1
|
Konwar AN, Basak S, Saikia K, Gurumayum S, Panthi N, Borah JC, Thakur D. Antimicrobial potential of Streptomyces sp. NP73 isolated from the forest soil of Northeast India against multi-drug resistant Escherichia coli. Lett Appl Microbiol 2024; 77:ovae086. [PMID: 39264087 DOI: 10.1093/lambio/ovae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/13/2024]
Abstract
This study reports the isolation and characterization of a Streptomyces sp. from soil, capable of producing bioactive secondary metabolites active against a variety of bacterial human pathogens. We targeted the antimicrobial activity against Escherichia coli ATCC-BAA 2469, a clinically relevant strain of bacteria harbouring resistance genes for carbapenems, extended spectrum beta-lactams, tetracyclines, fluoroquinones, etc. Preliminary screening using the spot inoculation technique identified Streptomyces sp. NP73 as the potent strain among the 74 isolated Actinomycetia strain. 16S rRNA gene and whole genome sequencing (WGS) confirmed its taxonomical identity and helped in the construction of the phylogenetic tree. WGS revealed the predicted pathways and biosynthetic gene clusters responsible for producing various types of antibiotics including the isolated compound. Bioactivity guided fractionation and chemical characterization of the active fraction, carried out using liquid chromatography, gas chromatography-mass spectrometry, infra-red spectroscopy, and nuclear magnetic resonance spectroscopy, led to the tentative identification of the active compound as Pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro-, a diketopiperazine molecule. This compound exhibited excellent antimicrobial and anti-biofilm properties against E. coli ATCC-BAA 2469 with an MIC value of 15.64 µg ml-1, and the low cytotoxicity of the compound identified in this study provides hope for future drug development.
Collapse
Affiliation(s)
- Aditya Narayan Konwar
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Surajit Basak
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kangkon Saikia
- Bioinformatics Infrastructure Facility, Institute of Advanced Study in Science and Technology, Guwahati, Assam 781035, India
| | - Shalini Gurumayum
- Chemical Biology Laboratory-1, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam 781035, India
| | - Nitya Panthi
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam 781035, India
| | - Jagat Chandra Borah
- Chemical Biology Laboratory-1, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam 781035, India
| | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam 781035, India
| |
Collapse
|
2
|
Luo X, Wang X, Zhang L, Du A, Deng Z, Jiang M, He X. Importance of aspartic acid side chain carboxylate-arginine interaction in substrate selection of arginine 2,3-aminomutase BlsG. Protein Sci 2023; 32:e4584. [PMID: 36721314 PMCID: PMC9926467 DOI: 10.1002/pro.4584] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/02/2023]
Abstract
The fungicide nucleoside blasticidin S features a β-arginine, a moiety seldom revealed in the structure of natural products. BlsG, a radical SAM arginine-2,3-aminomutase from the blasticidin S biosynthetic pathway, displayed promiscuous activity to three basic amino acids. Here in this study, we demonstrated that BlsG showed high preference toward its natural substrate arginine. The combined structural modeling, steady-state kinetics, and mutational analyses lead to the detailed understanding of the substrate recognition of BlsG. A single mutation of T340D changed the substrate preference of BlsG leading to a little more preference to lysine than arginine. On the basis of our understanding of the substrate selection of BlsG and bioinformatic analysis, we propose that the D…D motif locationally corresponding to D293 and D330 of KAM is characteristic of lysine 2,3-aminomutase while the corresponding D…T motif is characteristic of arginine 2,3-aminomutase. The study may provide a simple way to discern the arginine 2,3-aminomutase and thus lead to the discovery of new natural compounds with β-arginine moiety.
Collapse
Affiliation(s)
- Xiangkun Luo
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiankun Wang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Lina Zhang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Aiqin Du
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Ming Jiang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
3
|
Li H, Zhao J, Ding W, Zhang Q. Glucuronyl C4 dehydrogenation by the radical SAM enzyme BlsE involved in blasticidin S biosynthesis. Chem Commun (Camb) 2022; 58:3561-3564. [PMID: 35199117 DOI: 10.1039/d1cc07132g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Here we report functional investigation of the radical S-adenosylmethionine enzyme BlsE by using cytosylglucuronamide (CGM), which is the amide analog of cytosylglucuronic acid (CGA), an intermediate involved in blasticidin S biosynthesis. We showed that, instead of decarboxylation of CGA reported previously, BlsE catalyzes C4'-dehydrogenation of CGM, and the resulting ketone is acted on by an aminotransferase BlsH to install the C4'-amino group, which uses L-Asp as the amino donor.
Collapse
Affiliation(s)
- He Li
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Junfeng Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
4
|
Lee YH, Hou X, Chen R, Feng J, Liu X, Ruszczycky MW, Gao JM, Wang B, Zhou J, Liu HW. Radical S-Adenosyl Methionine Enzyme BlsE Catalyzes a Radical-Mediated 1,2-Diol Dehydration during the Biosynthesis of Blasticidin S. J Am Chem Soc 2022; 144:4478-4486. [PMID: 35238201 DOI: 10.1021/jacs.1c12010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The biosynthesis of blasticidin S has drawn attention due to the participation of the radical S-adenosyl methionine (SAM) enzyme BlsE. The original assignment of BlsE as a radical-mediated, redox-neutral decarboxylase is unusual because this reaction appears to serve no biosynthetic purpose and would need to be reversed by a subsequent carboxylation step. Furthermore, with the exception of BlsE, all other radical SAM decarboxylases reported to date are oxidative in nature. Careful analysis of the BlsE reaction, however, demonstrates that BlsE is not a decarboxylase but instead a lyase that catalyzes the dehydration of cytosylglucuronic acid (CGA) to form cytosyl-4'-keto-3'-deoxy-d-glucuronic acid, which can rapidly decarboxylate nonenzymatically in vitro. Analysis of substrate isotopologs, fluorinated analogues, as well as computational models based on X-ray crystal structures of the BlsE·SAM (2.09 Å) and BlsE·SAM·CGA (2.62 Å) complexes suggests that BlsE catalysis likely proceeds via direct elimination of water from the CGA C4' α-hydroxyalkyl radical as opposed to 1,2-migration of the C3'-hydroxyl prior to dehydration. Biosynthetic and mechanistic implications of the revised assignment of BlsE are discussed.
Collapse
Affiliation(s)
- Yu-Hsuan Lee
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Xueli Hou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi China.,State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ridao Chen
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jianqiang Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiao Liu
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States.,School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mark W Ruszczycky
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jiahai Zhou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hung-Wen Liu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.,Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Zhang WH, Wang F, Wang YL, You S, Pan HX, Tang GL. Identification and Characterization of Enzymes Catalyzing Early Steps in Miharamycin and Amipurimycin Biosynthesis. Org Lett 2021; 23:8761-8765. [PMID: 34747180 DOI: 10.1021/acs.orglett.1c03254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biochemical elucidation of the early biosynthetic pathways of miharamycins and amipurimycin revealed the roles of several enzymes, which include GMP hydrolase, represented by MihD/ApmD, and hypothetical proteins, MihI/ApmI, unexpectedly exhibiting the dual function of the guanylglucuronic acid assembly and GMP cleavage. In addition, MihE, a carbonyl reductase that functions on the C2 branch of high-carbon sugars, and MihF, a rare guanine O-methyltransferase, were also functionally verified.
Collapse
Affiliation(s)
- Wen-He Zhang
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Fei Wang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences (CAS), Hangzhou 310024, China
| | - Yi-Lin Wang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences (CAS), Hangzhou 310024, China
| | - Song You
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Hai-Xue Pan
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences (CAS), Hangzhou 310024, China
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of CAS, CAS, Shanghai 200032, China
| | - Gong-Li Tang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences (CAS), Hangzhou 310024, China
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of CAS, CAS, Shanghai 200032, China
| |
Collapse
|
6
|
A [3Fe-4S] cluster and tRNA-dependent aminoacyltransferase BlsK in the biosynthesis of Blasticidin S. Proc Natl Acad Sci U S A 2021; 118:2102318118. [PMID: 34282016 DOI: 10.1073/pnas.2102318118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Blasticidin S is a peptidyl nucleoside antibiotic. Its biosynthesis involves a cryptic leucylation and two leucylated intermediates, LDBS and LBS, have been found in previous studies. Leucylation has been proposed to be a new self-resistance mechanism during blasticidin S biosynthesis, and the leucyl group was found to be important for the methylation of β-amino group of the arginine side chain. However, the responsible enzyme and its associated mechanism of the leucyl transfer process remain to be elucidated. Here, we report results investigating the leucyl transfer step forming the intermediate LDBS in blasticidin biosynthesis. A hypothetical protein, BlsK, has been characterized by genetic and in vitro biochemical experiments. This enzyme catalyzes the leucyl transfer from leucyl-transfer RNA (leucyl-tRNA) to the β-amino group on the arginine side chain of DBS. Furthermore, BlsK was found to contain an iron-sulfur cluster that is necessary for activity. These findings provide an example of an iron-sulfur protein that catalyzes an aminoacyl-tRNA (aa-tRNA)-dependent amide bond formation in a natural product biosynthetic pathway.
Collapse
|
7
|
Schwarz J, Hubmann G, Rosenthal K, Lütz S. Triaging of Culture Conditions for Enhanced Secondary Metabolite Diversity from Different Bacteria. Biomolecules 2021; 11:193. [PMID: 33573182 PMCID: PMC7911347 DOI: 10.3390/biom11020193] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
Over the past decade, the one strain many compounds (OSMAC) approach has been established for the activation of biosynthetic gene clusters (BGCs), which mainly encode the enzymes of secondary metabolite (SM) biosynthesis pathways. These BGCs were successfully activated by altering various culture conditions, such as aeration rate, temperature, and nutrient composition. Here, we determined the biosynthetic potential of 43 bacteria using the genome mining tool antiSMASH. Based on the number of BGCs, biological safety, availability of deposited cultures, and literature coverage, we selected five promising candidates: Bacillus amyloliquefaciens DSM7, Corallococcus coralloides DSM2259, Pyxidicoccus fallax HKI727, Rhodococcus jostii DSM44719, and Streptomyces griseochromogenes DSM40499. The bacteria were cultivated under a broad range of OSMAC conditions (nutrient-rich media, minimal media, nutrient-limited media, addition of organic solvents, addition of biotic additives, and type of culture vessel) to fully assess the biosynthetic potential. In particular, we investigated so far scarcely applied OSMAC conditions to enhance the diversity of SMs. We detected the four predicted compounds bacillibactin, desferrioxamine B, myxochelin A, and surfactin. In total, 590 novel mass features were detected in a broad range of investigated OSMAC conditions, which outnumber the predicted gene clusters for all investigated bacteria by far. Interestingly, we detected mass features of the bioactive compounds cyclo-(Tyr-Pro) and nocardamin in extracts of DSM7 and DSM2259. Both compounds were so far not reported for these strains, indicating that our broad OSMAC screening approach was successful. Remarkably, the infrequently applied OSMAC conditions in defined medium with and without nutrient limitation were demonstrated to be very effective for BGC activation and for SM discovery.
Collapse
Affiliation(s)
| | | | | | - Stephan Lütz
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227 Dortmund, Germany; (J.S.); (G.H.); (K.R.)
| |
Collapse
|
8
|
McErlean M, Liu X, Cui Z, Gust B, Van Lanen SG. Identification and characterization of enzymes involved in the biosynthesis of pyrimidine nucleoside antibiotics. Nat Prod Rep 2021; 38:1362-1407. [PMID: 33404015 DOI: 10.1039/d0np00064g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to September 2020 Hundreds of nucleoside-based natural products have been isolated from various microorganisms, several of which have been utilized in agriculture as pesticides and herbicides, in medicine as therapeutics for cancer and infectious disease, and as molecular probes to study biological processes. Natural products consisting of structural modifications of each of the canonical nucleosides have been discovered, ranging from simple modifications such as single-step alkylations or acylations to highly elaborate modifications that dramatically alter the nucleoside scaffold and require multiple enzyme-catalyzed reactions. A vast amount of genomic information has been uncovered the past two decades, which has subsequently allowed the first opportunity to interrogate the chemically intriguing enzymatic transformations for the latter type of modifications. This review highlights (i) the discovery and potential applications of structurally complex pyrimidine nucleoside antibiotics for which genetic information is known, (ii) the established reactions that convert the canonical pyrimidine into a new nucleoside scaffold, and (iii) the important tailoring reactions that impart further structural complexity to these molecules.
Collapse
Affiliation(s)
- M McErlean
- Department of Pharmaceutical Science, College of Pharmacy, University of Kentucky, USA.
| | - X Liu
- Department of Pharmaceutical Science, College of Pharmacy, University of Kentucky, USA.
| | - Z Cui
- Department of Pharmaceutical Science, College of Pharmacy, University of Kentucky, USA.
| | - B Gust
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Germany
| | - S G Van Lanen
- Department of Pharmaceutical Science, College of Pharmacy, University of Kentucky, USA.
| |
Collapse
|
9
|
Zhao J, Ji W, Ji X, Zhang Q. Biochemical Characterization of an Arginine 2,
3‐Aminomutase
with Dual Substrate Specificity. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Junfeng Zhao
- Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Wenjuan Ji
- Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Xinjian Ji
- Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Qi Zhang
- Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200438 China
| |
Collapse
|
10
|
Wang F, Zhang WH, Zhao J, Kang WJ, Wang S, Yu B, Pan HX, Tang GL. Characterization of Miharamycin Biosynthesis Reveals a Hybrid NRPS-PKS to Synthesize High-Carbon Sugar from a Complex Nucleoside. J Am Chem Soc 2020; 142:5996-6000. [PMID: 32167762 DOI: 10.1021/jacs.0c01778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Miharamycins are peptidyl nucleoside antibiotics with a unique branched C9 pyranosyl amino acid core and a rare 2-aminopurine moiety. Inactivation of 19 genes in the biosynthetic gene cluster and identification of several unexpected intermediates suggest an alternative biosynthetic pathway, which is further supported by feeding experiments and in vitro characterization of an unusual adenylation domain recognizing a complex nucleoside derivative as the substrate. These results thereby provide an unprecedented biosynthetic route of high-carbon sugar catalyzed by atypical hybrid nonribosomal peptide synthetase-polyketide synthase.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wen-He Zhang
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Juan Zhao
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wen-Jia Kang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shengyang Wang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Biao Yu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hai-Xue Pan
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Gong-Li Tang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.,State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
11
|
Recent advances in the biosynthesis of nucleoside antibiotics. J Antibiot (Tokyo) 2019; 72:913-923. [PMID: 31554958 DOI: 10.1038/s41429-019-0236-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/24/2019] [Accepted: 09/07/2019] [Indexed: 01/27/2023]
Abstract
Nucleoside antibiotics are a diverse class of natural products with promising biomedical activities. These compounds contain a saccharide core and a nucleobase. Despite the large number of nucleoside antibiotics that have been reported, biosynthetic studies on these compounds have been limited compared with those on other types of natural products such as polyketides, peptides, and terpenoids. Due to recent advances in genome sequencing technology, the biosynthesis of nucleoside antibiotics has rapidly been clarified. This review covering 2009-2019 focuses on recent advances in the biosynthesis of nucleoside antibiotics.
Collapse
|
12
|
Romo AJ, Shiraishi T, Ikeuchi H, Lin GM, Geng Y, Lee YH, Liem PH, Ma T, Ogasawara Y, Shin-ya K, Nishiyama M, Kuzuyama T, Liu HW. The Amipurimycin and Miharamycin Biosynthetic Gene Clusters: Unraveling the Origins of 2-Aminopurinyl Peptidyl Nucleoside Antibiotics. J Am Chem Soc 2019; 141:14152-14159. [PMID: 31150226 PMCID: PMC6774755 DOI: 10.1021/jacs.9b03021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Peptidyl nucleoside antibiotics (PNAs) are a diverse class of natural products with promising biomedical activities. These compounds have tripartite structures composed of a core saccharide, a nucleobase, and one or more amino acids. In particular, amipurimycin and the miharamycins are novel 2-aminopurinyl PNAs with complex nine-carbon core saccharides and include the unusual amino acids (-)-cispentacin and N5-hydroxyarginine, respectively. Despite their interesting structures and properties, these PNAs have heretofore eluded biochemical scrutiny. Herein is reported the discovery and initial characterization of the miharamycin gene cluster in Streptomyces miharaensis (mhr) and the amipurimycin gene cluster (amc) in Streptomyces novoguineensis and Streptomyces sp. SN-C1. The gene clusters were identified using a comparative genomics approach, and heterologous expression of the amc cluster as well as gene interruption experiments in the mhr cluster support their role in the biosynthesis of amipurimycin and the miharamycins, respectively. The mhr and amc biosynthetic gene clusters characterized encode enzymes typical of polyketide biosynthesis instead of enzymes commonly associated with PNA biosynthesis, which, along with labeled precursor feeding studies, implies that the core saccharides found in the miharamycins and amipurimycin are partially assembled as polyketides rather than derived solely from carbohydrates. Furthermore, in vitro analysis of Mhr20 and Amc18 established their roles as ATP-grasp ligases involved in the attachment of the pendant amino acids found in these PNAs, and Mhr24 was found to be an unusual hydroxylase involved in the biosynthesis of N5-hydroxyarginine. Finally, analysis of the amc cluster and feeding studies also led to the proposal of a biosynthetic pathway for (-)-cispentacin.
Collapse
Affiliation(s)
- Anthony J. Romo
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Taro Shiraishi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideo Ikeuchi
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Geng-Min Lin
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yujie Geng
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yu-Hsuan Lee
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Priscilla H. Liem
- Department of Biochemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Tianlu Ma
- Department of Biochemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yasushi Ogasawara
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kazuo Shin-ya
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Makoto Nishiyama
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hung-wen Liu
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Biochemistry, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
13
|
Li T, Chen X, Cai Y, Dai J. Artificial Protein Scaffold System (AProSS): An efficient method to optimize exogenous metabolic pathways in Saccharomyces cerevisiae. Metab Eng 2018; 49:13-20. [PMID: 30010058 DOI: 10.1016/j.ymben.2018.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 01/15/2023]
Abstract
Scaffold proteins influence cellular signaling by orchestrating multiple enzymes, receptors or ion channels, and could be tailored to enhance the efficiency of biochemical reactions by positioning related enzymes physically together. However, the number of applicable domains remains small, and the construction of scaffold proteins with optimal domain ratio could be tedious and time-consuming. In this study, we outlined a modular design to quickly assemble scaffold proteins using protein interaction domains, which have been constructed into a standardized vector. We generated multiple protein interaction domains and ligands for making artificial scaffold proteins. At the same time, we developed a robust Golden-Gate-based molecular toolkit for the construction of artificial scaffold proteins, allowing a variance of domain types, number, and positions. The synthesized domain-ligand interaction was verified by yeast two-hybrid and split-GFP assays. Using synthetic scaffolds, we demonstrated an increase in the yield of two target products by 29% and 63% respectively. Moreover, we demonstrated that the synthetic scaffold could be applied to rewire the metabolic flux. Our system could be a useful tool for metabolic engineering and beyond.
Collapse
Affiliation(s)
- Tianyi Li
- Key Laboratory of Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiuqi Chen
- Key Laboratory of Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Department of Biology, Johns Hopkins University, 3400N. Charles Street, Baltimore, MD, USA
| | - Yizhi Cai
- Shenzhen Key Laboratory of Synthetic Genomics and Center for Synthetic Genomics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, M1 7DN, Manchester, UK.
| | - Junbiao Dai
- Key Laboratory of Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Shenzhen Key Laboratory of Synthetic Genomics and Center for Synthetic Genomics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
14
|
Almabruk KH, Dinh LK, Philmus B. Self-Resistance of Natural Product Producers: Past, Present, and Future Focusing on Self-Resistant Protein Variants. ACS Chem Biol 2018; 13:1426-1437. [PMID: 29763292 DOI: 10.1021/acschembio.8b00173] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nature is a prolific producers of bioactive natural products with an array of biological activities and impact on human and animal health. But with great power comes great responsibility, and the organisms that produce a bioactive compound must be resistant to its biological effects to survive during production/accumulation. Microorganisms, particularly bacteria, have developed different strategies to prevent self-toxicity. Here, we review a few of the major mechanisms including the mechanism of resistance with a focus on self-resistant protein variants, target proteins that contain amino acid substitutions to reduce the binding of the bioactive natural product, and therefore its inhibitory effects are highlighted in depth. We also try to identify some future avenues of research and challenges that need to be addressed.
Collapse
Affiliation(s)
- Khaled H. Almabruk
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Linh K. Dinh
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
15
|
Niu G, Zheng J, Tan H. Biosynthesis and combinatorial biosynthesis of antifungal nucleoside antibiotics. SCIENCE CHINA-LIFE SCIENCES 2017; 60:939-947. [DOI: 10.1007/s11427-017-9116-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/08/2017] [Indexed: 11/28/2022]
|
16
|
Complete genome sequence of Streptomyces griseochromogenes ATCC 14511 T , a producer of nucleoside compounds and diverse secondary metabolites. J Biotechnol 2017; 249:16-19. [DOI: 10.1016/j.jbiotec.2017.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 03/11/2017] [Accepted: 03/14/2017] [Indexed: 11/19/2022]
|
17
|
Nah HJ, Pyeon HR, Kang SH, Choi SS, Kim ES. Cloning and Heterologous Expression of a Large-sized Natural Product Biosynthetic Gene Cluster in Streptomyces Species. Front Microbiol 2017; 8:394. [PMID: 28360891 PMCID: PMC5350119 DOI: 10.3389/fmicb.2017.00394] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/24/2017] [Indexed: 12/14/2022] Open
Abstract
Actinomycetes family including Streptomyces species have been a major source for the discovery of novel natural products (NPs) in the last several decades thanks to their structural novelty, diversity and complexity. Moreover, recent genome mining approach has provided an attractive tool to screen potentially valuable NP biosynthetic gene clusters (BGCs) present in the actinomycetes genomes. Since many of these NP BGCs are silent or cryptic in the original actinomycetes, various techniques have been employed to activate these NP BGCs. Heterologous expression of BGCs has become a useful strategy to produce, reactivate, improve, and modify the pathways of NPs present at minute quantities in the original actinomycetes isolates. However, cloning and efficient overexpression of an entire NP BGC, often as large as over 100 kb, remain challenging due to the ineffectiveness of current genetic systems in manipulating large NP BGCs. This mini review describes examples of actinomycetes NP production through BGC heterologous expression systems as well as recent strategies specialized for the large-sized NP BGCs in Streptomyces heterologous hosts.
Collapse
Affiliation(s)
- Hee-Ju Nah
- Department of Biological Engineering, Inha University Incheon, South Korea
| | - Hye-Rim Pyeon
- Department of Biological Engineering, Inha University Incheon, South Korea
| | - Seung-Hoon Kang
- Department of Biological Engineering, Inha University Incheon, South Korea
| | - Si-Sun Choi
- Department of Biological Engineering, Inha University Incheon, South Korea
| | - Eung-Soo Kim
- Department of Biological Engineering, Inha University Incheon, South Korea
| |
Collapse
|
18
|
Liu L, Ji X, Li Y, Ji W, Mo T, Ding W, Zhang Q. A mechanistic study of the non-oxidative decarboxylation catalyzed by the radical S-adenosyl-l-methionine enzyme BlsE involved in blasticidin S biosynthesis. Chem Commun (Camb) 2017; 53:8952-8955. [DOI: 10.1039/c7cc04286h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BlsE-catalyzed non-oxidative decarboxylation is initiated by a hydrogen abstraction from a sugar carbon of the substrate cytosylglucuronic acid (CGA).
Collapse
Affiliation(s)
- Lei Liu
- College of Life Science & Biotechnology
- Mianyang Normal University
- Mianyang 621000
- P. R. China
- Department of Chemistry
| | - Xinjian Ji
- Department of Chemistry
- Fudan University
- Shanghai
- China
| | - Yongzhen Li
- Department of Chemistry
- Fudan University
- Shanghai
- China
- Medical College of Qinghai University
| | - Wenjuan Ji
- Department of Chemistry
- Fudan University
- Shanghai
- China
| | - Tianlu Mo
- Department of Chemistry
- Fudan University
- Shanghai
- China
| | - Wei Ding
- Department of Chemistry
- Fudan University
- Shanghai
- China
| | - Qi Zhang
- Department of Chemistry
- Fudan University
- Shanghai
- China
| |
Collapse
|
19
|
McClure RA, Goering AW, Ju KS, Baccile JA, Schroeder FC, Metcalf WW, Thomson RJ, Kelleher NL. Elucidating the Rimosamide-Detoxin Natural Product Families and Their Biosynthesis Using Metabolite/Gene Cluster Correlations. ACS Chem Biol 2016; 11:3452-3460. [PMID: 27809474 DOI: 10.1021/acschembio.6b00779] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
As microbial genome sequencing becomes more widespread, the capacity of microorganisms to produce an immense number of metabolites has come into better view. Utilizing a metabolite/gene cluster correlation platform, the biosynthetic origins of a new family of natural products, the rimosamides, were discovered. The rimosamides were identified in Streptomyces rimosus and associated with their NRPS/PKS-type gene cluster based upon their high frequency of co-occurrence across 179 strains of actinobacteria. This also led to the discovery of the related detoxin gene cluster. The core of each of these families of natural products contains a depsipeptide bond at the point of bifurcation in their unusual branched structures, the origins of which are definitively assigned to nonlinear biosynthetic pathways via heterologous expression in Streptomyces lividans. The rimosamides were found to antagonize the antibiotic activity of blasticidin S against Bacillus cereus.
Collapse
Affiliation(s)
- Ryan A. McClure
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Anthony W. Goering
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Kou-San Ju
- Carl R.
Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Joshua A. Baccile
- Boyce Thompson
Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Frank C. Schroeder
- Boyce Thompson
Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - William W. Metcalf
- Carl R.
Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Microbiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Regan J. Thomson
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Neil. L Kelleher
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
20
|
Natural and engineered biosynthesis of nucleoside antibiotics in Actinomycetes. ACTA ACUST UNITED AC 2016; 43:401-17. [DOI: 10.1007/s10295-015-1636-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/15/2015] [Indexed: 12/18/2022]
Abstract
Abstract
Nucleoside antibiotics constitute an important family of microbial natural products bearing diverse bioactivities and unusual structural features. Their biosynthetic logics are unique with involvement of complex multi-enzymatic reactions leading to the intricate molecules from simple building blocks. Understanding how nature builds this family of antibiotics in post-genomic era sets the stage for rational enhancement of their production, and also paves the way for targeted persuasion of the cell factories to make artificial designer nucleoside drugs and leads via synthetic biology approaches. In this review, we discuss the recent progress and perspectives on the natural and engineered biosynthesis of nucleoside antibiotics.
Collapse
|
21
|
The standalone aminopeptidase PepN catalyzes the maturation of blasticidin S from leucylblasticidin S. Sci Rep 2015; 5:17641. [PMID: 26621790 PMCID: PMC4664946 DOI: 10.1038/srep17641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/03/2015] [Indexed: 11/11/2022] Open
Abstract
The peptidyl nucleoside blasticidin S (BS) isolated from Streptomyces griseochromogenes was the first non-mercurial fungicide used on a large scale to prevent rice blast. In the biosynthesis of BS, leucylblasticidin S (LBS) was suggested as the penultimate metabolite with 20-fold less inhibitory activity than the final product BS. Incomplete conversion of LBS to BS at a variable efficiency ranging from 10% to 90% was observed either in the native strain S. griseochromogenes or a heterologous producer Streptomyces lividans WJ2. In this study, we determined that maturation of BS from LBS is not a spontaneous process but is governed by a standalone peptidase PepN, which hydrolyzes LBS in a pH-sensitive way with most appropriate of pH 7~8 but is inactive when the pH is below 5 or above 10. PepN1 and PepN2, two neighboring PepN homologs from Streptomyces lividans were purified in E. coli but displayed ca.100-fold difference in LBS hydrolytic activity. Overexpression of pepN1 in WJ2 enhanced BS yield by 100% and lowered the ratio of LBS to BS from 2:1 to 2:3. This work presents the expansion of the biological role for PepN in antibiotic maturation and the first report of hydrolysis of beta amide linkage by this conserved enzyme.
Collapse
|
22
|
Characterization of biosynthetic genes of ascamycin/dealanylascamycin featuring a 5'-O-sulfonamide moiety in Streptomyces sp. JCM9888. PLoS One 2014; 9:e114722. [PMID: 25479601 PMCID: PMC4257720 DOI: 10.1371/journal.pone.0114722] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 11/12/2014] [Indexed: 01/12/2023] Open
Abstract
Ascamycin (ACM) and dealanylascamycin (DACM) are nucleoside antibiotics elaborated by Streptomyces sp. JCM9888. The later shows broad spectrum inhibition activity to various gram-positive and gram-negative bacteria, eukaryotic Trypanosoma and is also toxic to mice, while ascamycin is active against very limited microorganisms, such as Xanthomonas. Both compounds share an unusual 5′-O-sulfonamide moiety which is attached to an adenosine nucleoside. In this paper, we first report on the 30 kb gene cluster (23 genes, acmA to acmW) involved in the biosynthesis of these two antibiotics and a biosynthetic assembly line was proposed. Of them, six genes (AcmABGKIW) are hypothetical genes involved in 5′-O-sulfonamide formation. Two flavin adenine dinucleotide (FAD)-dependent chlorinase genes acmX and acmY were characterized which are significantly remote from acmA-W and postulated to be required for adenine C2-halogenation. Notably gene disruption of acmE resulted in a mutant which could only produce dealanylascamycin but was blocked in its ability to biosynthesize ascamycin, revealing its key role of conversion of dealanylascamycin to ascamycin.
Collapse
|
23
|
Feng J, Wu J, Gao J, Xia Z, Deng Z, He X. Biosynthesis of the β-methylarginine residue of peptidyl nucleoside arginomycin in Streptomyces arginensis NRRL 15941. Appl Environ Microbiol 2014; 80:5021-7. [PMID: 24907335 PMCID: PMC4135772 DOI: 10.1128/aem.01172-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/03/2014] [Indexed: 11/20/2022] Open
Abstract
The peptidyl nucleoside arginomycin is active against Gram-positive bacteria and fungi but displays much lower toxicity to mice than its analog blasticidin S. It features a rare amino acid, β-methylarginine, which is attached to the deoxyhexose moiety via a 4'-aminoacyl bond. We here report cloning of the complete biosynthetic gene cluster for arginomycin from Streptomyces arginensis NRRL 15941. Among the 14 putative essential open reading frames, argM, encoding an aspartate aminotransferase (AAT), and adjacent argN, encoding an S-adenosyl methionine (SAM)-dependent methyltransferase, are coupled to catalyze arginine and yield β-methylarginine in Escherichia coli. Purified ArgM can transfer the α-amino group of l-arginine to α-ketoglutaric acid to give glutamate and thereby converts l-arginine to 5-guanidino-2-oxopentanoic acid, which is methylated at the C-3 position by ArgN to form 5-guanidino-3-methyl-2-oxopentanoic acid. Iteratively, ArgM specifically catalyzes transamination from the donor l-aspartate to the resulting 5-guanidino-3-methyl-2-oxopentanoic acid, generating β-methylarginine. The complete and concise biosynthetic pathway for the rare and bioactive amino acid revealed by this study may pave the way for the production of β-methylarginine either by enzymatic conversion or by engineered living cells.
Collapse
Affiliation(s)
- Jun Feng
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, and WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Shanghai, China
| | - Jun Wu
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Gao
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhigui Xia
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, and WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Shanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Development of an intergeneric conjugal transfer system for xinaomycins-producing Streptomyces noursei Xinao-4. Int J Mol Sci 2014; 15:12217-30. [PMID: 25007821 PMCID: PMC4139839 DOI: 10.3390/ijms150712217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 11/26/2022] Open
Abstract
To introduce DNA into Streptomyces noursei xinao-4, which produces xinaomycins, we explored an intergeneric conjugal transfer system. High efficiency of conjugation (8 × 10−3 exconjugants per recipient) was obtained when spores of S. noursei xinao-4 were heat-shocked at 50 °C for 10 min, mixed with Escherichia coli ET12567 (pUZ8002/pSET152) in the ratio of 1:100, plated on 2CMY medium containing 40 mmol/L MgCl2, and incubated at 30 °C for 22 h. With this protocol, the plasmids pKC1139 and pSET152 were successfully transferred from E. coli ET12567 (pUZ8002) with different frequencies. Among all parameters, the ratio of donor to recipient cell number had the strongest effect on the transformation efficiency. In order to validate the above intergeneric conjugal transfer system, a glycosyltransferase gene was cloned and efficiently knocked out in S. noursei xinao-4 using pSG5-based plasmid pKC1139.
Collapse
|
25
|
Kudo F, Miyanaga A, Eguchi T. Biosynthesis of natural products containing β-amino acids. Nat Prod Rep 2014; 31:1056-73. [DOI: 10.1039/c4np00007b] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
β-Amino acids are unique components involved in a wide variety of natural products such as anticancer agents taxol, bleomycin, cytotoxic microcystin, enediyne compound C-1027 chromophore, nucleoside antibiotic blasticidin S, and macrolactam antibiotic vicenistatin. The biosynthesis and incorporation mechanisms are reviewed.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry
- Tokyo Institute of Technology
- Tokyo 152-8551, Japan
| | - Akimasa Miyanaga
- Department of Chemistry
- Tokyo Institute of Technology
- Tokyo 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry and Materials Science
- Tokyo Institute of Technology
- Tokyo 152-8551, Japan
| |
Collapse
|
26
|
Feng J, Wu J, Dai N, Lin S, Xu HH, Deng Z, He X. Discovery and characterization of BlsE, a radical S-adenosyl-L-methionine decarboxylase involved in the blasticidin S biosynthetic pathway. PLoS One 2013; 8:e68545. [PMID: 23874663 PMCID: PMC3715490 DOI: 10.1371/journal.pone.0068545] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/30/2013] [Indexed: 11/19/2022] Open
Abstract
BlsE, a predicted radical S-adenosyl-L-methionine (SAM) protein, was anaerobically purified and reconstituted in vitro to study its function in the blasticidin S biosynthetic pathway. The putative role of BlsE was elucidated based on bioinformatics analysis, genetic inactivation and biochemical characterization. Biochemical results showed that BlsE is a SAM-dependent radical enzyme that utilizes cytosylglucuronic acid, the accumulated intermediate metabolite in blsE mutant, as substrate and catalyzes decarboxylation at the C5 position of the glucoside residue to yield cytosylarabinopyranose. Additionally, we report the purification and reconstitution of BlsE, characterization of its [4Fe-4S] cluster using UV-vis and electron paramagnetic resonance (EPR) spectroscopic analysis, and investigation of the ability of flavodoxin (Fld), flavodoxin reductase (Fpr) and NADPH to reduce the [4Fe-4S](2+) cluster. Mutagenesis studies demonstrated that Cys31, Cys35, Cys38 in the C×××C×MC motif and Gly73, Gly74, Glu75, Pro76 in the GGEP motif were crucial amino acids for BlsE activity while mutation of Met37 had little effect on its function. Our results indicate that BlsE represents a typical [4Fe-4S]-containing radical SAM enzyme and it catalyzes decarboxylation in blasticidin S biosynthesis.
Collapse
Affiliation(s)
- Jun Feng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Wu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Dai
- New England Biolabs, Inc., Research Department, Ipswich, Massachusetts, United States of America
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - H. Howard Xu
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- * E-mail:
| |
Collapse
|
27
|
Galm U, Shen B. Expression of biosynthetic gene clusters in heterologous hosts for natural product production and combinatorial biosynthesis. Expert Opin Drug Discov 2013; 1:409-37. [PMID: 23495943 DOI: 10.1517/17460441.1.5.409] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Expression of biosynthetic gene clusters in heterologous hosts for natural product production and combinatorial biosynthesis is playing an increasingly important role in natural product-based drug discovery and development programmes. This review highlights the requirements and challenges associated with this conceptually simple strategy of using surrogate hosts for the production of natural products in good yields and for the generation of novel analogues by combinatorial biosynthesis methods, taking advantage of the recombinant DNA technologies and tools available in the model hosts. Specific topics addressed include: i) the mobilisation of biosynthetic gene clusters using different vector systems; ii) the selection of suitable model heterologous hosts; iii) the requirement of post-translational protein modifications and precursor supply within the model hosts; iv) the influence of promoters and pathway regulators; and v) the choice of suitable fermentation conditions. Lastly, the use of heterologous expression in combinatorial biosynthesis is addressed. Future directions for model heterologous host engineering and the optimisation of natural product biosynthetic gene cluster expression in heterologous hosts are also discussed.
Collapse
Affiliation(s)
- Ute Galm
- Divison of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA.
| | | |
Collapse
|
28
|
Streptomyces lividans blasticidin S deaminase and its application in engineering a blasticidin S-producing strain for ease of genetic manipulation. Appl Environ Microbiol 2013; 79:2349-57. [PMID: 23377931 DOI: 10.1128/aem.03254-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Blasticidin S is a peptidyl nucleoside antibiotic produced by Streptomyces griseochromogenes that exhibits strong fungicidal activity. To circumvent an effective DNA uptake barrier system in the native producer and investigate its biosynthesis in vivo, the blasticidin S biosynthetic gene cluster (bls) was engrafted to the chromosome of Streptomyces lividans. However, the resulting mutant, LL2, produced the inactive deaminohydroxyblasticidin S instead of blasticidin S. Subsequently, a blasticidin S deaminase (SLBSD, for S. lividans blasticidin S deaminase) was identified in S. lividans and shown to govern this in vivo conversion. Purified SLBSD was found to be capable of transforming blasticidin S to deaminohydroxyblasticidin S in vitro. It also catalyzed deamination of the cytosine moiety of cytosylglucuronic acid, an intermediate in blasticidin S biosynthesis. Disruption of the SLBSD gene in S. lividans LL2 led to successful production of active blasticidin S in the resultant mutant, S. lividans WJ2. To demonstrate the easy manipulation of the blasticidin S biosynthetic gene cluster, blsE, blsF, and blsL, encoding a predicted radical S-adenosylmethionine (SAM) protein, an unknown protein, and a guanidino methyltransferase, were individually inactivated to access their role in blasticidin S biosynthesis.
Collapse
|
29
|
Niu G, Li L, Wei J, Tan H. Cloning, Heterologous Expression, and Characterization of the Gene Cluster Required for Gougerotin Biosynthesis. ACTA ACUST UNITED AC 2013; 20:34-44. [DOI: 10.1016/j.chembiol.2012.10.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 10/15/2012] [Accepted: 10/24/2012] [Indexed: 02/03/2023]
|
30
|
Zeng Y, Kulkarni A, Yang Z, Patil PB, Zhou W, Chi X, Van Lanen S, Chen S. Biosynthesis of albomycin δ(2) provides a template for assembling siderophore and aminoacyl-tRNA synthetase inhibitor conjugates. ACS Chem Biol 2012; 7:1565-75. [PMID: 22704654 DOI: 10.1021/cb300173x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
"Trojan horse" antibiotic albomycins are peptidyl nucleosides consisting of a highly modified 4'-thiofuranosyl cytosine moiety and a ferrichrome siderophore that are linked by a peptide bond via a serine residue. While the latter component serves to sequester iron from the environment, the seryl nucleoside portion is a potent inhibitor of bacterial seryl-tRNA synthetases, resulting in broad-spectrum antimicrobial activities of albomycin δ(2). The isolation of albomycins has revealed this biological activity is optimized only following two unusual cytosine modifications, N4-carbamoylation and N3-methylation. We identified a genetic locus (named abm) for albomycin production in Streptomyces sp. ATCC 700974. Gene deletion and complementation experiments along with bioinformatic analysis suggested 18 genes are responsible for albomycin biosynthesis and resistance, allowing us to propose a potential biosynthetic pathway for installing the novel chemical features. The gene abmI, encoding a putative methyltransferase, was functionally assigned in vitro and shown to modify the N3 of a variety of cytosine-containing nucleosides and antibiotics such as blasticidin S. Furthermore, a ΔabmI mutant was shown to produce the descarbamoyl-desmethyl albomycin analogue, supporting that the N3-methylation occurs before the N4-carbamoylation in the biosynthesis of albomycin δ(2). The combined genetic information was utilized to identify an abm-related locus (named ctj) from the draft genome of Streptomyces sp. C. Cross-complementation experiments and in vitro studies with CtjF, the AbmI homologue, suggest the production of a similar 4'-thiofuranosyl cytosine in this organism. In total, the genetic and biochemical data provide a biosynthetic template for assembling siderophore-inhibitor conjugates and modifying the albomycin scaffold to generate new derivatives.
Collapse
Affiliation(s)
- Yu Zeng
- Molecular and Cellular Biology
Program, Department of Biological Sciences, Ohio University, Athens, Ohio 45701, United States
| | - Aditya Kulkarni
- Molecular and Cellular Biology
Program, Department of Biological Sciences, Ohio University, Athens, Ohio 45701, United States
| | - Zhaoyong Yang
- Department of Pharmaceutical
Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536, United States
| | - Preeti B. Patil
- Molecular and Cellular Biology
Program, Department of Biological Sciences, Ohio University, Athens, Ohio 45701, United States
| | - Wei Zhou
- Molecular and Cellular Biology
Program, Department of Biological Sciences, Ohio University, Athens, Ohio 45701, United States
| | - Xiuling Chi
- Department of Pharmaceutical
Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536, United States
| | - Steven Van Lanen
- Department of Pharmaceutical
Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536, United States
| | - Shawn Chen
- Molecular and Cellular Biology
Program, Department of Biological Sciences, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
31
|
Artificial chromosomes to explore and to exploit biosynthetic capabilities of actinomycetes. J Biomed Biotechnol 2012; 2012:462049. [PMID: 22919271 PMCID: PMC3420335 DOI: 10.1155/2012/462049] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/20/2012] [Accepted: 07/04/2012] [Indexed: 12/02/2022] Open
Abstract
Actinomycetes are an important source of biologically active compounds, like antibiotics, antitumor agents, and immunosuppressors. Genome sequencing is revealing that this class of microorganisms has larger genomes relative to other bacteria and uses a considerable fraction of its coding capacity (5–10%) for the production of mostly cryptic secondary metabolites. To access actinomycetes biosynthetic capabilities or to improve the pharmacokinetic properties and production yields of these chemically complex compounds, genetic manipulation of the producer strains can be performed. Heterologous expression in amenable hosts can be useful to exploit and to explore the genetic potential of actinomycetes and not cultivable but interesting bacteria. Artificial chromosomes that can be stably integrated into the Streptomyces genome were constructed and demonstrated to be effective for transferring entire biosynthetic gene clusters from intractable actinomycetes into more suitable hosts. In this paper, the construction of several shuttle Escherichia coli-Streptomyces artificial chromosomes is discussed together with old and new strategies applied to improve heterologous production of secondary metabolites.
Collapse
|
32
|
Wu J, Li L, Deng Z, Zabriskie TM, He X. Analysis of the Mildiomycin Biosynthesis Gene Cluster in Streptoverticillum remofaciens ZJU5119 and Characterization of MilC, a Hydroxymethyl cytosyl-glucuronic Acid Synthase. Chembiochem 2012; 13:1613-21. [DOI: 10.1002/cbic.201200173] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Indexed: 11/08/2022]
|
33
|
Characterization of the amicetin biosynthesis gene cluster from Streptomyces vinaceusdrappus NRRL 2363 implicates two alternative strategies for amide bond formation. Appl Environ Microbiol 2012; 78:2393-401. [PMID: 22267658 DOI: 10.1128/aem.07185-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Amicetin, an antibacterial and antiviral agent, belongs to a group of disaccharide nucleoside antibiotics featuring an α-(1→4)-glycoside bond in the disaccharide moiety. In this study, the amicetin biosynthesis gene cluster was cloned from Streptomyces vinaceusdrappus NRRL 2363 and localized on a 37-kb contiguous DNA region. Heterologous expression of the amicetin biosynthesis gene cluster in Streptomyces lividans TK64 resulted in the production of amicetin and its analogues, thereby confirming the identity of the ami gene cluster. In silico sequence analysis revealed that 21 genes were putatively involved in amicetin biosynthesis, including 3 for regulation and transportation, 10 for disaccharide biosynthesis, and 8 for the formation of the amicetin skeleton by the linkage of cytosine, p-aminobenzoic acid (PABA), and the terminal (+)-α-methylserine moieties. The inactivation of the benzoate coenzyme A (benzoate-CoA) ligase gene amiL and the N-acetyltransferase gene amiF led to two mutants that accumulated the same two compounds, cytosamine and 4-acetamido-3-hydroxybenzoic acid. These data indicated that AmiF functioned as an amide synthethase to link cytosine and PABA. The inactivation of amiR, encoding an acyl-CoA-acyl carrier protein transacylase, resulted in the production of plicacetin and norplicacetin, indicating AmiR to be responsible for attachment of the terminal methylserine moiety to form another amide bond. These findings implicated two alternative strategies for amide bond formation in amicetin biosynthesis.
Collapse
|
34
|
Rackham EJ, Grüschow S, Goss RJM. Revealing the first uridyl peptide antibiotic biosynthetic gene cluster and probing pacidamycin biosynthesis. Bioeng Bugs 2011; 2:218-21. [PMID: 21829097 DOI: 10.4161/bbug.2.4.15877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
There is an urgent need for new antibiotics with resistance continuing to emerge toward existing classes. The pacidamycin antibiotics possess a novel scaffold and exhibit unexploited bioactivity rendering them attractive research targets. We recently reported the first identification of a biosynthetic cluster encoding uridyl peptide antibiotic assembly and the engineering of pacidamycin biosynthesis into a heterologous host. We report here our methods toward identifying the biosynthetic cluster. Our initial experiments employed conventional methods of probing a cosmid library using PCR and Southern blotting, however it became necessary to adopt a state-of-the-art genome scanning and in silico hybridization approach to pin point the cluster. Here we describe our "real" and "virtual" probing methods and contrast the benefits and pitfalls of each approach.
Collapse
Affiliation(s)
- Emma J Rackham
- School of Chemistry, University of East Anglia, Norwich, UK
| | | | | |
Collapse
|
35
|
Li J, Li L, Tian Y, Niu G, Tan H. Hybrid antibiotics with the nikkomycin nucleoside and polyoxin peptidyl moieties. Metab Eng 2011; 13:336-44. [DOI: 10.1016/j.ymben.2011.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/06/2011] [Accepted: 01/10/2011] [Indexed: 10/18/2022]
|
36
|
Frey PA, Reed GH. Pyridoxal-5'-phosphate as the catalyst for radical isomerization in reactions of PLP-dependent aminomutases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1548-57. [PMID: 21435400 DOI: 10.1016/j.bbapap.2011.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 03/08/2011] [Accepted: 03/09/2011] [Indexed: 10/18/2022]
Abstract
PLP catalyzes the 1,2 shifts of amino groups in free radical-intermediates at the active sites of amino acid aminomutases. Free radical forms of the substrates are created upon H atom abstractions carried out by the 5'-deoxyadenosyl radical. In most of these enzymes, the 5'-deoxyadenosyl radical is generated by an iron-sulfur cluster-mediated reductive cleavage of S-adenosyl-(S)-methionine. However, in lysine 5,6-aminomutase and ornithine 4,5-aminomutase, the radical is generated by homolytic cleavage of the cobalt-carbon bond of adenosylcobalamin. The imine linkages in the initial radical forms of the external aldimines undergo radical addition to form azacyclopropylcarbinyl radicals as central intermediates in the catalytic cycles. In the case of lysine 2,3-aminomutase, the multistep catalytic mechanism is corroborated by direct spectroscopic observation and characterization of a product radical trapped during steady-state turnover. Analogues of the substrate-related radical having substituents adjacent to the radical center to stabilize the unpaired electron are also observed and characterized spectroscopically. A functional allylic analogue of the 5'-deoxyadenosyl radical is observed spectroscopically. A high-resolution crystal structure fully supports the mechanistic proposals. Evidence for a similar free radical mediated amino group transfer in the adenosylcobalamin-dependent lysine 5,6-aminomutase is provided by spectroscopic detection and characterization of radicals generated from the 4-thia analogues of the lysine substrates. This article is part of a Special Issue entitled: Pyridoxal Phospate Enzymology.
Collapse
Affiliation(s)
- Perry A Frey
- Department of Biochemistry, University of Wisconsin-Madison, 1710 University Avenue, Madison, WI 53726, USA.
| | | |
Collapse
|
37
|
Rackham EJ, Grüschow S, Ragab AE, Dickens S, Goss RJM. Pacidamycin biosynthesis: identification and heterologous expression of the first uridyl peptide antibiotic gene cluster. Chembiochem 2010; 11:1700-9. [PMID: 20665770 DOI: 10.1002/cbic.201000200] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The pacidamycins are antimicrobial nucleoside antibiotics produced by Streptomyces coeruleorubidus that inhibit translocase I, an essential bacterial enzyme yet to be clinically targeted. The novel pacidamycin scaffold is composed of a pseudopeptide backbone linked by a unique exocyclic enamide to an atypical 3'-deoxyuridine nucleoside. In addition, the peptidyl chain undergoes a double inversion caused by the incorporation of a diamino acid residue and a rare internal ureido moiety. The pacidamycin gene cluster was identified and sequenced, thereby providing the first example of a biosynthetic cluster for a member of the uridyl peptide family of antibiotics. Analysis of the 22 ORFs provided an insight into the biosynthesis of the unique structural features of the pacidamycins. Heterologous expression in Streptomyces lividans resulted in the production of pacidamycin D and the newly identified pacidamycin S, thus confirming the identity of the pacidamycin biosynthetic gene cluster. Identification of this cluster will enable the generation of new uridyl peptide antibiotics through combinatorial biosynthesis. The concise cluster will provide a useful model system through which to gain a fundamental understanding of the way in which nonribosomal peptide synthetases interact.
Collapse
Affiliation(s)
- Emma J Rackham
- School of Chemistry, University of East Anglia, Earlham Road, Norwich NR4 7TJ, UK
| | | | | | | | | |
Collapse
|
38
|
Funabashi M, Yang Z, Nonaka K, Hosobuchi M, Fujita Y, Shibata T, Chi X, Van Lanen SG. An ATP-independent strategy for amide bond formation in antibiotic biosynthesis. Nat Chem Biol 2010; 6:581-6. [PMID: 20562876 DOI: 10.1038/nchembio.393] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 04/15/2010] [Indexed: 11/09/2022]
Abstract
A-503083 B, a capuramycin-type antibiotic, contains an L-aminocaprolactam and an unsaturated hexuronic acid that are linked via an amide bond. A putative class C beta-lactamase (CapW) was identified within the biosynthetic gene cluster that-in contrast to the expected beta-lactamase activity-catalyzed an amide-ester exchange reaction to eliminate the L-aminocaprolactam with concomitant generation of a small but significant amount of the glyceryl ester derivative of A-503083 B, suggesting a potential role for an ester intermediate in the biosynthesis of capuramycins. A carboxyl methyltransferase, CapS, was subsequently demonstrated to function as an S-adenosylmethionine-dependent carboxyl methyltransferase to form the methyl ester derivative of A-503083 B. In the presence of free L-aminocaprolactam, CapW efficiently converts the methyl ester to A-503083 B, thereby generating a new amide bond. This ATP-independent amide bond formation using methyl esterification followed by an ester-amide exchange reaction represents an alternative to known strategies of amide bond formation.
Collapse
Affiliation(s)
- Masanori Funabashi
- Bioengineering Research Group I, Process Technology Research Laboratories, Daiichi Sankyo Co., Ltd., Fukushima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Funabashi M, Nonaka K, Yada C, Hosobuchi M, Masuda N, Shibata T, Van Lanen SG. Identification of the biosynthetic gene cluster of A-500359s in Streptomyces griseus SANK60196. J Antibiot (Tokyo) 2009; 62:325-32. [DOI: 10.1038/ja.2009.38] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Chen W, Huang T, He X, Meng Q, You D, Bai L, Li J, Wu M, Li R, Xie Z, Zhou H, Zhou X, Tan H, Deng Z. Characterization of the polyoxin biosynthetic gene cluster from Streptomyces cacaoi and engineered production of polyoxin H. J Biol Chem 2009; 284:10627-38. [PMID: 19233844 DOI: 10.1074/jbc.m807534200] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A gene cluster (pol) essential for the biosynthesis of polyoxin, a nucleoside antibiotic widely used for the control of phytopathogenic fungi, was cloned from Streptomyces cacaoi. A 46,066-bp region was sequenced, and 20 of 39 of the putative open reading frames were defined as necessary for polyoxin biosynthesis as evidenced by its production in a heterologous host, Streptomyces lividans TK24. The role of PolO and PolA in polyoxin synthesis was demonstrated by in vivo experiments, and their functions were unambiguously characterized as O-carbamoyltransferase and UMP-enolpyruvyltransferase, respectively, by in vitro experiments, which enabled the production of a modified compound differing slightly from that proposed earlier. These studies should provide a solid foundation for the elucidation of the molecular mechanisms for polyoxin biosynthesis, and set the stage for combinatorial biosynthesis using genes encoding different pathways for nucleoside antibiotics.
Collapse
Affiliation(s)
- Wenqing Chen
- Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200030, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Deng H, Cross SM, McGlinchey RP, Hamilton JT, O'Hagan D. In Vitro Reconstituted Biotransformation of 4-Fluorothreonine from Fluoride Ion: Application of the Fluorinase. ACTA ACUST UNITED AC 2008; 15:1268-76. [DOI: 10.1016/j.chembiol.2008.10.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 10/13/2008] [Accepted: 10/16/2008] [Indexed: 11/16/2022]
|
42
|
Li L, Xu Z, Xu X, Wu J, Zhang Y, He X, Zabriskie TM, Deng Z. The mildiomycin biosynthesis: initial steps for sequential generation of 5-hydroxymethylcytidine 5'-monophosphate and 5-hydroxymethylcytosine in Streptoverticillium rimofaciens ZJU5119. Chembiochem 2008; 9:1286-94. [PMID: 18412191 DOI: 10.1002/cbic.200800008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mildiomycin (MIL) is a peptidyl nucleoside antibiotic with strong activity against powdery mildew disease of plants. We have cloned the MIL biosynthetic gene cluster in Streptoverticillum rimofaciens ZJU5119 and shown that this organism also produces the related antifungal compound, deshydroxymethyl mildiomycin (dHM-MIL). A cosmid genomic library was screened for a putative nucleotide hydrolase gene that is related to blsM from the blasticidin S cluster. Six cosmids were identified that contained a 3.5 kb DNA fragment that harbors a homologue of blsM. The sequence of the fragment revealed two open-reading frames that are likely to function in MIL formation: milA is a CMP hydroxymethylase gene and milB is the homologue of the CMP hydrolase gene blsM. Insertional disruption of milA abolished the production of MIL but not dHM-MIL, whereas a milB knockout strain did not produce either of the peptidyl nucleosides. Recombinant MilA was produced in E. coli and shown to specifically introduce a C-5 hydroxymethyl group on CMP, but it did not accept cytosine or dCMP as a substrate. MilB was also expressed and purified from E. coli and shown to efficiently hydrolyze both hydroxymethyl-CMP (HMCMP) and could accept CMP as an alternative substrate. The ratio of free HMC and cytosine released by MilB was ca. 9:1 in in vitro assays, and is consistent with the higher levels of MIL compared to dHM-MIL that are produced by Streptoverticillum rimofaciens.
Collapse
Affiliation(s)
- Li Li
- Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 200030, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The radical S-adenosylmethionine (SAM) superfamily currently comprises more than 2800 proteins with the amino acid sequence motif CxxxCxxC unaccompanied by a fourth conserved cysteine. The charcteristic three-cysteine motif nucleates a [4Fe-4S] cluster, which binds SAM as a ligand to the unique Fe not ligated to a cysteine residue. The members participate in more than 40 distinct biochemical transformations, and most members have not been biochemically characterized. A handful of the members of this superfamily have been purified and at least partially characterized. Significant mechanistic and structural information is available for lysine 2,3-aminomutase, pyruvate formate-lyase, coproporphyrinogen III oxidase, and MoaA required for molybdopterin biosynthesis. Biochemical information is available for spore photoproduct lyase, anaerobic ribonucleotide reductase activation subunit, lipoyl synthase, and MiaB involved in methylthiolation of isopentenyladenine-37 in tRNA. The radical SAM enzymes biochemically characterized to date have in common the cleavage of the [4Fe-4S](1 +) -SAM complex to [4Fe-4S](2 +)-Met and the 5' -deoxyadenosyl radical, which abstracts a hydrogen atom from the substrate to initiate a radical mechanism.
Collapse
Affiliation(s)
- Perry A Frey
- Department of Biochemistry, University of Madison, Wisconin-Madison, Wisconsin 53726, USA.
| | | | | |
Collapse
|
44
|
Ostash I, Rebets Y, Ostash B, Kobylyanskyy A, Myronovskyy M, Nakamura T, Walker S, Fedorenko V. An ABC transporter encoding gene lndW confers resistance to landomycin E. Arch Microbiol 2008; 190:105-9. [DOI: 10.1007/s00203-008-0367-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 01/20/2008] [Accepted: 03/17/2008] [Indexed: 10/22/2022]
|
45
|
McKenzie NL, Nodwell JR. Phosphorylated AbsA2 negatively regulates antibiotic production in Streptomyces coelicolor through interactions with pathway-specific regulatory gene promoters. J Bacteriol 2007; 189:5284-92. [PMID: 17513473 PMCID: PMC1951880 DOI: 10.1128/jb.00305-07] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The AbsA two-component signal transduction system, comprised of the sensor kinase AbsA1 and the response regulator AbsA2, acts as a negative regulator of antibiotic production in Streptomyces coelicolor, for which the phosphorylated form of AbsA2 (AbsA2 approximately P) is the agent of repression. In this study, we used chromatin immunoprecipitation to show that AbsA2 binds the promoter regions of actII-ORF4, cdaR, and redZ, which encode pathway-specific activators for actinorhodin, calcium-dependent antibiotic, and undecylprodigiosin, respectively. We confirm that these interactions also occur in vitro and that the binding of AbsA2 to each gene is enhanced by phosphorylation. Induced expression of actII-ORF4 and redZ in the hyperrepressive absA1 mutant (C542) brought about pathway-specific restoration of actinorhodin and undecylprodigiosin production, respectively. Our results suggest that AbsA2 approximately P interacts with as many as four sites in the region that includes the actII-ORF4 promoter. These data suggest that AbsA2 approximately P inhibits antibiotic production by directly interfering with the expression of pathway-specific regulators of antibiotic biosynthetic gene clusters.
Collapse
Affiliation(s)
- Nancy L McKenzie
- Department of Biochemistry & Biomedical Sciences, McMaster University, Health Sciences Centre, 1200 Main St. W., Hamilton, Ontario, Canada
| | | |
Collapse
|
46
|
Ghiorghi YK, Zeller KI, Dang CV, Kaminski PA. The c-Myc target gene Rcl (C6orf108) encodes a novel enzyme, deoxynucleoside 5'-monophosphate N-glycosidase. J Biol Chem 2007; 282:8150-6. [PMID: 17234634 DOI: 10.1074/jbc.m610648200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RCL is a c-Myc target with tumorigenic potential. Genome annotation predicted that RCL belonged to the N-deoxyribosyltransferase family. However, its putative relationship to this class of enzymes did not lead to its precise biochemical function. The purified native or N-terminal His-tagged recombinant rat RCL protein expressed in Escherichia coli exhibits the same enzyme activity, deoxynucleoside 5'-monophosphate N-glycosidase, never before described. dGMP appears to be the best substrate. RCL opens a new route in the nucleotide catabolic pathways by cleaving the N-glycosidic bond of deoxynucleoside 5'-monophosphates to yield two reaction products, deoxyribose 5-phosphate and purine or pyrimidine base. Biochemical studies show marked differences in the terms of the structure and catalytic mechanism between RCL and of its closest enzyme family neighbor, N-deoxyribosyltransferase. The reaction products of this novel enzyme activity have been implicated in purine or pyrimidine salvage, glycolysis, and angiogenesis, and hence are all highly relevant for tumorigenesis.
Collapse
Affiliation(s)
- Yoan Konto Ghiorghi
- Unité de Chimie Organique, CNRS Unité de Recherche Associée 2128, Institut Pasteur, 25-28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
47
|
Grochowski LL, Zabriskie TM. Characterization of BlsM, a nucleotide hydrolase involved in cytosine production for the biosynthesis of blasticidin S. Chembiochem 2006; 7:957-64. [PMID: 16642528 DOI: 10.1002/cbic.200600026] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Biosynthesis of the antifungal agent blasticidin S in Streptomyces griseochromogenes requires the formation of free cytosine. The blsM gene in the blasticidin S gene cluster is predicted to encode a protein that has sequence homology with several nucleoside transferases. In vitro analysis of recombinant BlsM revealed that the enzyme functions as a nucleotide hydrolase and catalyzes the formation of free cytosine by using cytidine 5'-monophosphate (CMP) as the preferred substrate. Cytosine production was significantly lower with CDP, CTP, and dCMP as alternate substrates. BlsM was also observed to have low-level cytidine deaminase activity, converting cytidine and deoxycytidine to uridine and deoxyuridine, respectively. Point mutations were introduced in blsM at putative catalytic residues to generate three mutant enzymes, BlsM Ser98Asp, Glu104Ala, and Glu104Asp. All three mutants lost CMP hydrolysis activity, but the Ser98Asp mutant showed a modest increase in cytidine deaminase activity.
Collapse
Affiliation(s)
- Laura L Grochowski
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331-3507, USA
| | | |
Collapse
|
48
|
Watanabe H, Tokiwano T, Oikawa H. Biosynthetic Study of FR-900848: Origin of the Aminodeoxynucleoside Part. J Antibiot (Tokyo) 2006; 59:607-10. [PMID: 17136894 DOI: 10.1038/ja.2006.82] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Biosynthetic studies of the antifungal agent, FR-900848, were undertaken by feeding experiments with D-[U-13C,]glucose, L-[4-13C]aspartate, [5,5-2H,]dihydrouridine and [5,5-2H2]dihydrouracil. The 5"-amino-5"-deoxy-5',6'-dihydrouridine moiety was derived from ribose and aspartate. Based on the feeding experiments, a detailed biosynthetic pathway producing the aminodeoxydihydrouridine moiety of FR-900848 was proposed.
Collapse
Affiliation(s)
- Hiroaki Watanabe
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | | | | |
Collapse
|
49
|
Izumikawa M, Cheng Q, Moore BS. Priming type II polyketide synthases via a type II nonribosomal peptide synthetase mechanism. J Am Chem Soc 2006; 128:1428-9. [PMID: 16448095 PMCID: PMC2531066 DOI: 10.1021/ja0559707] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Benzoic acid priming of the enterocin and actinorhodin type II polyketide synthase complexes was accomplished in vitro via an unprecedented type II nonribosomal peptide synthetase-like mechanism involving the benzoate:acyl carrier protein (ACP) ligase EncN and the ACP EncC. The transfer of the aryl acid to the ACP is ATP-dependent, yet coenzyme A-independent, as characterized with radiolabeled substrates and protein mass spectrometry. Subsequent transport of the ACP-bound aryl group to the native enterocin and the aberrant actinorhodin ketosynthase chain length factor heterodimers was further demonstrated, thereby demonstrating the potential of this biocatalyst for engineering diverse aryl-primed aromatic polyketide agents.
Collapse
Affiliation(s)
- Miho Izumikawa
- College of Pharmacy, University of Arizona, Tucson, AZ, 85721
| | - Qian Cheng
- College of Pharmacy, University of Arizona, Tucson, AZ, 85721
| | - Bradley S. Moore
- College of Pharmacy, University of Arizona, Tucson, AZ, 85721
- Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
- E-mail:
| |
Collapse
|