagy and regulation of EMT process and TMZ sensitivity through autophagy. Our study describes an LOXL2-Erk1/2-Atg7 signaling axis that influences glioma EMT and chemosensitivity through autophagy; moreover, LOXL2 may serve as a promising therapeutic target in the treatment of glioma.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Lianhe Yang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Gefei Guan
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Peng Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Wen Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Anhua Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
20
|
Comparing Migratory and Mechanical Properties of Human Bone Marrow-Derived Mesenchymal Stem Cells with Colon Cancer Cells In Vitro. J Gastrointest Cancer 2020; 52:882-891. [PMID: 32816148 DOI: 10.1007/s12029-020-00476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Colon cancer cells can migrate and metastasize by undergoing epithelial-to-mesenchymal transition (EMT). Mesenchymal stem cells (MSCs) are non-cancerous, multipotent adult stem cells, which can also migrate. In this study, we wanted to compare the biological, physical, and functional properties of these migratory cells. MATERIALS AND METHODS HT-29 and HCT-116, two human colon carcinoma cell lines, represent less aggressive and more aggressive cancer cells, respectively. MSCs were isolated from human bone marrow. After confirming the identity of all the cell types, they were evaluated for E-cadherin, β1-integrin, Vimentin, ZEB-1, β-catenin, and 18S rRNA using Q-PCR. MMP-2 and MMP-9 activity were evaluated using gelatin zymography. Functional tests like wound healing assay, migration assay, and invasion assay were also done. Biomechanical properties like cell stiffness and non-specific adhesion (between indenter probe and cell membrane) were evaluated through nanoindentation using atomic force microscopy (AFM). RESULTS Expression of EMT and stem cell markers showed typical expression patterns for HT-29, HCT-116, and MSCs. Functional tests showed that MSCs migrated faster than malignant cells. MMP-2 and MMP-9 activity reinforced this behavior. Interestingly, the migration/invasion capacity of MSCs was comparable to aggressive HCT-116, and more than HT-29. MSCs also showed the maximum cell stiffness and non-specific cell-probe adhesions, followed by HCT116 and HT29 cells. CONCLUSIONS Our findings indicate that the migratory properties of MSCs is comparable or even greater than that of cancer cells and despite their high migration potential, they also have the maximum stiffness.
Collapse
|
21
|
Li M, Jiang T, Zhang W, Xie W, Guo T, Tang X, Zhang J. Human umbilical cord MSC-derived hepatocyte growth factor enhances autophagy in AOPP-treated HK-2 cells. Exp Ther Med 2020; 20:2765-2773. [PMID: 32765771 PMCID: PMC7401891 DOI: 10.3892/etm.2020.8998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 05/15/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation may serve as an important treatment modality in chronic kidney disease (CKD); however, the underlying mechanisms remain unclear. Advanced oxidation protein products (AOPP) have been demonstrated to induce renal tubular epithelial cell (RTEC) injury via autophagy inhibition. Therefore, the present study was performed to investigate the role of human umbilical cord-derived MSCs (hUC-MSCs) in RTEC autophagy. AOPP-treated HK-2 cells were co-cultured with hUC-MSCs or treated with recombinant humanized hepatocyte growth factor (HGF). Western blotting was used to detect the levels of autophagy-and PI3K/AKT/mTOR signaling pathway-related proteins, and immunofluorescence staining was used to detect the levels of autophagy-related proteins. The HGF protein levels in HK-2 cells and the hUC-MSC co-culture system were measured. The cells were subsequently treated with tivantinib, an HGF competitive inhibitor, and the levels of autophagy-related proteins were detected. Microtubule-associated protein 1 light chain 3B (LC3B) II/LC3B I (LC3II/LC3I) and beclin 1 protein levels were increased, while p62, PI3K, phosphorylated (p)-AKT and the p-mTOR protein levels were decreased in AOPP-treated HK-2 cells co-cultured with hUC-MSC, compared with the group treated with AOPP only. Furthermore, HGF expression was increased in AOPP-treated HK-2 cells co-cultured with hUC-MSC, compared with the group treated with AOPP alone. When HGF activity was inhibited using tivantinib, these effects on LC3II/LC3I, beclin 1, p62, PI3K, p-AKT, and p-mTOR expression were partially reversed. Furthermore, the effects of tivantinib were reversed by Ly294002. In conclusion, the present study revealed that hUC-MSCs partially reversed AOPP-mediated inhibition of autophagy in HK-2 cells via secretion of HGF, indicating that hUC-MSCs may serve as a potential therapy for preventing the progression of CKD.
Collapse
Affiliation(s)
- Minhui Li
- Blood Purification Center, Nanhai Hospital of Southern Medical University, Foshan, Guangdong 528244, P.R. China
| | - Tingting Jiang
- Department of Nephrology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Wenying Zhang
- Department of Nephrology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Wei Xie
- Department of Nephrology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Tingting Guo
- Department of Nephrology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Xun Tang
- Department of Nephrology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Jun Zhang
- Department of Nephrology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|
22
|
Yin Y, Shelke GV, Lässer C, Brismar H, Lötvall J. Extracellular vesicles from mast cells induce mesenchymal transition in airway epithelial cells. Respir Res 2020; 21:101. [PMID: 32357878 PMCID: PMC7193353 DOI: 10.1186/s12931-020-01346-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
Background In the airways, mast cells are present in close vicinity to epithelial cells, and they can interact with each other via multiple factors, including extracellular vesicles (EVs). Mast cell-derived EVs have a large repertoire of cargos, including proteins and RNA, as well as surface DNA. In this study, we hypothesized that these EVs can induce epithelial to mesenchymal transition (EMT) in airway epithelial cells. Methods In this in-vitro study we systematically determined the effects of mast cell-derived EVs on epithelial A549 cells. We determined the changes that are induced by EVs on A549 cells at both the RNA and protein levels. Moreover, we also analyzed the rapid changes in phosphorylation events in EV-recipient A549 cells using a phosphorylated protein microarray. Some of the phosphorylation-associated events associated with EMT were validated using immunoblotting. Results Morphological and transcript analysis of epithelial A549 cells indicated that an EMT-like phenotype was induced by the EVs. Transcript analysis indicated the upregulation of genes involved in EMT, including TWIST1, MMP9, TGFB1, and BMP-7. This was accompanied by downregulation of proteins such as E-cadherin and upregulation of Slug-Snail and matrix metalloproteinases. Additionally, our phosphorylated-protein microarray analysis revealed proteins associated with the EMT cascade that were upregulated after EV treatment. We also found that transforming growth factor beta-1, a well-known EMT inducer, is associated with EVs and mediates the EMT cascade induced in the A549 cells. Conclusion Mast cell-derived EVs mediate the induction of EMT in epithelial cells, and our evidence suggests that this is triggered through the induction of protein phosphorylation cascades.
Collapse
Affiliation(s)
- Yanan Yin
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University, School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Ganesh Vilas Shelke
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. .,The Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden. .,Department of Surgery, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Cecilia Lässer
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hjalmar Brismar
- Science for Life Laboratory, Dept. of Applied Physics, Royal Institute of Technology, PO Box 1031, 17121, Solna, Sweden
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
23
|
Zakaria N, Yahaya BH. Adipose-Derived Mesenchymal Stem Cells Promote Growth and Migration of Lung Adenocarcinoma Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1292:83-95. [PMID: 31916234 DOI: 10.1007/5584_2019_464] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) have been used in cancer therapy as vehicles to deliver therapeutic materials such as drugs, apoptosis inducers and cytokines due to their ability to migrate and home at the tumour site. Furthermore, MSCs have been genetically engineered to produce anticancer molecules such as TRAIL that can induce apoptosis of cancer cells. However, MSCs' presence in the tumour microenvironment has shown to be involved in promoting tumour growth and progression. Therefore, the roles of MSCs either promoting or suppressing tumorigenesis need to be investigated. METHODS Human adipose-derived MSCs (Ad-MSCs) and A549 cells are co-cultured together in indirect co-culture system using Transwell insert. Following co-culture, both cells were analysed in terms of growth rate, migration ability, apoptosis and gene expression for genes involved in migration and stemness characteristics. RESULTS The result shows that Ad-MSCs promoted the growth of A549 cells when indirectly co-cultured for 48 and 72 h. Furthermore, Ad-MSCs significantly enhanced the migration rate of A549 cells. The increased in migration rate was in parallel with the significant increase of MMP9. There are no significant changes observed in the expression of TWIST2, CDH2 and CDH1, genes involved in the epithelial-to-mesenchymal transition (EMT). Ad-MSCs also protect A549 cancer cells from undergoing apoptosis and increase the survival of cancer cells. CONCLUSION Secretion of soluble factors from Ad-MSCs has been shown to promote the growth and metastatic characteristics of A549 cancer cells. Therefore, the use of Ad-MSCs in cancer therapy needs to be carefully evaluated in the long-term aspect.
Collapse
Affiliation(s)
- Norashikin Zakaria
- Regenerative Medicine Cluster, Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Badrul Hisham Yahaya
- Regenerative Medicine Cluster, Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia.
| |
Collapse
|
24
|
Guo H, Ha C, Dong H, Yang Z, Ma Y, Ding Y. Cancer-associated fibroblast-derived exosomal microRNA-98-5p promotes cisplatin resistance in ovarian cancer by targeting CDKN1A. Cancer Cell Int 2019; 19:347. [PMID: 31889899 PMCID: PMC6925473 DOI: 10.1186/s12935-019-1051-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/27/2019] [Indexed: 12/21/2022] Open
Abstract
Background Ovarian cancer (OC) is a gynecological malignancy with a high mortality. Cisplatin-based treatment is the typical treatment regimen for OC patients; however, it may cause unfavorable resistance. The current study intends to explore the function of cancer-associated fibroblast (CAF)-derived exosomal microRNA-98-5p (miR-98-5p) in cisplatin resistance in OC, and the participation of CDKN1A. Methods Bioinformatics analysis was employed in order to obtain cisplatin resistance-related differential genes in OC as well as possible upstream regulatory miRs. After gain- and loss-of-function assays in OC cells, RT-qPCR and western blot analysis were employed to measure CDKN1A and miR-98-5p expression. Dual luciferase reporter assay was applied to verify the targeting relationship between miR-98-5p and CDKN1A. CAFs were treated with miR-98-5p inhibitor, and then exosomes were isolated and co-cultured with OC cells. CCK-8, colony formation and flow cytometry assays were conducted to assess cell proliferation, cell colony formation, cell cycle distribution and cell apoptosis, respectively. At last, xenograft tumor in nude mice was carried out to test whether exosomal miR-98-5p could affect cisplatin resistance in OC in vivo. Results CDKN1A was highly expressed in cisplatin-sensitive OC cell lines, and silencing CDKN1A significantly promoted proliferation and cell cycle entry but decreased apoptosis in cisplatin-sensitive OC cells. miR-98-5p targeted CDKN1A to inhibit CDKN1A expression. CAF-derived exosomal miR-98-5p increased OC cell proliferation and cell cycle entry, but suppressed cell apoptosis. Furthermore, exosomal miR-98-5p promoted cisplatin resistance and downregulated CDKN1A in nude mice. Conclusion Collectively, CAF-derived exosomes carrying overexpressed miR-98-5p promote cisplatin resistance in OC by downregulating CDKN1A.
Collapse
Affiliation(s)
- Hua Guo
- 1Department of Gynecology, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, 750004 Ningxia Hui Autonomous Region People's Republic of China
| | - Chunfang Ha
- 1Department of Gynecology, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, 750004 Ningxia Hui Autonomous Region People's Republic of China
| | - Hui Dong
- 2Scientific Research Equipment Management Center, General Hospital of Ningxia Medical University, Yinchuan, 750004 People's Republic of China
| | - Zhijuan Yang
- 1Department of Gynecology, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, 750004 Ningxia Hui Autonomous Region People's Republic of China
| | - Yuan Ma
- 1Department of Gynecology, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, 750004 Ningxia Hui Autonomous Region People's Republic of China
| | - Yonghui Ding
- 1Department of Gynecology, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, 750004 Ningxia Hui Autonomous Region People's Republic of China
| |
Collapse
|
25
|
Cortes-Dericks L, Galetta D. The therapeutic potential of mesenchymal stem cells in lung cancer: benefits, risks and challenges. Cell Oncol (Dordr) 2019; 42:727-738. [PMID: 31254169 DOI: 10.1007/s13402-019-00459-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Lung cancer is one of the most challenging diseases to treat. In the past decades standard therapy including surgery, chemo- and radiation therapy, alone or in combination has not changed the high mortality rate and poor prognosis. In recent years, mesenchymal stem cells (MSCs) have emerged as putative therapeutic tools due to their intrinsic tumor tropism, anti-tumor and immunoregulatory properties. MSCs release biomolecules that are thought to exert the same beneficial effects as their cellular counterparts and, as such, they may offer practical possibilities of using MSC-secreted products. Owing to their innate affinity to home to tumor sites, MSCs have also gained interest as selective vehicles for the delivery of anti-cancer agents. However, MSCs are also known to confer pro-oncogenic effects, rendering them into double-sword weapons against neoplastic diseases. CONCLUSIONS Here, we present published data on the cell- and secretome-based therapeutic competences of MSCs, as well as on their potential as engineered delivery vectors for the treatment of lung cancer. Despite the controversial role of MSCs in the context of lung cancer therapy, current findings support hopeful perspectives to harness the potential of MSC-based regimens that may augment current treatment modalities in lung cancer.
Collapse
Affiliation(s)
| | - Domenico Galetta
- Division of Thoracic Surgery, European Institute of Oncology, Milan, Italy
| |
Collapse
|
26
|
Zhang YM, Liu YQ, Liu D, Zhang L, Qin J, Zhang Z, Su Y, Yan C, Luo YL, Li J, Xie X, Guan Q. The Effects of Astragalus Polysaccharide on Bone Marrow-Derived Mesenchymal Stem Cell Proliferation and Morphology Induced by A549 Lung Cancer Cells. Med Sci Monit 2019; 25:4110-4121. [PMID: 31154455 PMCID: PMC6561146 DOI: 10.12659/msm.914219] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/31/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The tumor microenvironment in lung cancer plays an important role in tumor progression and metastasis. Bone marrow-derived mesenchymal stem cells (MSCs) co-cultured with A549 lung cancer cells show changes in morphology, increase cell proliferation, and cell migration. This study aimed to investigate the effects of Astragalus polysaccharide (APS), a traditional Chinese herbal medicine, on the changes induced in bone marrow-derived MSCs by A549 lung cancer cells in vitro. MATERIAL AND METHODS Bone marrow-derived MSCs were co-cultured with A549 cells (Co-BMSCs). Co-cultured bone marrow-derived MSCs and A549 cells treated with 50 μg/ml of APS (Co-BMSCs + APS) were compared with untreated Co-BMSCs. Cell proliferation was measured using the cell counting kit-8 (CCK-8) assay. Flow cytometry evaluated the cell cycle. Microarray assays for mRNA expression and Western blot for protein expression were used. RESULTS Compared with untreated Co-BMSCs, APS treatment of Co-BMSCs improved cell morphology, reduced cell proliferation, and inhibited cell cycle arrest. The mitogen-activated protein kinase (MAPK)/nuclear factor-kappa B (NF-kappaB) pathway, TP53, caspase-3, acetylated H4K5, acetylated H4K8, and acetylated H3K9 were involved in the regulatory process. CONCLUSIONS APS treatment reduced cell proliferation and morphological changes in bone marrow-derived MSCs that were co-cultured with A549 lung cancer cells in vitro.
Collapse
Affiliation(s)
- Yue-Mei Zhang
- Department of Oncology, First Hospital of Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Yong-Qi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Lanzhou, Gansu, P.R. China
- Key Laboratory of Dunhuang Medical and Transformation, Ministry of Education of The People’s Republic of China, Lanzhou, Gansu, P.R. China
| | - Dongling Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Lanzhou, Gansu, P.R. China
| | - Liying Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Lanzhou, Gansu, P.R. China
| | - Jie Qin
- Department of Oncology, First Hospital of Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Zhiming Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Lanzhou, Gansu, P.R. China
| | - Yun Su
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Lanzhou, Gansu, P.R. China
| | - Chunlu Yan
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Lanzhou, Gansu, P.R. China
| | - Ya-Li Luo
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Lanzhou, Gansu, P.R. China
| | - Jintian Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Lanzhou, Gansu, P.R. China
- Key Laboratory of Dunhuang Medical and Transformation, Ministry of Education of The People’s Republic of China, Lanzhou, Gansu, P.R. China
| | - Xiaodong Xie
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Quanlin Guan
- Department of Oncology, First Hospital of Lanzhou University, Lanzhou, Gansu, P.R. China
| |
Collapse
|
27
|
Devlin JR, Verschuren EW. More than a Tumor Suppressor: E-Cadherin Loss Drives Lung Cancer Metastasis. Am J Respir Cell Mol Biol 2019; 59:141-142. [PMID: 29688752 DOI: 10.1165/rcmb.2018-0063ed] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jennifer R Devlin
- 1 Institute for Molecular Medicine Finland (FIMM) University of Helsinki Helsinki, Finland and.,2 Division of Cancer Research Peter MacCallum Cancer Centre Parkville, Australia
| | - Emmy W Verschuren
- 1 Institute for Molecular Medicine Finland (FIMM) University of Helsinki Helsinki, Finland and
| |
Collapse
|
28
|
Colella B, Faienza F, Di Bartolomeo S. EMT Regulation by Autophagy: A New Perspective in Glioblastoma Biology. Cancers (Basel) 2019; 11:cancers11030312. [PMID: 30845654 PMCID: PMC6468412 DOI: 10.3390/cancers11030312] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/19/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) and its reverse process MET naturally occur during development and in tissue repair in vertebrates. EMT is also recognized as the crucial event by which cancer cells acquire an invasive phenotype through the activation of specific transcription factors and signalling pathways. Even though glial cells have a mesenchymal phenotype, an EMT-like process tends to exacerbate it during gliomagenesis and progression to more aggressive stages of the disease. Autophagy is an evolutionary conserved degradative process that cells use in order to maintain a proper homeostasis, and defects in autophagy have been associated to several pathologies including cancer. Besides modulating cell resistance or sensitivity to therapy, autophagy also affects the migration and invasion capabilities of tumor cells. Despite this evidence, few papers are present in literature about the involvement of autophagy in EMT-like processes in glioblastoma (GBM) so far. This review summarizes the current understanding of the interplay between autophagy and EMT in cancer, with special regard to GBM model. As the invasive behaviour is a hallmark of GBM aggressiveness, defining a new link between autophagy and EMT can open a novel scenario for targeting these processes in future therapeutical approaches.
Collapse
Affiliation(s)
- Barbara Colella
- Department of Biosciences and Territory, University of Molise, 86090 Pesche (IS), Italy.
| | - Fiorella Faienza
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Sabrina Di Bartolomeo
- Department of Biosciences and Territory, University of Molise, 86090 Pesche (IS), Italy.
| |
Collapse
|
29
|
Zhang X, Li Z, Xuan Z, Xu P, Wang W, Chen Z, Wang S, Sun G, Xu J, Xu Z. Novel role of miR-133a-3p in repressing gastric cancer growth and metastasis via blocking autophagy-mediated glutaminolysis. J Exp Clin Cancer Res 2018; 37:320. [PMID: 30572959 PMCID: PMC6302516 DOI: 10.1186/s13046-018-0993-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/04/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Autophagy plays a crucial role in sustaining the homeostasis in various malignant diseases. It has also been reported to promote tumor development in multiple cancers. Glutaminolysis instead of Warburg Effect produce adequate ATP and provide nitrogen and carbon to replenish the TCA cycle which has been discovered to be a new energy source for tumor cells recently. By means of degrading intracellular particles including amino acids, nucleotides, fatty acids, sugars and aged organisms, autophagy can recycle the aforementioned particles into bioenergetics and biosynthesis pathways, finally favoring tumor cells. MicroRNA is a kind of noncoding RNA that regulates the targeting gene expression mostly at post-transcription level. Among these miRNAs, microRNA-133a-3p is reported to be a tumor suppressor in numerous cancers. METHODS We characterized the down-regulated expression level of microRNA-133a-3p in gastric cancer via TCGA database. Subsequently, we verified the tumor suppressor role of microRNA-133a-3p in gastric cancer cells through a series biological function assay. We used immunofluorescence and transmission electron microscope to observe the negative effect of microRNA-133a-3p on autophagy and used dual-luciferase report assay to identify the candidate gene GABARAPL1 of microRNA-133A-3p.Then we used high performance liquid phase mass spectrometry and seahorse analysis to detect whether miR-133a-3p could block the glutaminolysis metabolism through autophagy. At last, we confirmed the tumor suppressor role of microRNA-133a-3p in vivo on PDX mice model. RESULTS We demonstrated that microRNA-133a-3p overexpression could block the activation of autophagy to ruin the abnormal glutaminolysis and further inhibit the growth and metastasis of gastric cancer cells. We successfully proved gastric cancer cells can replenish glutaminolysis via autophagy and microRNA-133a-3p could block aforementioned pathway by targeting core autophagy participants GABARAPL1 and ATG13.We then verified the negative function of microRNA-133a-3p on autophagy-mediated glutaminolysis both in PDX model and human gastric cancer organoid model. CONCLUSIONS MicroRNA-133a-3p targets GABARAPL1 to block autophagy-mediated glutaminolysis, further repressing gastric cancer growth and metastasis.
Collapse
Affiliation(s)
- Xing Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou road, Nanjing, Jiangsu province China
| | - Zheng Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou road, Nanjing, Jiangsu province China
| | - Zhe Xuan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou road, Nanjing, Jiangsu province China
| | - Penghui Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou road, Nanjing, Jiangsu province China
| | - Weizhi Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou road, Nanjing, Jiangsu province China
| | - Zheng Chen
- Department of Surgical Oncology, University of Miami, Miami, USA
| | - Sen Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou road, Nanjing, Jiangsu province China
| | - Guangli Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou road, Nanjing, Jiangsu province China
| | - Jianghao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou road, Nanjing, Jiangsu province China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou road, Nanjing, Jiangsu province China
- Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 210029 Jiangsu Province China
| |
Collapse
|
30
|
Functional Role of Non-Coding RNAs during Epithelial-To-Mesenchymal Transition. Noncoding RNA 2018; 4:ncrna4020014. [PMID: 29843425 PMCID: PMC6027143 DOI: 10.3390/ncrna4020014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 01/17/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a key biological process involved in a multitude of developmental and pathological events. It is characterized by the progressive loss of cell-to-cell contacts and actin cytoskeletal rearrangements, leading to filopodia formation and the progressive up-regulation of a mesenchymal gene expression pattern enabling cell migration. Epithelial-to-mesenchymal transition is already observed in early embryonic stages such as gastrulation, when the epiblast undergoes an EMT process and therefore leads to the formation of the third embryonic layer, the mesoderm. Epithelial-to-mesenchymal transition is pivotal in multiple embryonic processes, such as for example during cardiovascular system development, as valve primordia are formed and the cardiac jelly is progressively invaded by endocardium-derived mesenchyme or as the external cardiac cell layer is established, i.e., the epicardium and cells detached migrate into the embryonic myocardial to form the cardiac fibrous skeleton and the coronary vasculature. Strikingly, the most important biological event in which EMT is pivotal is cancer development and metastasis. Over the last years, understanding of the transcriptional regulatory networks involved in EMT has greatly advanced. Several transcriptional factors such as Snail, Slug, Twist, Zeb1 and Zeb2 have been reported to play fundamental roles in EMT, leading in most cases to transcriptional repression of cell⁻cell interacting proteins such as ZO-1 and cadherins and activation of cytoskeletal markers such as vimentin. In recent years, a fundamental role for non-coding RNAs, particularly microRNAs and more recently long non-coding RNAs, has been identified in normal tissue development and homeostasis as well as in several oncogenic processes. In this study, we will provide a state-of-the-art review of the functional roles of non-coding RNAs, particularly microRNAs, in epithelial-to-mesenchymal transition in both developmental and pathological EMT.
Collapse
|