1
|
Lu SL, Noda T. The emerging role of Rab proteins in osteoclast organelle biogenesis and function. Biochem Soc Trans 2024; 52:2469-2475. [PMID: 39641593 DOI: 10.1042/bst20240519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Rab GTPase proteins have been extensively studied for their roles in regulating vesicle and organelle dynamics. Among the ∼60 subtypes in mammalian cells, several Rabs have been reported to play crucial roles in osteoclast biogenesis and function. In this review, we aim to provide an update on recently described Rab GTPases, Rab11, Rab32, Rab44, and Rab38, as well as Rab7, Rab3D and Rab27A in osteoclast formation and function.
Collapse
Affiliation(s)
- Shiou-Ling Lu
- Department of Oral Cellular Biology, Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Takeshi Noda
- Department of Oral Cellular Biology, Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Koyanagi Y, Sakai E, Yamaguchi Y, Farhana F, Taira Y, Okamoto K, Murata H, Tsukuba T. Dennd2c Negatively Controls Multinucleation and Differentiation in Osteoclasts by Regulating Actin Polymerization and Protrusion Formation. Int J Mol Sci 2024; 25:11479. [PMID: 39519032 PMCID: PMC11547113 DOI: 10.3390/ijms252111479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Osteoclasts are bone-resorbing multinucleated giant cells formed by the fusion of monocyte/macrophage lineages. Various small GTPases are involved in the multinucleation and differentiation of osteoclasts. However, the roles of small GTPases regulatory molecules in osteoclast differentiation remain unclear. In the present study, we examined the role of Dennd2c, a putative guanine nucleotide exchange factor for Rab GTPases, in osteoclast differentiation. Knockdown of Dennd2c promoted osteoclast differentiation, resorption, and expression of osteoclast markers. Morphologically, Dennd2c knockdown induced the formation of larger osteoclasts with several protrusions. In contrast, overexpression of Dennd2c inhibited the multinucleation and differentiation of osteoclasts, bone resorption, and the expression of osteoclast markers. Dennd2c-overexpressing macrophages exhibited spindle-shaped mononuclear cells and long thin protrusions. Treatment of Dennd2c-overexpressing cells with the Cdc42 inhibitor ML-141 or the Rac1 inhibitor 6-thio-GTP prevented protrusion formation. Moreover, treatment of Dennd2c-overexpressing cells with the actin polymerization inhibitor latrunculin B restored multinucleated and TRAP-positive osteoclast formation. These results indicate that Dennd2c negatively regulates osteoclast differentiation and multinucleation by modulating protrusion formation in macrophages.
Collapse
Affiliation(s)
- Yu Koyanagi
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (Y.K.); (E.S.); (Y.Y.); (F.F.)
- Division of Cariology and Restorative Dentistry, Department of Prosthetic Dentistry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (Y.T.); (H.M.)
| | - Eiko Sakai
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (Y.K.); (E.S.); (Y.Y.); (F.F.)
| | - Yu Yamaguchi
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (Y.K.); (E.S.); (Y.Y.); (F.F.)
| | - Fatima Farhana
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (Y.K.); (E.S.); (Y.Y.); (F.F.)
| | - Yohsuke Taira
- Division of Cariology and Restorative Dentistry, Department of Prosthetic Dentistry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (Y.T.); (H.M.)
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan;
| | - Hiroshi Murata
- Division of Cariology and Restorative Dentistry, Department of Prosthetic Dentistry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (Y.T.); (H.M.)
| | - Takayuki Tsukuba
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (Y.K.); (E.S.); (Y.Y.); (F.F.)
| |
Collapse
|
3
|
Yamaguchi H, Barrell WB, Faisal M, Liu KJ, Komatsu Y. Ciliary and non-ciliary functions of Rab34 during craniofacial bone development. Biochem Biophys Res Commun 2024; 724:150174. [PMID: 38852507 DOI: 10.1016/j.bbrc.2024.150174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024]
Abstract
The primary cilium is a hair-like projection that controls cell development and tissue homeostasis. Although accumulated studies identify the molecular link between cilia and cilia-related diseases, the underlying etiology of ciliopathies has not been fully understood. In this paper, we determine the function of Rab34, a small GTPase, as a key regulator for controlling ciliogenesis and type I collagen trafficking in craniofacial development. Mechanistically, Rab34 is required to form cilia that control osteogenic proliferation, survival, and differentiation via cilia-mediated Hedgehog signaling. In addition, Rab34 is indispensable for regulating type I collagen trafficking from the ER to the Golgi. These results demonstrate that Rab34 has both ciliary and non-ciliary functions to regulate osteogenesis. Our study highlights the critical function of Rab34, which may contribute to understanding the novel etiology of ciliopathies that are associated with the dysfunction of RAB34 in humans.
Collapse
Affiliation(s)
- Hiroyuki Yamaguchi
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - William B Barrell
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
| | - Maryam Faisal
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; Department of Bioengineering, Rice University George R. Brown School of Engineering, Houston, TX, 77005, USA
| | - Karen J Liu
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
| | - Yoshihiro Komatsu
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; Graduate Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Jiang J, Ren R, Fang W, Miao J, Wen Z, Wang X, Xu J, Jin H. Lysosomal biogenesis and function in osteoclasts: a comprehensive review. Front Cell Dev Biol 2024; 12:1431566. [PMID: 39170917 PMCID: PMC11335558 DOI: 10.3389/fcell.2024.1431566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024] Open
Abstract
Lysosomes serve as catabolic centers and signaling hubs in cells, regulating a multitude of cellular processes such as intracellular environment homeostasis, macromolecule degradation, intracellular vesicle trafficking and autophagy. Alterations in lysosomal level and function are crucial for cellular adaptation to external stimuli, with lysosome dysfunction being implicated in the pathogenesis of numerous diseases. Osteoclasts (OCs), as multinucleated cells responsible for bone resorption and maintaining bone homeostasis, have a complex relationship with lysosomes that is not fully understood. Dysregulated function of OCs can disrupt bone homeostasis leading to the development of various bone disorders. The regulation of OC differentiation and bone resorption for the treatment of bone disease have received considerable attention in recent years, yet the role and regulation of lysosomes in OCs, as well as the potential therapeutic implications of intervening in lysosomal biologic behavior for the treatment of bone diseases, remain relatively understudied. This review aims to elucidate the mechanisms involved in lysosomal biogenesis and to discuss the functions of lysosomes in OCs, specifically in relation to differentiation, bone resorption, and autophagy. Finally, we explore the potential therapeutic implication of targeting lysosomes in the treatment of bone metabolic disorders.
Collapse
Affiliation(s)
- Junchen Jiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Rufeng Ren
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Weiyuan Fang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jiansen Miao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zijun Wen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haiming Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Jiang X, Yang L, Chen G, Feng X, Liu Y, Gao Q, Mai M, Chen CYC, Ye S, Yang Z. Discovery of Kinetin in inhibiting colorectal cancer progression via enhancing PSMB1-mediated RAB34 degradation. Cancer Lett 2024; 584:216600. [PMID: 38159835 DOI: 10.1016/j.canlet.2023.216600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignancies worldwide. Understanding the underlying mechanism driving CRC progression and identifying potential therapeutic drug targets are of utmost urgency. We previously utilized LC-MS-based proteomic profiling to identify proteins associated with postoperative progression in stage II/III CRC. Here, we revealed that proteasome subunit beta type-1 (PSMB1) is an independent predictor for postoperative progression in stage II/III CRC. Mechanistically, PSMB1 binds directly to onco-protein RAB34 and promotes its proteasome-dependent degradation, potentially leading to the inactivation of the MEK/ERK signaling pathway and inhibition of CRC progression. To further identify potential anticancer drugs, we screened a library of 2509 FDA-approved drugs using computer-aided drug design (CADD) and identified Kinetin as a potentiating agent for PSMB1. Functional assays confirmed that Kinetin enhanced the interaction between PSMB1 and RAB34, hence facilitated the degradation of RAB34 protein and decreased the MEK/ERK phosphorylation. Kinetin suppresses CRC progression in patient-derived xenograft (PDX) and liver metastasis models. Conclusively, our study identifies PSMB1 as a potential biomarker and therapeutic target for CRC, and Kinetin as an anticancer drug by enhancing proteasome-dependent onco-protein degradation.
Collapse
Affiliation(s)
- Xuefei Jiang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Lanlan Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Guanxing Chen
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 510275, China
| | - Xingzhi Feng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Yiting Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Qianling Gao
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Mingru Mai
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Calvin Yu-Chian Chen
- Department of AI for Science, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Shubiao Ye
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Zihuan Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Department of Clinical Laboratory, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China.
| |
Collapse
|
6
|
Tran MT, Okusha Y, Htike K, Sogawa C, Eguchi T, Kadowaki T, Sakai E, Tsukuba T, Okamoto K. HSP90 drives the Rab11a-mediated vesicular transport of the cell surface receptors in osteoclasts. Cell Biochem Funct 2022; 40:838-855. [PMID: 36111708 DOI: 10.1002/cbf.3745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 12/15/2022]
Abstract
Rab11a, which ubiquitously localizes to early and recycling endosomes, is required for regulating the vesicular transport of cellular cargos. Interestingly, our previous study revealed that Rab11a served as a negative regulator of osteoclastogenesis by facilitating the lysosomal proteolysis of (1) colony-stimulating factor-1 (c-fms) receptor and (2) receptor activator of nuclear factor-κB (RANK) receptor, thereby resulting in inhibition of osteoclast (OC) differentiation, maturation, and bone-resorbing activity. However, the molecular mechanisms of how Rab11a negatively affected osteoclastogenesis were largely unknown. Heat shock protein (HSP90), including two isoforms HSP90α and HSP90β, necessitates the stability, maturation, and activity of a broad range of its clients, and is essentially required for a vast array of signal transduction pathways in nonstressful conditions. Furthermore, cumulative evidence suggests that HSP90 is a vital element of the vesicular transport network. Indeed, our recent study revealed that HSP90, a novel effector protein of Rab11b, modulated Rab11b-mediated osteoclastogenesis. In this study, we also found that Rab11a interacted with both HSP90α and HSP90β in OCs. Upon blockade of HSP90 ATPase activity by a specific inhibitor(17-allylamino-demethoxygeldanamycin), we showed that (1) the ATPase domain of HSP90 was a prerequisite for the interaction between HSP90 and Rab11a, and (2) the interaction of HSP90 to Rab11a sufficiently maintained the inhibitory effects of Rab11a on osteoclastogenesis. Altogether, our findings undoubtedly indicate a novel role of HSP90 in regulating Rab11a-mediated osteoclastogenesis.
Collapse
Affiliation(s)
- Manh Tien Tran
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuka Okusha
- Department of Radiation Oncology, Division of Molecular and Cellular Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Kaung Htike
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Chiharu Sogawa
- Department of Clinical Engineering, Faculty of Life Sciences, Hiroshima Institute of Technology, Hiroshima, Japan
| | - Takanori Eguchi
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.,Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tomoko Kadowaki
- Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Eiko Sakai
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takayuki Tsukuba
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|