1
|
Armistead FJ, Batchelor DVB, Johnson BRG, Evans SD. QCM-D Investigations on Cholesterol-DNA Tethering of Liposomes to Microbubbles for Therapy. J Phys Chem B 2023; 127:2466-2474. [PMID: 36917458 PMCID: PMC10041634 DOI: 10.1021/acs.jpcb.2c07256] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Lipid-shelled microbubbles (MBs) offer potential as theranostic agents, capable of providing both contrast enhancement in ultrasound imaging as well as a route for triggered drug release and improved localized drug delivery. A common motif in the design of such therapeutic vehicles is the attachment of the drug carrier, often in the form of liposomes, to the microbubble. Traditionally, such attachments have been based around biotin-streptavidin and maleimide-PDP chemistries. Comparatively, the use of DNA-lipid tethers offers potential advantage. First, their specificity permits the construction of more complex architectures that might include bespoke combinations of different drug-loaded liposomes and/or targeting groups, such as affimers or antibodies. Second, the use of dual-lipid tether strategies should increase the strength of the individual tethers tethering the liposomes to the bubbles. The ability of cholesterol-DNA (cDNA) tethers for conjugation of liposomes to supported lipid bilayers has previously been demonstrated. For in vivo applications, bubbles and liposomes often contain a proportion of polyethylene glycol (PEG) to promote stealth-like properties and increase lifetimes. However, the associated steric effects may hinder tethering of the drug payload. We show that while the presence of PEG reduced the tethering affinity, cDNA can still be used for the attachment of liposomes to a supported lipid bilayer (SLB) as measured via QCM-D. Importantly, we show, for the first time, that QCM-D can be used to study the tethering of microbubbles to SLBs using cDNA, signified by a decrease in the magnitude of the frequency shift compared to liposomes alone due to the reduced density of the MBs. We then replicate this tethering interaction in the bulk and observe attachment of liposomes to the shell of a central MB and hence formation of a model therapeutic microbubble.
Collapse
Affiliation(s)
- Fern J Armistead
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Damien V B Batchelor
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Benjamin R G Johnson
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Stephen D Evans
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
2
|
Jakobsen U, Rosholm KR, Vogel S. Design, synthesis and membrane anchoring strength of lipidated polyaza crown ether DNA-conjugates (LiNAs) studied by DNA-controlled assembly of liposomes. Org Biomol Chem 2022; 20:9460-9468. [PMID: 36408737 DOI: 10.1039/d2ob01517j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hybridization-controlled assays for assembly or fusion of liposomes are versatile for detection of both DNA and RNA targets and useful for the evaluation of membrane anchoring strength of LiNAs with applications in the context of liposome assembly, liposome fusion and lipid nanoparticle formulation of therapeutic LiNAs. Herein, we report the synthesis of lipid phosphoramidite building blocks for automated LiNA synthesis and a study on design requirements for efficient lipid membrane anchoring and liposome assembly dependent on lipid membrane anchor length (C10-C20) and structure, the effect of internal linkers and locked nucleic acids (LNA) building blocks on the lipid membrane anchoring strength of LiNAs.
Collapse
Affiliation(s)
- Ulla Jakobsen
- University of Southern Denmark, Department of Physics, Chemistry and Pharmacy, Campusvej 55, 5230 Odense M, Denmark.
| | - Kadla Røskva Rosholm
- University of Southern Denmark, Department of Physics, Chemistry and Pharmacy, Campusvej 55, 5230 Odense M, Denmark.
| | - Stefan Vogel
- University of Southern Denmark, Department of Physics, Chemistry and Pharmacy, Campusvej 55, 5230 Odense M, Denmark.
| |
Collapse
|
3
|
Tiwari R, Sethiya NK, Gulbake AS, Mehra NK, Murty USN, Gulbake A. A review on albumin as a biomaterial for ocular drug delivery. Int J Biol Macromol 2021; 191:591-599. [PMID: 34562538 DOI: 10.1016/j.ijbiomac.2021.09.112] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023]
Abstract
Development of ocular drug delivery system is one of the most technically challenging tasks, when compared with other routes of drug delivery. Eye (an intricate organ) is highly sophisticated and sensitive organ due to presence of various structurally differed anatomical layers, which many times limits the drug delivery approaches. Despite several limitations, many advancements have been made as evidence from various recent studies involving improvement of both residence time and permeation of the drug at the ocular region. In the last few decades, albumin(s) based ophthalmic products have been gained most attention to solve the major challenges associated with conventional ocular drug delivery systems. Interestingly, an albumin-based micro, nano, conjugates, and genetically fused target specific to ligand(s) formulation being exploited through many studies for successful ocular delivery of bioactives (mostly repurposed drugs). Past and current studies suggested that albumin(s) based ocular drug delivery system is multifunctional in nature and capable of extending both drug residence time and sustaining the release of drugs to deliver desired pharmacological outcomes. Despite wide applications, still complete progress made in albumin based ocular drug delivery is limited in literature and missing in market. So, herein we presented an overview to explore the key concepts of albumin-based nanocarrier(s) including strategies involved in the treatment of ocular disease, that have yet to be explored.
Collapse
Affiliation(s)
- Rahul Tiwari
- Faculty of Pharmacy, DIT University, Mussoorie Diversion Road, Dehradun, Uttarakhand 248009, India
| | - Neeraj K Sethiya
- Faculty of Pharmacy, DIT University, Mussoorie Diversion Road, Dehradun, Uttarakhand 248009, India
| | - Anamika Sahu Gulbake
- Faculty of Pharmacy, DIT University, Mussoorie Diversion Road, Dehradun, Uttarakhand 248009, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana 500037, India
| | - U S N Murty
- National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam 781101, India
| | - Arvind Gulbake
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam 781101, India.
| |
Collapse
|
4
|
Soler M, Lechuga LM. Biochemistry strategies for label-free optical sensor biofunctionalization: advances towards real applicability. Anal Bioanal Chem 2021; 414:5071-5085. [PMID: 34735605 PMCID: PMC9242939 DOI: 10.1007/s00216-021-03751-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 12/01/2022]
Abstract
Label-free biosensors, and especially those based on optical transducers like plasmonic or silicon photonic systems, have positioned themselves as potential alternatives for rapid and highly sensitive clinical diagnostics, on-site environmental monitoring, and for quality control in foods or other industrial applications, among others. However, most of the biosensor technology has not yet been transferred and implemented in commercial products. Among the several causes behind that, a major challenge is the lack of standardized protocols for sensor biofunctionalization. In this review, we summarize the most common methodologies for sensor surface chemical modification and bioreceptor immobilization, discussing their advantages and limitations in terms of analytical sensitivity and selectivity, reproducibility, and versatility. Special focus is placed on the suggestions of innovative strategies towards antifouling and biomimetic functional coatings to boost the applicability and reliability of optical biosensors in clinics and biomedicine. Finally, a brief overview of research directions in the area of device integration, automation, and multiplexing will give a glimpse of the future perspectives for label-free optical biosensors.
Collapse
Affiliation(s)
- Maria Soler
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST, and CIBER-BBN, Bellaterra, 08193, Barcelona, Spain.
| | - Laura M Lechuga
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST, and CIBER-BBN, Bellaterra, 08193, Barcelona, Spain
| |
Collapse
|
5
|
Hossain M, Blanchard GJ. Ceramide-mediation of diffusion in supported lipid bilayers. Chem Phys Lipids 2021; 238:105090. [PMID: 33971138 PMCID: PMC8222156 DOI: 10.1016/j.chemphyslip.2021.105090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/09/2021] [Accepted: 05/05/2021] [Indexed: 11/30/2022]
Abstract
The fluidity and compositional heterogeneity of the mammalian plasma membrane play deterministic roles in a variety of membrane functions. Designing model bilayer systems allows for compositional control over these properties. Ceramide is a phospholipid capable of extensive headgroup-region hydrogen bonding, and we report here on the role of ceramide in planar model bilayers. We use fluorescence recovery after photobleaching (FRAP) to obtain translational diffusion constants of two chromophores in supported model bilayers composed of cholesterol, 1,2-dioleoyl-sn-phosphatidylcholine (DOPC), sphingomyelin, and ceramide. FRAP data for perylene report on the acyl chain region of the model bilayer and FRAP data for 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) sense diffusional dynamics in the bilayer headgroup region. Dynamics in the headgroup region exhibit anomalous diffusion behavior that is characteristic of spatially heterogeneous media.
Collapse
Affiliation(s)
- Masroor Hossain
- Michigan State University, Department of Chemistry, 578 S. Shaw Lane, East Lansing, MI, 48824, USA
| | - G J Blanchard
- Michigan State University, Department of Chemistry, 578 S. Shaw Lane, East Lansing, MI, 48824, USA.
| |
Collapse
|
6
|
Nanogap dielectrophoresis combined with buffer exchange for detecting protein binding to trapped bioparticles. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Preparation Methods for Phospholipid Vesicle Arrays and Their Applications in Biological Analysis. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61179-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Bioinspired, nanoscale approaches in contemporary bioanalytics (Review). Biointerphases 2018; 13:040801. [DOI: 10.1116/1.5037582] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
Real-time analysis of protein and protein mixture interaction with lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:319-328. [DOI: 10.1016/j.bbamem.2017.10.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 02/04/2023]
|
10
|
Electrochemical Analysis of Enzyme Based on the Self-Assembly of Lipid Bilayer on an Electrode Surface Mediated by Hydrazone Chemistry. Anal Chem 2017; 89:13245-13251. [DOI: 10.1021/acs.analchem.7b03197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
11
|
Mazur F, Bally M, Städler B, Chandrawati R. Liposomes and lipid bilayers in biosensors. Adv Colloid Interface Sci 2017; 249:88-99. [PMID: 28602208 DOI: 10.1016/j.cis.2017.05.020] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
Biosensors for the rapid, specific, and sensitive detection of analytes play a vital role in healthcare, drug discovery, food safety, and environmental monitoring. Although a number of sensing concepts and devices have been developed, many longstanding challenges to obtain inexpensive, easy-to-use, and reliable sensor platforms remain largely unmet. Nanomaterials offer exciting possibilities for enhancing the assay sensitivity and for lowering the detection limits down to single-molecule resolution. In this review, we present an overview of liposomes and lipid bilayers in biosensing applications. Lipid assemblies in the form of spherical liposomes or two-dimensional planar membranes have been widely used in the design of biosensing assays; in particular, we highlight a number of recent promising developments of biosensors based on liposomes in suspension, liposome arrays, and lipid bilayers arrays. Assay sensitivity and specificity are discussed, advantages and drawbacks are reviewed, and possible further developments are outlined.
Collapse
|
12
|
Zeno WF, Johnson KE, Sasaki DY, Risbud SH, Longo ML. Dynamics of Crowding-Induced Mixing in Phase Separated Lipid Bilayers. J Phys Chem B 2016; 120:11180-11190. [PMID: 27723342 PMCID: PMC5548394 DOI: 10.1021/acs.jpcb.6b07119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We use fluorescence microscopy to examine the dynamics of the crowding-induced mixing transition of liquid ordered (Lo)-liquid disordered (Ld) phase separated lipid bilayers when the following particles of increasing size bind to either the Lo or Ld phase: Ubiquitin, green fluorescent protein (GFP), and nanolipoprotein particles (NLPs) of two diameters. These proteinaceous particles contained histidine-tags, which were phase targeted by binding to iminodiacetic acid (IDA) head groups, via a Cu2+ chelating mechanism, of lipids that specifically partition into either the Lo phase or Ld phase. The degree of steric pressure was controlled by varying the size of the bound particle (10-240 kDa) and the amount of binding sites present (i.e., DPIDA concentrations of 9 and 12 mol%) in the supported lipid multibilayer platform used here. We develop a mass transfer-based diffusional model to analyze the observed Lo phase domain dissolution that, along with visual observations and activation energy calculations, provides insight into the sequence of events in crowding-induced mixing. Our results suggest that the degree of steric pressure and target phase influence not only the efficacy of steric-pressure induced mixing, but the rate and controlling mechanism for which it occurs.
Collapse
Affiliation(s)
- Wade F. Zeno
- Department of Chemical Engineering, University of California Davis, Davis, California 95616, United States
| | - Kaitlin E. Johnson
- Department of Chemical Engineering, University of California Davis, Davis, California 95616, United States
| | - Darryl Y. Sasaki
- Sandia National Laboratories, P.O. Box 969, Livermore, California 94551, United States
| | - Subhash H. Risbud
- Department of Materials Science and Engineering, University of California Davis, Davis, California 95616, United States
| | - Marjorie L. Longo
- Department of Chemical Engineering, University of California Davis, Davis, California 95616, United States
| |
Collapse
|
13
|
Jakobsen U, Vogel S. Mismatch discrimination of lipidated DNA and LNA-probes (LiNAs) in hybridization-controlled liposome assembly. Org Biomol Chem 2016; 14:6985-95. [PMID: 27356098 DOI: 10.1039/c6ob01120a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Assays for mismatch discrimination and detection of single nucleotide variations by hybridization-controlled assembly of liposomes, which do not require tedious surface chemistry, are versatile for both DNA and RNA targets. We report herein a comprehensive study on different DNA and LNA (locked nucleic acids) probe designs, including membrane-anchoring requirements, studies on different probes and target lengths (including overhangs), DNA and RNA targets (including sequences associated with pathogens) for lipidated nucleic acids (LiNAs). Advantages and limitations of the liposome assembly based assay in the context of mismatch discrimination and SNP detection are presented. The advantages of membrane-anchored LiNA-probes compared to chemically attached probes on solid nanoparticles (e.g. gold nanoparticles) are described. Key functionalities such as non-covalent attachment of LiNA probes without the need for long spacers and the inherent mobility of membrane-anchored probes in lipid-bilayer membranes will be described for several different probe designs.
Collapse
Affiliation(s)
- Ulla Jakobsen
- University of Southern Denmark, Department of Physics, Chemistry and Pharmacy, Campusvej 55, 5230 Odense M, Denmark.
| | | |
Collapse
|
14
|
Zeno WF, Rystov A, Sasaki DY, Risbud SH, Longo ML. Crowding-Induced Mixing Behavior of Lipid Bilayers: Examination of Mixing Energy, Phase, Packing Geometry, and Reversibility. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4688-4697. [PMID: 27096947 PMCID: PMC5519306 DOI: 10.1021/acs.langmuir.6b00831] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In an effort to develop a general thermodynamic model from first-principles to describe the mixing behavior of lipid membranes, we examined lipid mixing induced by targeted binding of small (Green Fluorescent Protein (GFP)) and large (nanolipoprotein particles (NLPs)) structures to specific phases of phase-separated lipid bilayers. Phases were targeted by incorporation of phase-partitioning iminodiacetic acid (IDA)-functionalized lipids into ternary lipid mixtures consisting of DPPC, DOPC, and cholesterol. GFP and NLPs, containing histidine tags, bound the IDA portion of these lipids via a metal, Cu(2+), chelating mechanism. In giant unilamellar vesicles (GUVs), GFP and NLPs bound to the Lo domains of bilayers containing DPIDA, and bound to the Ld region of bilayers containing DOIDA. At sufficiently large concentrations of DPIDA or DOIDA, lipid mixing was induced by bound GFP and NLPs. The validity of the thermodynamic model was confirmed when it was found that the statistical mixing distribution as a function of crowding energy for smaller GFP and larger NLPs collapsed to the same trend line for each GUV composition. Moreover, results of this analysis show that the free energy of mixing for a ternary lipid bilayer consisting of DOPC, DPPC, and cholesterol varied from 7.9 × 10(-22) to 1.5 × 10(-20) J/lipid at the compositions observed, decreasing as the relative cholesterol concentration was increased. It was discovered that there appears to be a maximum packing density, and associated maximum crowding pressure, of the NLPs, suggestive of circular packing. A similarity in mixing induced by NLP1 and NLP3 despite large difference in projected areas was analytically consistent with monovalent (one histidine tag) versus divalent (two histidine tags) surface interactions, respectively. In addition to GUVs, binding and induced mixing behavior of NLPs was also observed on planar, supported lipid multibilayers. The mixing process was reversible, with Lo domains reappearing after addition of EDTA for NLP removal.
Collapse
Affiliation(s)
| | | | - Darryl Y Sasaki
- Sandia National Laboratories , P.O. Box 969, Livermore, California 94551, United States
| | | | | |
Collapse
|
15
|
Srinivasan P. Multifunctional-layered materials for creating membrane-restricted nanodomains and nanoscale imaging. APPLIED PHYSICS LETTERS 2016; 108:033702. [PMID: 26869725 PMCID: PMC4723406 DOI: 10.1063/1.4940388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/11/2016] [Indexed: 06/05/2023]
Abstract
Experimental platform that allows precise spatial positioning of biomolecules with an exquisite control at nanometer length scales is a valuable tool to study the molecular mechanisms of membrane bound signaling. Using micromachined thin film gold (Au) in layered architecture, it is possible to add both optical and biochemical functionalities in in vitro. Towards this goal, here, I show that docking of complementary DNA tethered giant phospholiposomes on Au surface can create membrane-restricted nanodomains. These nanodomains are critical features to dissect molecular choreography of membrane signaling complexes. The excited surface plasmon resonance modes of Au allow label-free imaging at diffraction-limited resolution of stably docked DNA tethered phospholiposomes, and lipid-detergent bicelle structures. Such multifunctional building block enables realizing rigorously controlled in vitro set-up to model membrane anchored biological signaling, besides serving as an optical tool for nanoscale imaging.
Collapse
Affiliation(s)
- P Srinivasan
- Department of Electrical and Computer Engineering, University of California , Santa Barbara, California 93106, USA and Neuroscience Research Institute, University of California , Santa Barbara, California 93106, USA
| |
Collapse
|
16
|
|
17
|
Multi-dimensional glycan microarrays with glyco-macroligands. Glycoconj J 2015; 32:483-95. [DOI: 10.1007/s10719-015-9580-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/06/2015] [Accepted: 03/10/2015] [Indexed: 01/16/2023]
|
18
|
Wang D, Wu Z, Gao A, Zhang W, Kang C, Tao Q, Yang P. Soft landing of cell-sized vesicles on solid surfaces for robust vehicle capture/release. SOFT MATTER 2015; 11:3094-3099. [PMID: 25787226 DOI: 10.1039/c5sm00049a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Based on a concept of a smooth and steady landing of fragile objects without destruction via a soft cushion, we have developed a model for the soft landing of deformable lipid giant unilamellar vesicles (GUVs) on solid surfaces. The foundation for a successful soft landing is a solid substrate with a two-layer coating, including a bottom layer of positively charged lysozymes and an upper lipid membrane layer. We came to a clear conclusion that anionic GUVs when sedimented on a surface, the vesicle rupture occurs upon the direct contact with the positively charged lysozyme layer due to the strong coulombic interactions. In contrast, certain separation distances was achieved by the insertion of a soft lipid membrane cushion between the charged GUVs and the lysozyme layer, which attenuated the coulombic force and created a mild buffer zone, ensuring the robust capture of GUVs on the substrate without their rupture. The non-covalent bonding facilitated a fully reversible stimuli-responsive capture/release of GUVs from the biomimetic solid surface, which has never been demonstrated before due to the extreme fragility of GUVs. Moreover, the controllable capture/release of cells has been proven to be of vital importance in biotechnology, and similarity the present approach to capture/release cells is expected to open the previously inaccessible avenues of research.
Collapse
Affiliation(s)
- Dehui Wang
- Key Laboratory of Applied Surface and Colloids Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The current study deals with the self-assembly of phospholipids on flat supports using the Martini coarse grain model.
Collapse
Affiliation(s)
- Anil R. Mhashal
- Physical Chemistry Division
- National Chemical Laboratory
- Pune
- India
| | - Sudip Roy
- Physical Chemistry Division
- National Chemical Laboratory
- Pune
- India
| |
Collapse
|
20
|
Application of nucleic acid-lipid conjugates for the programmable organisation of liposomal modules. Adv Colloid Interface Sci 2014; 207:290-305. [PMID: 24461711 DOI: 10.1016/j.cis.2013.12.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 11/29/2013] [Accepted: 12/19/2013] [Indexed: 01/06/2023]
Abstract
We present a critical review of recent work related to the assembly of multicompartment liposome clusters using nucleic acids as a specific recognition unit to link liposomal modules. The asymmetry in nucleic acid binding to its non-self complementary strand allows the controlled association of different compartmental modules into composite systems. These biomimetic multicompartment architectures could have future applications in chemical process control, drug delivery and synthetic biology. We assess the different methods of anchoring DNA to lipid membrane surfaces and discuss how lipid and DNA properties can be tuned to control the morphology and properties of liposome superstructures. We consider different methods for chemical communication between the contents of liposomal compartments within these clusters and assess the progress towards making this chemical mixing efficient, switchable and chemically specific. Finally, given the current state of the art, we assess the outlook for future developments towards functional modular networks of liposomes.
Collapse
|
21
|
Abstract
Antibody-based microarrays are a novel technology that hold great promise in proteomics. Microarrays can be printed with thousands of recombinant antibodies carrying the desired specificities, the biologic sample (e.g., an entire proteome) and any specifically bound analytes detected. The microarray patterns that are generated can then be converted into proteomic maps, or molecular fingerprints, revealing the composition of the proteome. Using this tool, global proteome analysis and protein expression profiling will thus provide new opportunities for biomarker discovery, drug target identification and disease diagnostics, as well as providing insights into disease biology. Intense work is currently underway to develop this novel technology platform into the high-throughput proteomic tool required by the research community.
Collapse
Affiliation(s)
- Christer Wingren
- Department of Immunotechnology, Lund University, PO Box 7031, Lund, Sweden.
| | | |
Collapse
|
22
|
Roling O, Wendeln C, Kauscher U, Seelheim P, Galla HJ, Ravoo BJ. Layer-by-layer deposition of vesicles mediated by supramolecular interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:10174-10182. [PMID: 23898918 DOI: 10.1021/la4011218] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Vesicles are dynamic supramolecular structures with a bilayer membrane consisting of lipids or synthetic amphiphiles enclosing an aqueous compartment. Lipid vesicles have often been considered as mimics for biological cells. In this paper, we present a novel strategy for the preparation of three-dimensional multilayered structures in which vesicles containing amphiphilic β-cyclodextrin are interconnected by proteins using cyclodextrin guests as bifunctional linker molecules. We compared two pairs of adhesion molecules for the immobilization of vesicles: mannose-concanavalin A and biotin-streptavidin. Microcontact printing and thiol-ene click chemistry were used to prepare suitable substrates for the vesicles. Successful immobilization of intact vesicles through the mannose-concanavalin A and biotin-streptavidin motifs was verified by fluorescence microscopy imaging and dynamic light scattering, while the vesicle adlayer was characterized by quartz crystal microbalance with dissipation monitoring. In the case of the biotin-streptavidin motif, up to six layers of intact vesicles could be immobilized in a layer-by-layer fashion using supramolecular interactions. The construction of vesicle multilayers guided by noncovalent vesicle-vesicle junctions can be taken as a minimal model for artificial biological tissue.
Collapse
Affiliation(s)
- Oliver Roling
- Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Ogunyankin MO, Huber DL, Sasaki DY, Longo ML. Nanoscale patterning of membrane-bound proteins formed through curvature-induced partitioning of phase-specific receptor lipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:6109-6115. [PMID: 23642033 DOI: 10.1021/la401011d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This work describes a technique for forming high-density arrays and patterns of membrane-bound proteins through binding to a curvature-organized compositional pattern of metal-chelating lipids (Cu(2+)-DOIDA or Cu(2+)-DSIDA). In this bottom-up approach, the underlying support is an e-beam formed, square lattice pattern of hemispheres. This curvature pattern sorts Cu(2+)-DOIDA to the 200 nm hemispherical lattice sites of a 600 nm × 600 nm unit cell in Ld - Lo phase separated lipid multibilayers. Binding of histidine-tagged green fluorescent protein (His-GFP) creates a high density array of His-GFP-bound pixels localized to the square lattice sites. In comparison, the negative pixel pattern is created by sorting Cu(2+)-DSIDA in Ld - Lβ' phase separated lipid multibilayers to the flat grid between the lattice sites followed by binding to His-GFP. Lattice defects in the His-GFP pattern lead to interesting features such as pattern circularity. We also observe defect-free arrays of His-GFP that demonstrate perfect arrays can be formed by this method suggesting the possibility of using this approach for the localization of various active molecules to form protein, DNA, or optically active molecular arrays.
Collapse
Affiliation(s)
- Maria O Ogunyankin
- Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, California 95616, United States
| | | | | | | |
Collapse
|
24
|
Hosta-Rigau L, Zhang Y, Teo BM, Postma A, Städler B. Cholesterol--a biological compound as a building block in bionanotechnology. NANOSCALE 2013; 5:89-109. [PMID: 23172231 DOI: 10.1039/c2nr32923a] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cholesterol is a molecule with many tasks in nature but also a long history in science. This feature article highlights the contribution of this small compound to bionanotechnology. We discuss relevant chemical aspects in this context followed by an overview of its self-assembly capabilities both as a free molecule and when conjugated to a polymer. Further, cholesterol in the context of liposomes is reviewed and its impact ranging from biosensing to drug delivery is outlined. Cholesterol is and will be an indispensable player in bionanotechnology, contributing to the progress of this potent field of research.
Collapse
|
25
|
Pfeiffer I, Zäch M. Formation of pit-spanning phospholipid bilayers on nanostructured silicon dioxide surfaces for studying biological membrane events. Methods Mol Biol 2013; 991:113-125. [PMID: 23546664 DOI: 10.1007/978-1-62703-336-7_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Zwitterionic phospholipid vesicles are known to adsorb and ultimately rupture on flat silicon dioxide (SiO2) surfaces to form supported lipid bilayers. Surface topography, however, alters the kinetics and mechanistic details of vesicles adsorption, which under certain conditions may be exploited to form a suspended bilayer. Here we describe the use of nanostructured SiO2 surfaces prepared by the colloidal lithography technique to scrutinize the formation of suspended 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayers from a solution of small unilamellar lipid vesicles (SUVs). Atomic force microscopy (AFM) and quartz crystal microbalance with dissipation monitoring (QCM-D) were employed to characterize nanostructure fabrication and lipid bilayer assembly on the surface.
Collapse
Affiliation(s)
- Indriati Pfeiffer
- Department of Cell biology and Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | | |
Collapse
|
26
|
|
27
|
Sarmento M, Prieto M, Fernandes F. Reorganization of lipid domain distribution in giant unilamellar vesicles upon immobilization with different membrane tethers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2605-15. [DOI: 10.1016/j.bbamem.2012.05.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/22/2012] [Accepted: 05/25/2012] [Indexed: 10/28/2022]
|
28
|
Hosta-Rigau L, Jensen BEB, Fjeldsø KS, Postma A, Li G, Goldie KN, Albericio F, Zelikin AN, Städler B. Surface-adhered composite poly(vinyl alcohol) physical hydrogels: polymersome-aided delivery of therapeutic small molecules. Adv Healthc Mater 2012. [PMID: 23184834 DOI: 10.1002/adhm.201200092] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
29
|
Voskuhl J, Wendeln C, Versluis F, Fritz EC, Roling O, Zope H, Schulz C, Rinnen S, Arlinghaus HF, Ravoo BJ, Kros A. Immobilisierung von Liposomen und Vesikeln auf strukturierten Oberflächen mithilfe eines Coiled-Coil-Peptidbindungsmotivs. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201204836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
30
|
Voskuhl J, Wendeln C, Versluis F, Fritz EC, Roling O, Zope H, Schulz C, Rinnen S, Arlinghaus HF, Ravoo BJ, Kros A. Immobilization of Liposomes and Vesicles on Patterned Surfaces by a Peptide Coiled-Coil Binding Motif. Angew Chem Int Ed Engl 2012; 51:12616-20. [DOI: 10.1002/anie.201204836] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Indexed: 11/10/2022]
|
31
|
Woller JG, Börjesson K, Svedhem S, Albinsson B. Reversible hybridization of DNA anchored to a lipid membrane via porphyrin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:1944-1953. [PMID: 22201337 DOI: 10.1021/la2039976] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The binding of zinc-porphyrin-anchored linear DNA to supported lipid membranes was studied using quartz crystal microbalance with dissipation monitoring (QCM-D). The hydrophobic anchor is positioned at the ninth base of 39-base-pair-long DNA sequences, ensuring that the DNA is positioned parallel to the membrane surface when bound, an important prerequisite for using this type of construct for the creation of two-dimensional (2D) DNA patterns on the surface. The anchor consists of a porphyrin group linked to the DNA via two or three phenylethynylene moieties. Double-stranded DNA where one of the strands was modified with either of these anchors displayed irreversible binding, although binding to the membrane was faster for the derivatives with the short anchor. The binding and subsequent hybridization of single-stranded constructs on the surface was demonstrated at 60 °C, for both anchors, revealing a coverage-dependent behavior. At low coverage, hybridization results in an increase in mass (as measured by QCM-D) by a factor of ~1.5, accompanied by a slight increase in the rigidity of the DNA layer. At high coverage, hybridization expels molecules from the membrane, associated with an initial increase, followed by a decrease in DNA mass (as detected both by QCM-D and by an optical technique). Melting of the DNA on the surface was performed, followed by rehybridization of the single-stranded species left on the surface with their complementary strand, demonstrating the reversibility inherent in using DNA for the formation of membrane-confined nanopatterns.
Collapse
Affiliation(s)
- Jakob G Woller
- Department of Chemical and Biological Engineering/Physical Chemistry, Chalmers University of Technology, S-41296 Gothenburg, Sweden
| | | | | | | |
Collapse
|
32
|
De Vlaminck I, Henighan T, van Loenhout MTJ, Pfeiffer I, Huijts J, Kerssemakers JWJ, Katan AJ, van Langen-Suurling A, van der Drift E, Wyman C, Dekker C. Highly parallel magnetic tweezers by targeted DNA tethering. NANO LETTERS 2011; 11:5489-5493. [PMID: 22017420 DOI: 10.1021/nl203299e] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Single-molecule force-spectroscopy methods such as magnetic and optical tweezers have emerged as powerful tools for the detailed study of biomechanical aspects of DNA-enzyme interactions. As typically only a single molecule of DNA is addressed in an individual experiment, these methods suffer from a low data throughput. Here, we report a novel method for targeted, nonrandom immobilization of DNA-tethered magnetic beads in regular arrays through microcontact printing of DNA end-binding labels. We show that the increase in density due to the arrangement of DNA-bead tethers in regular arrays can give rise to a one-order-of-magnitude improvement in data-throughput in magnetic tweezers experiments. We demonstrate the applicability of this technique in tweezers experiments where up to 450 beads are simultaneously tracked in parallel, yielding statistical data on the mechanics of DNA for 357 molecules from a single experimental run. Our technique paves the way for kilo-molecule force spectroscopy experiments, enabling the study of rare events in DNA-protein interactions and the acquisition of large statistical data sets from individual experimental runs.
Collapse
Affiliation(s)
- Iwijn De Vlaminck
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, Lorentzweg 1, 2628 CJ, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ehrlich N, Christensen AL, Stamou D. Fluorescence Anisotropy Based Single Liposome Assay to Measure Molecule–Membrane Interactions. Anal Chem 2011; 83:8169-76. [DOI: 10.1021/ac2017234] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Nicky Ehrlich
- Bio-Nanotechnology Laboratory, Department of Neuroscience and Pharmacology, ‡Nano-Science Center, and §Lundbeck Foundation Center for Biomembranes in Nanomedicine, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Andreas L. Christensen
- Bio-Nanotechnology Laboratory, Department of Neuroscience and Pharmacology, ‡Nano-Science Center, and §Lundbeck Foundation Center for Biomembranes in Nanomedicine, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Dimitrios Stamou
- Bio-Nanotechnology Laboratory, Department of Neuroscience and Pharmacology, ‡Nano-Science Center, and §Lundbeck Foundation Center for Biomembranes in Nanomedicine, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
34
|
Abstract
Tethered lipid membranes or immobilized lipid vesicles are frequently used as biomimetic systems. In this article, the authors presented a suitable method for efficient immobilization of lipid vesicles onto a broad range of surfaces, enabling analysis by quantitative methods even under rigid, mechanical conditions-bare surfaces such as hydrophilic glass surfaces as well as hydrophobic polymer slides or metal surfaces such as gold. The immobilization of vesicles was based on the electrostatic interaction of zwitterionic or negatively charged lipid vesicles with two types of cationic chemically modified bovine serum albumin (cBSA) blood plasma proteins (cBSA-113 and cBSA-147). Quantitative analysis of protein adsorption was performed as the cBSA coatings were characterized by atomic force microscopy, surface zeta potential measurement, fluorescence microscopy, and surface plasmon spectroscopy, revealing a maximal surface coverage 270-280 ng/cm(2) for 0.02 mg/ml cBSA on gold. Small unilamellar vesicles as well as giant unilamellar vesicles (GUVs) were readily immobilized (∼15 min) on cBSA coated surfaces. GUVs with 5-10 mol% negatively charged 1,2,-dipalmitoyl-sn-glycero-3-phosphoglycerol remained stable in liquid for at least 5 weeks.
Collapse
|
35
|
Abstract
Affinity proteomics, mainly represented by antibody microarrays, has in recent years been established as a powerful tool for high-throughput (disease) proteomics. The technology can be used to generate detailed protein expression profiles, or protein maps, of focused set of proteins in crude proteomes and potentially even high-resolution portraits of entire proteomes. The technology provides unique opportunities, for example biomarker discovery, disease diagnostics, patient stratification and monitoring of disease, and taking the next steps toward personalized medicine. However, the process of designing high-performing, high-density antibody micro- and nanoarrays has proven to be challenging, requiring truly cross-disciplinary efforts to be adopted. In this mini-review, we address one of these key technological issues, namely, the choice of probe format, and focus on the use of recombinant antibodies vs. polyclonal and monoclonal antibodies for the generation of antibody arrays.
Collapse
|
36
|
Hadorn M, Eggenberger Hotz P. Encapsulated Multi-vesicle Assemblies of Programmable Architecture: Towards Personalized Healthcare. BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES 2011. [DOI: 10.1007/978-3-642-18472-7_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
37
|
|
38
|
Bally M, Bailey K, Sugihara K, Grieshaber D, Vörös J, Städler B. Liposome and lipid bilayer arrays towards biosensing applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:2481-97. [PMID: 20925039 DOI: 10.1002/smll.201000644] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Sensitive and selective biosensors for high-throughput screening are having an increasing impact in modern medical care. The establishment of robust protein biosensing platforms however remains challenging, especially when membrane proteins are involved. Although this type of proteins is of enormous relevance since they are considered in >60% of the pharmaceutical drug targets, their fragile nature (i.e., the requirement to preserve their natural lipid environment to avoid denaturation and loss of function) puts strong additional prerequisites onto a successful biochip. In this review, the leading approaches to create lipid membrane-based arrays towards the creation of membrane protein biosensing platforms are described. Liposomes assembled in micro- and nanoarrays and the successful set-ups containing functional membrane proteins, as well as the use of liposomes in networks, are discussed in the first part. Then, the complementary approaches to create cell-mimicking supported membrane patches on a substrate in an array format will be addressed. Finally, the progress in assembling free-standing (functional) lipid bilayers over nanopore arrays for ion channel sensing will be reported. This review illustrates the rapid pace by which advances are being made towards the creation of a heterogeneous biochip for the high-throughput screening of membrane proteins for diagnostics, drug screening, or drug discovery purposes.
Collapse
Affiliation(s)
- Marta Bally
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | | | | | | | | | | |
Collapse
|
39
|
Bürgel SC, Guillaume-Gentil O, Zheng L, Vörös J, Bally M. Zirconium ion mediated formation of liposome multilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:10995-11002. [PMID: 20507172 DOI: 10.1021/la9047566] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Phospholipid vesicles have attracted considerable interest as a platform for a variety of biomolecular binding assays, especially in the area of membrane protein sensing. The development of liposome-based biosensors widely relies on the availability of simple and efficient protocols for their surface immobilization. We present a novel approach toward the creation of three-dimensional phospholipid vesicle constructs using multivalent zirconium ions as linkers between the liposomes. Such three-dimensional sensing platforms are likely to play a key role in the development of biosensing devices with increased loading capacity and sensitivity. After demonstrating the affinity of Zr(4+) toward the phospholipids, we formed vesicle multilayers by sequential injections of solutions containing either liposomes or ZrOCl(2). In situ adlayer characterization was carried out by optical waveguide lightmode spectroscopy (OWLS) and quartz crystal microbalance with dissipation (QCM-D) measurements while imaging was performed by atomic force microscopy (AFM) and fluorescence microscopy. Multilayers were successfully constructed, and as demonstrated in a model fluorescence-based biomolecular binding assay, the sensor's loading capacity was increased. Furthermore, we observed that lipid exchange between the vesicles is promoted in the presence of Zr(4+) and that addition of a phosphate-containing buffer leads to adlayer loosening and creation of lipidic tubular structures. The approach presented here could be applied to the study of membrane proteins in a highly sensitive manner due to the increased surface area or to produce functional coatings for controlled drug release and host response.
Collapse
Affiliation(s)
- Sebastian C Bürgel
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH and University Zurich, 8092 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
40
|
Pfeiffer I, Petronis S, Köper I, Kasemo B, Zäch M. Vesicle adsorption and phospholipid bilayer formation on topographically and chemically nanostructured surfaces. J Phys Chem B 2010; 114:4623-31. [PMID: 20232804 DOI: 10.1021/jp908283g] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have investigated the influence of combined nanoscale topography and surface chemistry on lipid vesicle adsorption and supported bilayer formation on well-controlled model surfaces. To this end, we utilized colloidal lithography to nanofabricate pitted Au-SiO(2) surfaces, where the top surface and the walls of the pits consisted of silicon dioxide whereas the bottom of the pits was made of gold. The diameter and height of the pits were fixed at 107 and 25 nm, respectively. Using the quartz crystal microbalance with dissipation monitoring (QCM-D) technique and atomic force microscopy (AFM), we monitored the processes occurring upon exposure of these nanostructured surfaces to a solution of extruded unilamellar 1-palmitolyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) vesicles with a nominal diameter of 100 nm. To scrutinize the influence of surface chemistry, we studied two cases: (1) the bare gold surface at the bottom of the pits and (2) the gold passivated by biotinamidocaproyl-labeled bovine serum albumin (BBSA) prior to vesicle exposure. As in our previous work on pitted silicon dioxide surfaces, we found that the pit edges promote bilayer formation on the SiO(2) surface for the vesicle size used here in both cases. Whereas in the first case we observed a slow, continuous adsorption of intact vesicles onto the gold surface at the bottom of the pits, the presence of BBSA in the second case prevented the adsorption of intact vesicles into the pits. Instead, our experimental results, together with free energy calculations for various potential membrane configurations, indicate the formation of a continuous, supported lipid bilayer that spans across the pits. These results are significantly important for various biotechnology applications utilizing patterned lipid bilayers and highlight the power of the combined QCM-D/AFM approach to study the mechanism of lipid bilayer formation on nanostructured surfaces.
Collapse
Affiliation(s)
- Indriati Pfeiffer
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany.
| | | | | | | | | |
Collapse
|
41
|
Niemeyer CM. Semisynthetic DNA-protein conjugates for biosensing and nanofabrication. Angew Chem Int Ed Engl 2010; 49:1200-16. [PMID: 20091721 DOI: 10.1002/anie.200904930] [Citation(s) in RCA: 300] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Conjugation with artificial nucleic acids allows proteins to be modified with a synthetically accessible, robust tag. This attachment is addressable in a highly specific manner by means of molecular recognition events, such as Watson-Crick hybridization. Such DNA-protein conjugates, with their combined properties, have a broad range of applications, such as in high-performance biomedical diagnostic assays, fundamental research on molecular recognition, and the synthesis of DNA nanostructures. This Review surveys current approaches to generate DNA-protein conjugates as well as recent advances in their applications. For example, DNA-protein conjugates have been assembled into model systems for the investigation of catalytic cascade reactions and light-harvesting devices. Such hybrid conjugates are also used for the biofunctionalization of planar surfaces for micro- and nanoarrays, and for decorating inorganic nanoparticles to enable applications in sensing, materials science, and catalysis.
Collapse
Affiliation(s)
- Christof M Niemeyer
- Technische Universität Dortmund, Fakultät Chemie, Biologisch-Chemische Mikrostrukturtechnik, Otto-Hahn Strasse 6, 44227 Dortmund, Germany.
| |
Collapse
|
42
|
Hadorn M, Eggenberger Hotz P. DNA-mediated self-assembly of artificial vesicles. PLoS One 2010; 5:e9886. [PMID: 20360854 PMCID: PMC2845621 DOI: 10.1371/journal.pone.0009886] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 03/04/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although multicompartment systems made of single unilamellar vesicles offer the potential to outperform single compartment systems widely used in analytic, synthetic, and medical applications, their use has remained marginal to date. On the one hand, this can be attributed to the binary character of the majority of the current tethering protocols that impedes the implementation of real multicomponent or multifunctional systems. On the other hand, the few tethering protocols theoretically providing multicompartment systems composed of several distinct vesicle populations suffer from the readjustment of the vesicle formation procedure as well as from the loss of specificity of the linking mechanism over time. METHODOLOGY/PRINCIPAL FINDINGS In previous studies, we presented implementations of multicompartment systems and resolved the readjustment of the vesicle formation procedure as well as the loss of specificity by using linkers consisting of biotinylated DNA single strands that were anchored to phospholipid-grafted biotinylated PEG tethers via streptavidin as a connector. The systematic analysis presented herein provides evidences for the incorporation of phospholipid-grafted biotinylated PEG tethers to the vesicle membrane during vesicle formation, providing specific anchoring sites for the streptavidin loading of the vesicle membrane. Furthermore, DNA-mediated vesicle-vesicle self-assembly was found to be sequence-dependent and to depend on the presence of monovalent salts. CONCLUSIONS/SIGNIFICANCE This study provides a solid basis for the implementation of multi-vesicle assemblies that may affect at least three distinct domains. (i) Analysis. Starting with a minimal system, the complexity of a bottom-up system is increased gradually facilitating the understanding of the components and their interaction. (ii) Synthesis. Consecutive reactions may be implemented in networks of vesicles that outperform current single compartment bioreactors in versatility and productivity. (iii) Personalized medicine. Transport and targeting of long-lived, pharmacologically inert prodrugs and their conversion to short-lived, active drug molecules directly at the site of action may be accomplished if multi-vesicle assemblies of predefined architecture are used.
Collapse
Affiliation(s)
- Maik Hadorn
- Artificial Intelligence Laboratory, Department of Informatics, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
43
|
Chandrawati R, Hosta-Rigau L, Vanderstraaten D, Lokuliyana SA, Städler B, Albericio F, Caruso F. Engineering advanced capsosomes: maximizing the number of subcompartments, cargo retention, and temperature-triggered reaction. ACS NANO 2010; 4:1351-61. [PMID: 20192233 DOI: 10.1021/nn901843j] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Advanced mimics of cells require a large yet controllable number of subcompartments encapsulated within a scaffold, equipped with a trigger to initiate, terminate, and potentially restart an enzymatic reaction. Recently introduced capsosomes, polymer capsules containing thousands of liposomes, are a promising platform for the creation of artificial cells. Capsosomes are formed by sequentially layering liposomes and polymers onto particle templates, followed by removal of the template cores. Herein, we engineer advanced capsosomes and demonstrate the ability to control the number of subcompartments and hence the degree of cargo loading. To achieve this, we employ a range of polymer separation layers and liposomes to form functional capsosomes comprising multiple layers of enzyme-loaded liposomes. Differences in conversion rates of an enzymatic assay are used to verify that multilayers of intact enzyme-loaded liposomes are assembled within a polymer hydrogel capsule. The size-dependent retention of the cargo encapsulated within the liposomal subcompartments during capsosome assembly and its dependence on environmental pH changes are also examined. We further show that temperature can be used to trigger an enzymatic reaction at the phase transition temperature of the liposomal subcompartments, and that the encapsulated enzymes can be utilized repeatedly in several subsequent conversions. These engineered capsosomes with tailored properties present new opportunities en route to the development of functional artificial cells.
Collapse
Affiliation(s)
- Rona Chandrawati
- Centre for Nanoscience and Nanotechnology, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
44
|
Niemeyer C. Halbsynthetische DNA-Protein-Konjugate für Biosensorik und Nanofabrikation. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200904930] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Hedsten K, Fonollosa J, Enoksson P, Modh P, Bengtsson J, Sutherland DS, Dmitriev A. Optical Label-Free Nanoplasmonic Biosensing Using a Vertical-Cavity Surface-Emitting Laser and Charge-Coupled Device. Anal Chem 2010; 82:1535-9. [DOI: 10.1021/ac9025169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Karin Hedsten
- BioNano Systems Laboratory and Photonics Laboratory, MC2, and Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden, Department of Electronics, University of Barcelona, Martí i Franquès n1, 08028 Barcelona, Spain, and Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, 8000 Aarhus C, Denmark
| | - Jordi Fonollosa
- BioNano Systems Laboratory and Photonics Laboratory, MC2, and Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden, Department of Electronics, University of Barcelona, Martí i Franquès n1, 08028 Barcelona, Spain, and Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, 8000 Aarhus C, Denmark
| | - Peter Enoksson
- BioNano Systems Laboratory and Photonics Laboratory, MC2, and Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden, Department of Electronics, University of Barcelona, Martí i Franquès n1, 08028 Barcelona, Spain, and Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, 8000 Aarhus C, Denmark
| | - Peter Modh
- BioNano Systems Laboratory and Photonics Laboratory, MC2, and Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden, Department of Electronics, University of Barcelona, Martí i Franquès n1, 08028 Barcelona, Spain, and Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, 8000 Aarhus C, Denmark
| | - Jörgen Bengtsson
- BioNano Systems Laboratory and Photonics Laboratory, MC2, and Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden, Department of Electronics, University of Barcelona, Martí i Franquès n1, 08028 Barcelona, Spain, and Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, 8000 Aarhus C, Denmark
| | - Duncan S. Sutherland
- BioNano Systems Laboratory and Photonics Laboratory, MC2, and Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden, Department of Electronics, University of Barcelona, Martí i Franquès n1, 08028 Barcelona, Spain, and Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, 8000 Aarhus C, Denmark
| | - Alexandre Dmitriev
- BioNano Systems Laboratory and Photonics Laboratory, MC2, and Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden, Department of Electronics, University of Barcelona, Martí i Franquès n1, 08028 Barcelona, Spain, and Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, 8000 Aarhus C, Denmark
| |
Collapse
|
46
|
Wolny PM, Spatz JP, Richter RP. On the adsorption behavior of biotin-binding proteins on gold and silica. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:1029-1034. [PMID: 19736978 DOI: 10.1021/la902226b] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Streptavidin (SAv), avidin (Av), and neutravidin (NAv) have become widely used molecular tools in biotechnology thanks to their remarkable affinity for biotin. Their tetravalency renders these molecules particularly interesting for the functionalization of solid-liquid interfaces. Using the quartz crystal microbalance with dissipation monitoring, we systematically investigate the deposition of biotin-binding proteins to two surfaces that are popular in biotechnology: gold and silica. We find that simple physisorption of biotin-binding proteins is a viable method to confer biotin-binding functionality to gold surfaces. Both SAv and Av form dense, stable protein monolayers that retain biotin-binding activity and are largely inert to the unspecific binding of bovine serum albumin. Furthermore, we report that SAv resists adsorption to silica over a wide range of pH and ionic strength. The contrast in the binding behavior of SAv on silica and on gold suggests a simple strategy for the selective biofunctionalization of nano- or microstructured surfaces.
Collapse
Affiliation(s)
- Patricia M Wolny
- Biosurfaces Unit, CIC biomaGUNE, Paseo Miramon 182, 20009 Donostia-San Sebastian, Spain
| | | | | |
Collapse
|
47
|
Svedendahl M, Chen S, Dmitriev A, Käll M. Refractometric sensing using propagating versus localized surface plasmons: a direct comparison. NANO LETTERS 2009; 9:4428-33. [PMID: 19842703 DOI: 10.1021/nl902721z] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We present a direct experimental comparison between the refractive index sensing capabilities of localized surface plasmon resonances (LSPRs) in gold nanodisks and propagating surface plasmon resonances (SPRs) on 50 nm gold films. The comparison is made using identical experimental conditions, and for the same resonance wavelength, lambda(SP) congruent with 700 nm. Biosensing experiments with biotin-avidin coupling reveal that the two sensing platforms have very similar performance, despite a superior bulk refractive index sensing figure of merit for the SPR sensor. The results demonstrate that LSPR sensing based on simple transmission or reflection measurements is a highly competitive technique compared to the traditional SPR sensor.
Collapse
Affiliation(s)
- Mikael Svedendahl
- Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | | | | | | |
Collapse
|
48
|
Chen S, Svedendahl M, Käll M, Gunnarsson L, Dmitriev A. Ultrahigh sensitivity made simple: nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics. NANOTECHNOLOGY 2009; 20:434015. [PMID: 19801769 DOI: 10.1088/0957-4484/20/43/434015] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We present a simple and robust scheme for biosensing with an ultralow limit-of-detection down to several pg cm(-2) (or several tens of attomoles cm(-2)) based on optical label-free biodetection with localized surface plasmon resonances. The scheme utilizes cost-effective optical components and comprises a white light source, a properly functionalized sensor surface enclosed in a simple fluidics chip, and a spectral analyzer. The sensor surface is produced by a bottom-up nanofabrication technique with hole mask colloidal lithography. Despite its simplicity, the method is able to reliably detect protein-protein binding events at low picomolar and femtomolar concentrations, which is exemplified by the label-free detection of the extracellular adherence protein (EAP) found on the outer surface of the bacterium Staphylococcus aureus and of prostate-specific antigen (PSA), which is believed to be a prostate cancer marker. These experiments pave the way towards an ultra-sensitive yet compact biodetection platform for point-of-care diagnostics applications.
Collapse
Affiliation(s)
- S Chen
- Department of Applied Physics, Chalmers University of Technology, Göteborg, Sweden
| | | | | | | | | |
Collapse
|
49
|
Chandrawati R, Städler B, Postma A, Connal LA, Chong SF, Zelikin AN, Caruso F. Cholesterol-mediated anchoring of enzyme-loaded liposomes within disulfide-stabilized polymer carrier capsules. Biomaterials 2009; 30:5988-98. [DOI: 10.1016/j.biomaterials.2009.07.040] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 07/22/2009] [Indexed: 01/17/2023]
|
50
|
Tabaei SR, Jönsson P, Brändén M, Höök F. Self-assembly formation of multiple DNA-tethered lipid bilayers. J Struct Biol 2009; 168:200-6. [DOI: 10.1016/j.jsb.2009.07.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 06/25/2009] [Accepted: 07/01/2009] [Indexed: 11/28/2022]
|