1
|
Kovachka S, Panosetti M, Grimaldi B, Azoulay S, Di Giorgio A, Duca M. Small molecule approaches to targeting RNA. Nat Rev Chem 2024; 8:120-135. [PMID: 38278932 DOI: 10.1038/s41570-023-00569-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/28/2024]
Abstract
The development of innovative methodologies to identify RNA binders has attracted enormous attention in chemical biology and drug discovery. Although antibiotics targeting bacterial ribosomal RNA have been on the market for decades, the renewed interest in RNA targeting reflects the need to better understand complex intracellular processes involving RNA. In this context, small molecules are privileged tools used to explore the biological functions of RNA and to validate RNAs as therapeutic targets, and they eventually are to become new drugs. Despite recent progress, the rational design of specific RNA binders requires a better understanding of the interactions which occur with the RNA target to reach the desired biological response. In this Review, we discuss the challenges to approaching this underexplored chemical space, together with recent strategies to bind, interact and affect biologically relevant RNAs.
Collapse
Affiliation(s)
- Sandra Kovachka
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice, Nice, France
| | - Marc Panosetti
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice, Nice, France
- Molecular Medicine Research Line, Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Benedetto Grimaldi
- Molecular Medicine Research Line, Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Stéphane Azoulay
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice, Nice, France
| | - Audrey Di Giorgio
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice, Nice, France
| | - Maria Duca
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice, Nice, France.
| |
Collapse
|
2
|
Umuhire Juru A, Hargrove AE. Frameworks for targeting RNA with small molecules. J Biol Chem 2021; 296:100191. [PMID: 33334887 PMCID: PMC7948454 DOI: 10.1074/jbc.rev120.015203] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/31/2022] Open
Abstract
Since the characterization of mRNA in 1961, our understanding of the roles of RNA molecules has significantly grown. Beyond serving as a link between DNA and proteins, RNA molecules play direct effector roles by binding to various ligands, including proteins, DNA, other RNAs, and metabolites. Through these interactions, RNAs mediate cellular processes such as the regulation of gene transcription and the enhancement or inhibition of protein activity. As a result, the misregulation of RNA molecules is often associated with disease phenotypes, and RNA molecules have been increasingly recognized as potential targets for drug development efforts, which in the past had focused primarily on proteins. Although both small molecule-based and oligonucleotide-based therapies have been pursued in efforts to target RNA, small-molecule modalities are often favored owing to several advantages including greater oral bioavailability. In this review, we discuss three general frameworks (sets of premises and hypotheses) that, in our view, have so far dominated the discovery of small-molecule ligands for RNA. We highlight the unique merits of each framework as well as the pitfalls associated with exclusive focus of ligand discovery efforts within only one framework. Finally, we propose that RNA ligand discovery can benefit from using progress made within these three frameworks to move toward a paradigm that formulates RNA-targeting questions at the level of RNA structural subclasses.
Collapse
Affiliation(s)
| | - Amanda E Hargrove
- Department of Chemistry, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
3
|
Li J, Fan YY, Wang M, Duan HL, Zhang J, Dang FQ, Zhang L, Zhang ZQ. A Light-Up Strategy with Aggregation-Induced Emission for Identification of HIV-I RNA-Binding Small Molecules. Anal Chem 2020; 92:13532-13538. [PMID: 32900180 DOI: 10.1021/acs.analchem.0c03010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluorescence methods are important tools to identify RNA-binding small molecules and further employed to study RNA-protein interactions. Most reported fluorescence strategies are based on covalent labeling of ligand or RNA, which can impede the binding between them to some extent, or light-off fluorescent indicator displacement methods, which ask for particular indicators. Herein, a label-free fluorescence strategy based on the light-on aggregation-induced emission (AIE) feature of tetraphenylethene (TPE) derivative to screen RNA-binding small molecules is presented. As a result of electrostatic interaction, the selected peptides can induce self-assembly of the TPE derivative to produce strong fluorescent emission; when the peptides are bound to RNA molecules, the TPE derivative is in the deaggregated form and shows no or minimum fluorescence. Based on the phenomenon, a competitive displacement assay combined with the TPE reporter was employed to characterize selected small molecules for their binding abilities to HIV-I RNAs. This AIE feature enables the fluorescence-off state of the TPE derivative in the presence of RNA-peptide complex to be "lightened up" quickly as the RNA-binding molecule is introduced and the peptide is competitively released. This strategy was carried out to test several small molecule binders, and the results are consistent with previous reports. This report gives an inspiring example of AIE-based fluorescent assay for HIV-I RNA-binding molecule screening, which may further be explored to build a drug screening platform for RNA-protein interference.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yao-Yao Fan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Man Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Hui-Ling Duan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jing Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Fu-Quan Dang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Liqin Zhang
- Inspiratio Biosciences, Inc., Fremont, California 94538, United States
| | - Zhi-Qi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
4
|
Aradi K, Di Giorgio A, Duca M. Aminoglycoside Conjugation for RNA Targeting: Antimicrobials and Beyond. Chemistry 2020; 26:12273-12309. [PMID: 32539167 DOI: 10.1002/chem.202002258] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/11/2020] [Indexed: 01/04/2023]
Abstract
Natural aminoglycosides are therapeutically useful antibiotics and very efficient RNA ligands. They are oligosaccharides that contain several ammonium groups able to interfere with the translation process in prokaryotes upon binding to bacterial ribosomal RNA (rRNA), and thus, impairing protein synthesis. Even if aminoglycosides are commonly used in therapy, these RNA binders lack selectivity and are able to bind to a wide number of RNA sequences/structures. This is one of the reasons for their toxicity and limited applications in therapy. At the same time, the ability of aminoglycosides to bind to various RNAs renders them a great source of inspiration for the synthesis of new binders with improved affinity and specificity toward several therapeutically relevant RNA targets. Thus, a number of studies have been performed on these complex and highly functionalized compounds, leading to the development of various synthetic methodologies toward the synthesis of conjugated aminoglycosides. The aim of this review is to highlight recent progress in the field of aminoglycoside conjugation, paying particular attention to modifications performed toward the improvement of affinity and especially to the selectivity of the resulting compounds. This will help readers to understand how to introduce a desired chemical modification for future developments of RNA ligands as antibiotics, antiviral, and anticancer compounds.
Collapse
Affiliation(s)
- Klara Aradi
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), 06100, Nice, France
| | - Audrey Di Giorgio
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), 06100, Nice, France
| | - Maria Duca
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), 06100, Nice, France
| |
Collapse
|
5
|
Martin C, De Piccoli S, Gaysinski M, Becquart C, Azoulay S, Di Giorgio A, Duca M. Unveiling RNA‐Binding Properties of Verapamil and Preparation of New Derivatives as Inhibitors of HIV‐1 Tat‐TAR Interaction. Chempluschem 2020. [DOI: 10.1002/cplu.201900650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Céline Martin
- Université Côte d'Azur Institute of Chemistry of Nice (ICN) 28 avenue Valrose 06100 Nice France
| | - Serena De Piccoli
- Université Côte d'Azur Institute of Chemistry of Nice (ICN) 28 avenue Valrose 06100 Nice France
| | - Marc Gaysinski
- Université Côte d'Azur Institute of Chemistry of Nice (ICN) 28 avenue Valrose 06100 Nice France
| | - Cécile Becquart
- Université Côte d'Azur Institute of Chemistry of Nice (ICN) 28 avenue Valrose 06100 Nice France
| | - Stéphane Azoulay
- Université Côte d'Azur Institute of Chemistry of Nice (ICN) 28 avenue Valrose 06100 Nice France
| | - Audrey Di Giorgio
- Université Côte d'Azur Institute of Chemistry of Nice (ICN) 28 avenue Valrose 06100 Nice France
| | - Maria Duca
- Université Côte d'Azur Institute of Chemistry of Nice (ICN) 28 avenue Valrose 06100 Nice France
| |
Collapse
|
6
|
Di Giorgio A, Duca M. Synthetic small-molecule RNA ligands: future prospects as therapeutic agents. MEDCHEMCOMM 2019; 10:1242-1255. [PMID: 31534649 PMCID: PMC6748380 DOI: 10.1039/c9md00195f] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/30/2019] [Indexed: 12/17/2022]
Abstract
RNA is one of the most intriguing and promising biological targets for the discovery of innovative drugs in many pathologies and various biologically relevant RNAs that could serve as drug targets have already been identified. Among the most important ones, one can mention prokaryotic ribosomal RNA which is the target of several marketed antibiotics, viral RNAs or oncogenic microRNAs that are tightly involved in the development and progression of various cancers. Oligonucleotides are efficient and specific RNA targeting agents but suffer from poor pharmacodynamic and pharmacokinetic properties. For this reason, a number of synthetic small-molecule ligands have been identified and studied upon screening of chemical libraries or focused design of RNA binders. In this review, we report the most relevant examples of synthetic compounds bearing sufficient selectivity to envisage clinical studies and future therapeutic applications with a particular attention for the main strategies that can be undertaken toward the improvement of selectivity and biological activity.
Collapse
Affiliation(s)
- A Di Giorgio
- Université Côte d'Azur , CNRS , Institute of Chemistry of Nice (ICN) , Nice , France .
| | - M Duca
- Université Côte d'Azur , CNRS , Institute of Chemistry of Nice (ICN) , Nice , France .
| |
Collapse
|
7
|
Wang S, Singh M, Ling M, Li D, Christison KM, Lin-Cereghino J, Lin-Cereghino GP, Xue L. Synthesis of nucleobase-neomycin conjugates and evaluation of their DNA binding, cytotoxicities, and antibacterial properties. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2169-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
8
|
Thamban Chandrika N, Garneau-Tsodikova S. Comprehensive review of chemical strategies for the preparation of new aminoglycosides and their biological activities. Chem Soc Rev 2018; 47:1189-1249. [PMID: 29296992 PMCID: PMC5818290 DOI: 10.1039/c7cs00407a] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A systematic analysis of all synthetic and chemoenzymatic methodologies for the preparation of aminoglycosides for a variety of applications (therapeutic and agricultural) reported in the scientific literature up to 2017 is presented. This comprehensive analysis of derivatization/generation of novel aminoglycosides and their conjugates is divided based on the types of modifications used to make the new derivatives. Both the chemical strategies utilized and the biological results observed are covered. Structure-activity relationships based on different synthetic modifications along with their implications for activity and ability to avoid resistance against different microorganisms are also presented.
Collapse
Affiliation(s)
- Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA.
| | | |
Collapse
|
9
|
Kong B, Joshi T, Belousoff MJ, Tor Y, Graham B, Spiccia L. Neomycin B-cyclen conjugates and their Zn(II) complexes as RNA-binding agents. J Inorg Biochem 2016; 162:334-342. [DOI: 10.1016/j.jinorgbio.2015.11.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/09/2015] [Accepted: 11/30/2015] [Indexed: 11/26/2022]
|
10
|
Crawford DW, Blakeley BD, Chen PH, Sherpa C, Le Grice SF, Laird-Offringa IA, McNaughton BR. An Evolved RNA Recognition Motif That Suppresses HIV-1 Tat/TAR-Dependent Transcription. ACS Chem Biol 2016; 11:2206-15. [PMID: 27253715 DOI: 10.1021/acschembio.6b00145] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Potent and selective recognition and modulation of disease-relevant RNAs remain a daunting challenge. We previously examined the utility of the U1A N-terminal RNA recognition motif as a scaffold for tailoring new RNA hairpin recognition and showed that as few as one or two mutations can result in moderate affinity (low μM dissociation constant) for the human immunodeficiency virus (HIV) trans-activation response element (TAR) RNA, an RNA hairpin controlling transcription of the human immunodeficiency virus (HIV) genome. Here, we use yeast display and saturation mutagenesis of established RNA-binding regions in U1A to identify new synthetic proteins that potently and selectively bind TAR RNA. Our best candidate has truly altered, not simply broadened, RNA-binding selectivity; it binds TAR with subnanomolar affinity (apparent dissociation constant of ∼0.5 nM) but does not appreciably bind the original U1A RNA target (U1hpII). It specifically recognizes the TAR RNA hairpin in the context of the HIV-1 5'-untranslated region, inhibits the interaction between TAR RNA and an HIV trans-activator of transcription (Tat)-derived peptide, and suppresses Tat/TAR-dependent transcription. Proteins described in this work are among the tightest TAR RNA-binding reagents-small molecule, nucleic acid, or protein-reported to date and thus have potential utility as therapeutics and basic research tools. Moreover, our findings demonstrate how a naturally occurring RNA recognition motif can be dramatically resurfaced through mutation, leading to potent and selective recognition-and modulation-of disease-relevant RNA.
Collapse
Affiliation(s)
| | | | - Po-Han Chen
- Department of Surgery and Department of Biochemistry & Molecular Biology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, Los Angeles, California 90033, United States
| | - Chringma Sherpa
- Basic
Research Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Stuart F.J. Le Grice
- Basic
Research Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ite A. Laird-Offringa
- Department of Surgery and Department of Biochemistry & Molecular Biology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, Los Angeles, California 90033, United States
| | | |
Collapse
|
11
|
Chandrika NT, Garneau-Tsodikova S. A review of patents (2011-2015) towards combating resistance to and toxicity of aminoglycosides. MEDCHEMCOMM 2015; 7:50-68. [PMID: 27019689 PMCID: PMC4806794 DOI: 10.1039/c5md00453e] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Since the discovery of the first aminoglycoside (AG), streptomycin, in 1943, these broad-spectrum antibiotics have been extensively used for the treatment of Gram-negative and Gram-positive bacterial infections. The inherent toxicity (ototoxicity and nephrotoxicity) associated with their long-term use as well as the emergence of resistant bacterial strains have limited their usage. Structural modifications of AGs by AG-modifying enzymes, reduced target affinity caused by ribosomal modification, and decrease in their cellular concentration by efflux pumps have resulted in resistance towards AGs. However, the last decade has seen a renewed interest among the scientific community for AGs as exemplified by the recent influx of scientific articles and patents on their therapeutic use. In this review, we use a non-conventional approach to put forth this renaissance on AG development/application by summarizing all patents filed on AGs from 2011-2015 and highlighting some related publications on the most recent work done on AGs to overcome resistance and improving their therapeutic use while reducing ototoxicity and nephrotoxicity. We also present work towards developing amphiphilic AGs for use as fungicides as well as that towards repurposing existing AGs for potential newer applications.
Collapse
Affiliation(s)
- Nishad Thamban Chandrika
- University of Kentucky, Department of Pharmaceutical Sciences, 789 South Limestone Street, Lexington, KY, USA. Fax: 859-257-7585; Tel: 859-218-1686
| | - Sylvie Garneau-Tsodikova
- University of Kentucky, Department of Pharmaceutical Sciences, 789 South Limestone Street, Lexington, KY, USA. Fax: 859-257-7585; Tel: 859-218-1686
| |
Collapse
|
12
|
Multicomponent diversity oriented synthesis of multivalent glycomimetics containing hexafluorovaline. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.07.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Influence of linker length and composition on enzymatic activity and ribosomal binding of neomycin dimers. Antimicrob Agents Chemother 2015; 59:3899-905. [PMID: 25896697 DOI: 10.1128/aac.00861-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 04/10/2015] [Indexed: 12/16/2022] Open
Abstract
The human and bacterial A site rRNA binding as well as the aminoglycoside-modifying enzyme (AME) activity against a series of neomycin B (NEO) dimers is presented. The data indicate that by simple modifications of linker length and composition, substantial differences in rRNA selectivity and AME activity can be obtained. We tested five different AMEs with dimeric NEO dimers that were tethered via triazole, urea, and thiourea linkages. We show that triazole-linked dimers were the worst substrates for most AMEs, with those containing the longer linkers showing the largest decrease in activity. Thiourea-linked dimers that showed a decrease in activity by AMEs also showed increased bacterial A site binding, with one compound (compound 14) even showing substantially reduced human A site binding. The urea-linked dimers showed a substantial decrease in activity by AMEs when a conformationally restrictive phenyl linker was introduced. The information learned herein advances our understanding of the importance of the linker length and composition for the generation of dimeric aminoglycoside antibiotics capable of avoiding the action of AMEs and selective binding to the bacterial rRNA over binding to the human rRNA.
Collapse
|
14
|
Bellucci MC, Sani M, Sganappa A, Volonterio A. Diversity oriented combinatorial synthesis of multivalent glycomimetics through a multicomponent domino process. ACS COMBINATORIAL SCIENCE 2014; 16:711-20. [PMID: 25330415 DOI: 10.1021/co5001184] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Both multicomponent reactions and diversity oriented synthesis are indispensable tools for the modern medicinal chemist. However, their employment for the synthesis of multivalent glycomimetics has not been exploited so far although the importance that such compounds play in exploring multivalency on glycoside inhibition. Herein, we report the combinatorial synthesis of diversity oriented hetero di- and trivalent glycomimetics through a multicomponent domino process. The process is high yielding and very general, working efficiently with easily accessible sugar starting materials such as glycosylamines, glycosylazides, and glycosylisothiocyanates, having the reactive functional groups tethered either directly to the anomeric carbon, through a suitable linker, or to the primary 6 position of hexoses (or 5 position of pentoses), leading, in the latter case, to glycomimetics with artificial enzymatically stable backbone. The process has been also exploited for the multicomponent synthesis of aminoglycoside (neomycin) conjugates.
Collapse
Affiliation(s)
- Maria Cristina Bellucci
- Department
of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Monica Sani
- C.N.R. Istituto di Chimica del Riconoscimento Molecolare, via Mancinelli 7, 20131 Milano, Italy
| | - Aurora Sganappa
- Department
of Chemistry, Materials, and Chemical Engineer “G. Natta”, Politecnico di Milano,via Mancinelli 7, 20131 Milano, Italy
| | - Alessandro Volonterio
- Department
of Chemistry, Materials, and Chemical Engineer “G. Natta”, Politecnico di Milano,via Mancinelli 7, 20131 Milano, Italy
| |
Collapse
|
15
|
Blond A, Ennifar E, Tisné C, Micouin L. The design of RNA binders: targeting the HIV replication cycle as a case study. ChemMedChem 2014; 9:1982-96. [PMID: 25100137 DOI: 10.1002/cmdc.201402259] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Indexed: 01/08/2023]
Abstract
The human immunodeficiency virus 1 (HIV-1) replication cycle is finely tuned with many important steps involving RNA-RNA or protein-RNA interactions, all of them being potential targets for the development of new antiviral compounds. This cycle can also be considered as a good benchmark for the evaluation of early-stage strategies aiming at designing drugs that bind to RNA, with the possibility to correlate in vitro activities with antiviral properties. In this review, we highlight different approaches developed to interfere with four important steps of the HIV-1 replication cycle: the early stage of reverse transcription, the transactivation of viral transcription, the nuclear export of partially spliced transcripts and the dimerization step.
Collapse
Affiliation(s)
- Aurélie Blond
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601, CNRS, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, 45 Rue des Saints Pères, 75006 Paris (France)
| | | | | | | |
Collapse
|
16
|
Fosso MY, Li Y, Garneau-Tsodikova S. New trends in aminoglycosides use. MEDCHEMCOMM 2014; 5:1075-1091. [PMID: 25071928 PMCID: PMC4111210 DOI: 10.1039/c4md00163j] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Despite their inherent toxicity and the acquired bacterial resistance that continuously threaten their long-term clinical use, aminoglycosides (AGs) still remain valuable components of the antibiotic armamentarium. Recent literature shows that the AGs' role has been further expanded as multi-tasking players in different areas of study. This review aims at presenting some of the new trends observed in the use of AGs in the past decade, along with the current understanding of their mechanisms of action in various bacterial and eukaryotic cellular processes.
Collapse
Affiliation(s)
- Marina Y. Fosso
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy, BioPharm Complex, Room 423, 789 South Limestone Street, Lexington, KY, 40536-0596, U.S.A
| | - Yijia Li
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy, BioPharm Complex, Room 423, 789 South Limestone Street, Lexington, KY, 40536-0596, U.S.A
| | - Sylvie Garneau-Tsodikova
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy, BioPharm Complex, Room 423, 789 South Limestone Street, Lexington, KY, 40536-0596, U.S.A
| |
Collapse
|
17
|
Blakeley BD, McNaughton BR. Synthetic RNA recognition motifs that selectively recognize HIV-1 trans-activation response element hairpin RNA. ACS Chem Biol 2014; 9:1320-9. [PMID: 24635165 DOI: 10.1021/cb500138h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A multitude of RNA hairpins are directly implicated in human disease. Many of these RNAs are potentially valuable targets for drug discovery and basic research. However, very little is known about the molecular requirements for achieving sequence-selective recognition of a particular RNA sequence and structure. Although a relatively modest number of synthetic small to medium-sized RNA-binding molecules have been reported, rapid identification of sequence-selective RNA-binding molecules remains a daunting challenge. RNA recognition motif (RRM) domains may represent unique privileged scaffolds for the generation of synthetic proteins that selectively recognize structured disease-relevant RNAs, including RNA hairpins. As a demonstration of this potential, we mutated putative RNA-binding regions within the U1A RRM and a variant thereof and screened these synthetic proteins for affinity to HIV-1 trans-activation response (TAR) element hairpin RNA. Some of these U1A-derived proteins bind TAR with single-digit micromolar dissociation constants, and they do so preferentially over the native protein's original target RNA (U1hpII) and a DNA TAR variant. Binding affinity is not appreciably diminished by addition of 10 molar equivalents of cellular tRNAs from Escherichia coli. Taken together, our findings represent the first synthetic RRMs that selectively bind a disease-relevant RNA hairpin and may represent a general approach for achieving sequence-selective recognition of RNA hairpins, which are the focus of therapeutic discovery and basic research.
Collapse
Affiliation(s)
- Brett D. Blakeley
- Department of Chemistry, and ‡Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Brian R. McNaughton
- Department of Chemistry, and ‡Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
18
|
Vo DD, Staedel C, Zehnacker L, Benhida R, Darfeuille F, Duca M. Targeting the production of oncogenic microRNAs with multimodal synthetic small molecules. ACS Chem Biol 2014; 9:711-21. [PMID: 24359019 DOI: 10.1021/cb400668h] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are a recently discovered category of small RNA molecules that regulate gene expression at the post-transcriptional level. Accumulating evidence indicates that miRNAs are aberrantly expressed in a variety of human cancers and revealed to be oncogenic and to play a pivotal role in initiation and progression of these pathologies. It is now clear that the inhibition of oncogenic miRNAs, defined as blocking their biosynthesis or their function, could find an application in the therapy of different types of cancer in which these miRNAs are implicated. Here we report the design, synthesis, and biological evaluation of new small-molecule RNA ligands targeting the production of oncogenic microRNAs. In this work we focused our attention on miR-372 and miR-373 that are implicated in the tumorigenesis of different types of cancer such as gastric cancer. These two oncogenic miRNAs are overexpressed in gastric cancer cells starting from their precursors pre-miR-372 and pre-miR-373, two stem-loop structured RNAs that lead to mature miRNAs after cleavage by the enzyme Dicer. The small molecules described herein consist of the conjugation of two RNA binding motives, i.e., the aminoglycoside neomycin and different natural and artificial nucleobases, in order to obtain RNA ligands with increased affinity and selectivity compared to that of parent compounds. After the synthesis of this new series of RNA ligands, we demonstrated that they are able to inhibit the production of the oncogenic miRNA-372 and -373 by binding their pre-miRNAs and inhibiting the processing by Dicer. Moreover, we proved that some of these compounds bear anti-proliferative activity toward gastric cancer cells and that this activity is likely linked to a decrease in the production of targeted miRNAs. To date, only few examples of small molecules targeting oncogenic miRNAs have been reported, and such inhibitors could be extremely useful for the development of new anticancer therapeutic strategies as well as useful biochemical tools for the study of miRNAs' pathways and mechanisms. Furthermore, this is the first time that a design based on current knowledge about RNA targeting is proposed in order to target miRNAs' production with small molecules.
Collapse
Affiliation(s)
- Duc Duy Vo
- Institut de Chimie
de Nice UMR7272 CNRS, University of Nice, Parc Valrose, 06100 Nice, France
| | - Cathy Staedel
- ARNA
Laboratory, INSERM U869, University of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Laura Zehnacker
- Institut de Chimie
de Nice UMR7272 CNRS, University of Nice, Parc Valrose, 06100 Nice, France
| | - Rachid Benhida
- Institut de Chimie
de Nice UMR7272 CNRS, University of Nice, Parc Valrose, 06100 Nice, France
| | - Fabien Darfeuille
- ARNA
Laboratory, INSERM U869, University of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Maria Duca
- Institut de Chimie
de Nice UMR7272 CNRS, University of Nice, Parc Valrose, 06100 Nice, France
| |
Collapse
|
19
|
Ennifar E, Aslam MW, Strasser P, Hoffmann G, Dumas P, van Delft FL. Structure-guided discovery of a novel aminoglycoside conjugate targeting HIV-1 RNA viral genome. ACS Chem Biol 2013; 8:2509-17. [PMID: 24015986 DOI: 10.1021/cb400498n] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The dimerization initiation site (DIS) of the HIV-1 genomic RNA is a conserved stem-loop that promotes viral genome dimerization by forming a loop-loop complex. The DIS constitutes a potentially interesting target because it is crucial for several key steps of the viral replication. In this work we describe the synthesis of a rationally designed aminoglycoside conjugate that binds the HIV-1 DIS viral RNA with high specificity, as shown by an extensive in vitro binding characterization. We propose a three-dimensional model of the drug-RNA interaction that perfectly fits with binding data. Our results show the feasibility of targeting the HIV DIS viral RNA dimer and open the way to the rationale design of a new class of antiviral drugs. In addition, due to similarities between the HIV-1 DIS RNA and the bacterial aminoacyl decoding site (A site) RNA, we show that this novel aminoglycoside conjugate also binds the bacterial A site with a similar affinity as natural aminoglycoside antibiotics.
Collapse
Affiliation(s)
- Eric Ennifar
- Architecture et Réactivité
de l’ARN, Institut de Biologie Moléculaire et Cellulaire, CNRS, Université Louis Pasteur, 15 rue René Descartes, 67084 Strasbourg, France
| | - Muhammad Waqar Aslam
- Institute for Molecules and Materials, Radboud University Nijmegen, Heijendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Perrine Strasser
- Architecture et Réactivité
de l’ARN, Institut de Biologie Moléculaire et Cellulaire, CNRS, Université Louis Pasteur, 15 rue René Descartes, 67084 Strasbourg, France
| | - Guillaume Hoffmann
- Architecture et Réactivité
de l’ARN, Institut de Biologie Moléculaire et Cellulaire, CNRS, Université Louis Pasteur, 15 rue René Descartes, 67084 Strasbourg, France
| | - Philippe Dumas
- Architecture et Réactivité
de l’ARN, Institut de Biologie Moléculaire et Cellulaire, CNRS, Université Louis Pasteur, 15 rue René Descartes, 67084 Strasbourg, France
| | - Floris L. van Delft
- Institute for Molecules and Materials, Radboud University Nijmegen, Heijendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
20
|
Grabar Branilović M, Tomić S, Tumir LM, Piantanida I. The bis-phenanthridinium system flexibility and position of covalently bound uracil finely tunes the interaction with polynucleotides. MOLECULAR BIOSYSTEMS 2013; 9:2051-62. [PMID: 23681361 DOI: 10.1039/c3mb25578f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of structurally similar bis-phenanthridinium derivatives, some with uracil at different positions, revealed different interactions with various polynucleotides. The uniform binding of mononucleotides to all studied compounds by "cyclobisintercaland" binding type indicated that compound-polynucleotide interaction selectivity was the consequence of polynucleotide secondary structure and not direct nucleobase recognition. Although affinity and fluorimetric response of all studied compounds toward ds-DNA/RNA was similar, the thermal denaturation and ICD signal-based sensing was highly sensitive to polynucleotide basepair composition and secondary structure. In particular, for the specific poly rAH(+)-poly rAH(+) double helix MD parameters are newly developed and used for analysis of its complexes. The highly sensitive orientation of phenanthridinium as well as the role of the uracil substituent, both binding interactions finely tuned by the steric and binding properties of the DNA/RNA-ligand interaction site, offer novel structural information about binding and steric properties of particular DNA-RNA systems.
Collapse
Affiliation(s)
- Marina Grabar Branilović
- Laboratory for Chemical and Biological Crystallography, Division of Physical Chemistry, Ruđer Bošković Institute, HR 10002 Zagreb, P.O.B. 180, Croatia.
| | | | | | | |
Collapse
|
21
|
|
22
|
Fair RJ, Hensler ME, Thienphrapa W, Dam QN, Nizet V, Tor Y. Selectively guanidinylated aminoglycosides as antibiotics. ChemMedChem 2012; 7:1237-44. [PMID: 22639134 PMCID: PMC3383777 DOI: 10.1002/cmdc.201200150] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Indexed: 11/07/2022]
Abstract
The emergence of virulent, drug-resistant bacterial strains coupled with a minimal output of new pharmaceutical agents to combat them makes this a critical time for antibacterial research. Aminoglycosides are a well-studied, highly potent class of naturally occurring antibiotics with scaffolds amenable to modification, and therefore, they provide an excellent starting point for the development of semisynthetic, next-generation compounds. To explore the potential of this approach, we synthesized a small library of aminoglycoside derivatives selectively and minimally modified at one or two positions with a guanidine group replacing the corresponding amine or hydroxy functionality. Most guanidino-aminoglycosides showed increased affinity for the ribosomal decoding rRNA site, the cognate biological target of the natural products, when compared with their parent antibiotics, as measured by an in vitro fluorescence resonance energy transfer (FRET) A-site binding assay. Additionally, certain analogues showed improved minimum inhibitory concentration (MIC) values against resistant bacterial strains, including methicillin-resistant Staphylococcus aureus (MRSA). An amikacin derivative holds particular promise with activity greater than or equal to the parent antibiotic in the majority of bacterial strains tested.
Collapse
Affiliation(s)
- Richard J. Fair
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (USA)
| | - Mary E. Hensler
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (USA)
| | - Wdee Thienphrapa
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (USA)
| | - Quang N. Dam
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (USA)
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (USA)
| | - Yitzhak Tor
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (USA)
| |
Collapse
|
23
|
Szychowski J, Kondo J, Zahr O, Auclair K, Westhof E, Hanessian S, Keillor JW. Inhibition of aminoglycoside-deactivating enzymes APH(3')-IIIa and AAC(6')-Ii by amphiphilic paromomycin O2''-ether analogues. ChemMedChem 2011; 6:1961-6. [PMID: 21905229 DOI: 10.1002/cmdc.201100346] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Indexed: 11/08/2022]
Affiliation(s)
- Janek Szychowski
- Department of Chemistry, Université de Montréal, C. P. 6128, Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | | | | | | | | | | | | |
Collapse
|
24
|
Dix AV, Fischer L, Sarrazin S, Redgate CPH, Esko JD, Tor Y. Cooperative, heparan sulfate-dependent cellular uptake of dimeric guanidinoglycosides. Chembiochem 2011; 11:2302-10. [PMID: 20931643 DOI: 10.1002/cbic.201000399] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Oligoarginine and guanidinium-rich molecular transporters have been shown to facilitate the intracellular delivery of a diverse range of biologically relevant cargos. Several such transporters have been suggested to interact with cell-surface heparan sulfate proteoglycans as part of their cell-entry pathway. Unlike for other guanidinium-rich transporters, the cellular uptake of guanidinoglycosides at nanomolar concentrations is exclusively heparan sulfate dependent. As distinct cells differ in their expression levels and/or the composition of cell-surface heparan sulfate proteoglycans, one might be able to exploit such differences to selectively target certain cell types. To systematically investigate the nature of their cell-surface interactions, monomeric and dimeric guanidinoglycosides were synthesized by using neomycin, paromomycin, and tobramycin as scaffolds. These transporters differ in the number and 3D arrangement of their guanidinium groups. Their cellular uptake was measured by flow cytometry in wild-type and mutant Chinese hamster ovary cells after the corresponding fluorescent streptavidin-phycoerythrin-Cy5 conjugates had been generated. All derivatives showed negligible uptake in mutant cells lacking heparan sulfate. Decreasing the number of guanidinium groups diminished uptake, but the three dimensional arrangement of these groups was less important for cellular delivery. Whereas conjugates prepared with the monomeric carriers showed significantly reduced uptake in mutant cells expressing heparan sulfate chains with altered patterns of sulfation, conjugates prepared with the dimeric guanidinoglycosides could overcome this deficiency and maintain high levels of uptake in such deficient cells. This finding suggests that cellular uptake depends on the valency of the transporter and both the content and arrangement of the sulfate groups on the cell-surface receptors. Competition studies with chemically desulfated or carboxy-reduced heparin derivatives corroborated these observations. Taken together, these findings show that increasing the valency of the transporters retains heparan sulfate specificity and provides reagents that could distinguish different cell types based on the specific composition of their cell-surface heparan sulfate proteoglycans.
Collapse
Affiliation(s)
- Andrew V Dix
- Department of Chemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
25
|
Houghton JL, Green KD, Chen W, Garneau-Tsodikova S. The future of aminoglycosides: the end or renaissance? Chembiochem 2010; 11:880-902. [PMID: 20397253 DOI: 10.1002/cbic.200900779] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Indexed: 11/05/2022]
Abstract
Although aminoglycosides have been used as antibacterials for decades, their use has been hindered by their inherent toxicity and the resistance that has emerged to these compounds. It seems that such issues have relegated a formerly front-line class of antimicrobials to the proverbial back shelf. However, recent advances have demonstrated that novel aminoglycosides have a potential to overcome resistance as well as to be used to treat HIV-1 and even human genetic disorders, with abrogated toxicity. It is not the end for aminoglycosides, but rather, the challenges faced by researchers have led to ingenuity and a change in how we view this class of compounds, a renaissance.
Collapse
Affiliation(s)
- Jacob L Houghton
- Department of Medicinal Chemistry in the College of Pharmacy, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
26
|
2-Deoxystreptamine Conjugates by Truncation-Derivatization of Neomycin. Pharmaceuticals (Basel) 2010; 3:679-701. [PMID: 27713274 PMCID: PMC4033975 DOI: 10.3390/ph3030679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/08/2010] [Accepted: 03/10/2010] [Indexed: 11/16/2022] Open
Abstract
A small library of truncated neomycin-conjugates is prepared by consecutive removal of 2,6-diaminoglucose rings, oxidation-reductive amination of ribose, oxidation-conjugation of aminopyridine/aminoquinoline and finally dimerization. The dimeric conjugates were evaluated for antibacterial activity with a unique hemocyanin-based biosensor. Based on the outcome of these results, a second-generation set of monomeric conjugates was prepared and found to display significant antibacterial activity, in particular with respect to kanamycin-resistant E. coli.
Collapse
|
27
|
Gareiss PC, Sobczak K, McNaughton BR, Palde PB, Thornton CA, Miller BL. Dynamic combinatorial selection of molecules capable of inhibiting the (CUG) repeat RNA-MBNL1 interaction in vitro: discovery of lead compounds targeting myotonic dystrophy (DM1). J Am Chem Soc 2008; 130:16254-61. [PMID: 18998634 PMCID: PMC2645920 DOI: 10.1021/ja804398y] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Myotonic dystrophy type 1 (DM1), the most common form of muscular dystrophy in adults, is an RNA-mediated disease. Dramatically expanded (CUG) repeats accumulate in nuclei and sequester RNA-binding proteins such as the splicing regulator MBNL1. We have employed resin-bound dynamic combinatorial chemistry (RBDCC) to identify the first examples of compounds able to inhibit MBNL1 binding to (CUG) repeat RNA. Screening an RBDCL with a theoretical diversity of 11 325 members yielded several molecules with significant selectivity for binding to (CUG) repeat RNA over other sequences. These compounds were also able to inhibit the interaction of GGG-(CUG)(109)-GGG RNA with MBNL1 in vitro, with K(i) values in the low micromolar range.
Collapse
Affiliation(s)
- Peter C. Gareiss
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642
- The Center for Future Health, University of Rochester, Rochester, New York 14642
| | - Krzysztof Sobczak
- Department of Neurology, University of Rochester, Rochester, New York 14642
| | - Brian R. McNaughton
- Department of Chemistry, University of Rochester, Rochester, New York 14642
- The Center for Future Health, University of Rochester, Rochester, New York 14642
| | - Prakash B. Palde
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642
- The Center for Future Health, University of Rochester, Rochester, New York 14642
| | | | - Benjamin L Miller
- Department of Dermatology, University of Rochester, Rochester, New York 14642
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642
- The Center for Future Health, University of Rochester, Rochester, New York 14642
| |
Collapse
|
28
|
Belousoff MJ, Graham B, Spiccia L, Tor Y. Cleavage of RNA oligonucleotides by aminoglycosides. Org Biomol Chem 2008; 7:30-3. [PMID: 19081939 DOI: 10.1039/b813252f] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A number of aminoglycoside antibiotics, and in particular neomycin B, are demonstrated to promote strand cleavage of RNA oligonucleotides (minimised HIV-1 TAR element and prokaryotic ribosomal A-site), by binding and causing sufficient distortion to the RNA backbone to render it more susceptible to intramolecular transesterification.
Collapse
|
29
|
Studies on the synthesis of neamine-dinucleosides and neamine-PNA conjugates and their interaction with RNA. Bioorg Med Chem Lett 2008; 18:5355-8. [PMID: 18829307 DOI: 10.1016/j.bmcl.2008.09.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/13/2008] [Accepted: 09/16/2008] [Indexed: 11/20/2022]
Abstract
Two types of neamine derivatives, neamine-dinucleotide conjugates 8a-g and neamine-PNA conjugates 12a-c and 14a-d, were synthesized. Compound 8a-g were synthesized by the condensation of azido-neamine with dinucleotide-5'-carboxylic acids, followed by reduction and deprotection. Compound 12a-c and 14a-d were synthesized by the similar strategy. The binding affinities of conjugates 8a-g, 12a-c, and 14a-d towards 16S RNA, 18S RNA, and TAR RNA were evaluated by SPR. It indicates that conjugates 12a-c and 14a-d interact with 16S, 18S RNA at the same level as that of neamine, 14a and 14d show about twofold binding affinities to TAR RNA compared to that of neamine. However, the neamine-dinucleotide conjugates 8a-g exhibit very weak binding affinities to 16S, 18S, and TAR RNA, computer modelling results that negative-negative electrostatic repulsion of phosphate group in compound 8a-g and RNA leads to a sharp decrease of the binding affinities compared with that of neamine, neamine-nucleoside and neamine-PNA conjugates.
Collapse
|
30
|
Lapidot A, Berchanski A, Borkow G. Insight into the mechanisms of aminoglycoside derivatives interaction with HIV-1 entry steps and viral gene transcription. FEBS J 2008; 275:5236-57. [PMID: 18803669 DOI: 10.1111/j.1742-4658.2008.06657.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In recent years, based on peptide models of HIV-1 RNA binding, NMR structures of Tat-responsive element-ligand complexes and aminoglycoside-RNA interactions, and HIV-1 Tat structure, we have designed and synthesized aminoglycoside-arginine conjugates (AACs) and aminoglycoside poly-arginine conjugates (APACs), to serve as Tat mimetics. These novel molecules inhibit HIV-1 infectivity with 50% effective concentration values in the low micromolar range, the most potent compounds being the hexa-arginine-neomycin B and nona-D-arginine-neomycin conjugates. Importantly, these compounds, in addition to acting as Tat antagonists, inhibit HIV-1 infectivity by blocking several steps in HIV-1 cell entry. The AACs and APACs inhibit HIV-1 cell entry by interacting with gp120 at the CD4-binding site, by interacting with CXCR4 at the binding site of the CXCR4 mAb 12G5, and apparently by interacting with transient structures of the ectodomain of gp41. In the current review, we discuss the mechanisms of anti-HIV-1 activities of these AACs, APACs and other aminoglycoside derivatives in detail. Targeting several key processes in the viral life cycle by the same compound not only may increase its antiviral efficacy, but more importantly, may reduce the capacity of the virus to develop resistance to the compound. AACs and APACs may thus serve as leading compounds for the development of multitargeting novel HIV-1 inhibitors.
Collapse
Affiliation(s)
- Aviva Lapidot
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel.
| | | | | |
Collapse
|
31
|
Ketomäki K, Virta P. Synthesis of aminoglycoside conjugates of 2'-O-methyl oligoribonucleotides. Bioconjug Chem 2008; 19:766-77. [PMID: 18281927 DOI: 10.1021/bc7004279] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aminoglycoside conjugates of 2'- O-methyl oligoribonucleotides have been synthesized entirely on a solid phase using conventional phosphoramidate chemistry. For this purpose, appropriately protected neamine-derived phosphoramidites, viz., 2-cyanoethyl [6,3',4'-tri- O-levulinoyl- N (1), N (3), N (2) (') , N (6) (') -tetra(trifluoroacetyl)neamine-5- O-ethyl] N,N-diisopropylphosphoramidite, 1, and 2-cyanoethyl [6,3',4',2'',3''-penta- O-levulinoyl- N (1), N (3), N (2) (') , N (6) (') -tetra(trifluoroacetyl) ribostamycin-5''-yl] N, N-diisopropylphosphoramidite, 2, have been prepared and attached via phosphodiester linkage to an appropriate 2'- O-methyl oligoribonucleotide. Levulinoyl esters are used to cap the hydroxyl groups of the aminoglycoside moieties, since they may be selectively removed prior to ammonolysis. In this manner, the potential O-->N acyl migration is excluded. Applicability of the strategy has been demonstrated by the synthesis of eight different aminoglycoside conjugates, in which 1 and 2 are attached directly to the 5'-end ( 6 and 10) or, alternatively, to an inserted non-nucleosidic hydroxyalkyl armed branching unit ( 3, 4, or 5), which results in intrachain conjugates ( 7- 9, 11- 13). The potential of these conjugates to act as a sequence-selective artificial nuclease has been studied.
Collapse
Affiliation(s)
- Kaisa Ketomäki
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| | | |
Collapse
|
32
|
Ludwig V, Krebs A, Stoll M, Dietrich U, Ferner J, Schwalbe H, Scheffer U, Dürner G, Göbel MW. Tripeptides from synthetic amino acids block the Tat-TAR association and slow down HIV spread in cell cultures. Chembiochem 2008; 8:1850-6. [PMID: 17886825 DOI: 10.1002/cbic.200700232] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Non-natural amino acids with aromatic or heteroaromatic side chains were incorporated into tripeptides of the general structure Arg-X-Arg and tested as ligands of the HIV RNA element TAR. Some of these compounds could compete efficiently with the association of TAR and Tat and downregulated a TAR-controlled reporter gene in HeLa cells. Peptide 7, which contains a 2-pyrimidinyl-alkyl chain, also inhibited the spread of HIV-1 in cell cultures. NMR studies of 7 bound to HIV-2-TAR gave evidence for contacts in the bulge region.
Collapse
Affiliation(s)
- Verena Ludwig
- Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhao P, Jin HW, Yang ZJ, Zhang LR, Zhang LH. Solid-phase synthesis and evaluation of TAR RNA targeted β-carboline–nucleoside conjugates. Org Biomol Chem 2008; 6:3741-50. [DOI: 10.1039/b809598a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Nandi CK, Parui PP, Brutschy B, Scheffer U, Göbel M. Fluorescence correlation spectroscopy at single molecule level on the Tat–TAR complex and its inhibitors. Biopolymers 2008; 89:17-25. [PMID: 17764074 DOI: 10.1002/bip.20835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The TAR element of HIV and the viral protein Tat form a molecular switch regulating transcriptional efficiency in HIV. We show that fluorescence correlation spectroscopy at the single molecule level is a powerful method to study the association between a Tat-derived peptide and TAR fragments. We also investigated the inhibition of the peptide-RNA complex by different ligands. Utilizing cross correlation measurements, the dissociation constants (K(D)) were determined. To demonstrate the important role of the bulge for the binding of Tat, we compared wt-TAR with three RNA mutants, mainly differing in the bulge region. For the TAR mutants studied at equimolar concentration of RNA and peptide (25 nM), the K(D) values are 15-35 times larger than that of wt-TAR. This gives evidence that the bulge region is the most crucial part of the TAR RNA for specific Tat binding. The IC(50) values for different inhibitors of the Tat/TAR complex both with wt-TAR and mutants have been determined. Neamine conjugate proved to be the best inhibitor of the complex formation. Our results are in agreement with earlier published data on this system using alternative biophysical and biochemical methods, respectively.
Collapse
Affiliation(s)
- Chayan Kanti Nandi
- Institut für Physikalische und Theoretische Chemie, Johann Wolfgang Goethe-Universität Frankfurt, Max-von-Laue-Str 7, D-60438 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
35
|
Ironmonger A, Whittaker B, Baron AJ, Clique B, Adams CJ, Ashcroft AE, Stockley PG, Nelson A. Scanning conformational space with a library of stereo- and regiochemically diverse aminoglycoside derivatives: the discovery of new ligands for RNA hairpin sequences. Org Biomol Chem 2007; 5:1081-6. [PMID: 17377661 PMCID: PMC7612281 DOI: 10.1039/b618683a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A library of stereo- and regiochemically diverse aminoglycoside derivatives was screened at 1 microM using surface plasmon resonance (SPR) against RNA hairpin models of the bacterial A-site, and the HIV viral TAR and RRE sequences. In order to double the stereochemical diversity of the library, the compounds were screened against both enantiomers of each of these sequences. Remarkably, this initial screen suggested that the same four aminoglycoside derivatives bound most tightly to all three of the RNAs, suggesting that these compounds were good RNA binders which, nonetheless, discriminated poorly between the RNA sequences. The interactions between selected isomeric aminoglycoside derivatives and the RNA hairpins were then studied in more detail using an SPR assay. Three isomeric tight-binding aminoglycoside derivatives, which had been identified from the initial screen, were found to bind more tightly to the RNA hairpins (with K(D) values in the range 0.23 to 4.7 microM) than a fourth isomeric derivative (which had K(D) values in the range 6.0 to 30 microM). The magnitude of the tightest RNA-aminoglycoside interactions stemmed, in large part, from remarkably slow dissociation of the aminoglycosides from the RNA targets. The three tight-binding aminoglycoside derivatives were found, however, to discriminate rather poorly between alternative RNA sequences with, at best, around a twenty-fold difference in affinity for alternative RNA hairpin sequences. Within the aminoglycoside derivative library studied, high affinity for an RNA target was not accompanied by good discrimination between alternative RNA sequences.
Collapse
Affiliation(s)
- Alan Ironmonger
- School of Chemistry, University of Leeds, Leeds, UK LS2 9JT
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK LS2 9JT
| | - Benjamin Whittaker
- School of Chemistry, University of Leeds, Leeds, UK LS2 9JT
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK LS2 9JT
| | - Andrew J. Baron
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK LS2 9JT
| | - Blandine Clique
- School of Chemistry, University of Leeds, Leeds, UK LS2 9JT
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK LS2 9JT
| | - Chris J. Adams
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK LS2 9JT
| | - Alison E. Ashcroft
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK LS2 9JT
| | - Peter G. Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK LS2 9JT
| | - Adam Nelson
- School of Chemistry, University of Leeds, Leeds, UK LS2 9JT
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK LS2 9JT
- Corresponding author:
| |
Collapse
|
36
|
Tam VK, Kwong D, Tor Y. Fluorescent HIV-1 Dimerization Initiation Site: design, properties, and use for ligand discovery. J Am Chem Soc 2007; 129:3257-66. [PMID: 17319662 PMCID: PMC2525870 DOI: 10.1021/ja0675797] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The HIV-1 Dimerization Initiation Site (DIS) is an intriguing, yet underutilized, viral RNA target for potential antiretroviral therapy. To study the recognition features of this target and to provide a quantitative, rapid, and real-time tool for the discovery of new binders, a fluorescence-based assay has been constructed. It relies on strategic incorporation of 2-aminopurine, an isosteric fluorescent adenosine analogue, into short hairpin RNA constructs. These oligomers self-associate to form a kissing loop that thermally rearranges into a more stable extended duplex, thereby mimicking the association and structural features of the native RNA sequence. We demonstrate the ability of two fluorescent DIS constructs, DIS272(2AP) and DIS273(2AP), to report the binding of known DIS binders via changes in their emission intensity. Binding of aminoglycosides such as paromomycin to DIS272(2AP) results in significant fluorescence enhancement, while ligand binding to DIS273(2AP) results in fluorescence quenching. These observations are rationalized by comparison to the sequence-analogous bacterial A-site, where the relative emission of the fluorescent probe is dependent on the placement of the flexible purine residues inside or outside the helical domain. Analysis of binding isotherms generated using DIS272(2AP) yields submicromolar EC50 values for paromomycin (0.5 +/- 0.2 microM) and neomycin B (0.6 +/- 0.2 microM). Other neomycin-family aminoglycosides are less potent binders with neamine, the core pharmacophore, displaying the lowest affinity of 21 +/- 1 microM. Screening of additional aminoglycosides and their derivatives led to the discovery of new, previously unreported, aminoglycoside binders of the HIV DIS RNA, among them butirosin A (5.5 +/- 0.6 microM) and apramycin (7.6 +/- 1.0 microM). A conformationally constrained neomycin B analogue displays a rather high affinity to the DIS (1.9 +/- 0.2 microM). Among a series of nucleobase aminoglycoside conjugates, only the uracil derivatives display a measurable affinity using this assay with EC50 values in the 2 microM range. In addition, similarity between the solution behavior of HIV-1 DIS and the bacterial decoding A-site has been observed, particularly with respect to the intra- and extra-helical residence of the conformationally flexible A residues within the bulge. Taken together, the observations reported here shed light on the solution behavior of this important RNA target and are likely to facilitate the design of new DIS selective ligands as potential antiretroviral agents.
Collapse
|