1
|
Cumsille A, Serna-Cardona N, González V, Claverías F, Undabarrena A, Molina V, Salvà-Serra F, Moore ERB, Cámara B. Exploring the biosynthetic gene clusters in Brevibacterium: a comparative genomic analysis of diversity and distribution. BMC Genomics 2023; 24:622. [PMID: 37858045 PMCID: PMC10588199 DOI: 10.1186/s12864-023-09694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
Exploring Brevibacterium strains from various ecosystems may lead to the discovery of new antibiotic-producing strains. Brevibacterium sp. H-BE7, a strain isolated from marine sediments from Northern Patagonia, Chile, had its genome sequenced to study the biosynthetic potential to produce novel natural products within the Brevibacterium genus. The genome sequences of 98 Brevibacterium strains, including strain H-BE7, were selected for a genomic analysis. A phylogenomic cladogram was generated, which divided the Brevibacterium strains into four major clades. A total of 25 strains are potentially unique new species according to Average Nucleotide Identity (ANIb) values. These strains were isolated from various environments, emphasizing the importance of exploring diverse ecosystems to discover the full diversity of Brevibacterium. Pangenome analysis of Brevibacterium strains revealed that only 2.5% of gene clusters are included within the core genome, and most gene clusters occur either as singletons or as cloud genes present in less than ten strains. Brevibacterium strains from various phylogenomic clades exhibit diverse BGCs. Specific groups of BGCs show clade-specific distribution patterns, such as siderophore BGCs and carotenoid-related BGCs. A group of clade IV-A Brevibacterium strains possess a clade-specific Polyketide synthase (PKS) BGCs that connects with phenazine-related BGCs. Within the PKS BGC, five genes, including the biosynthetic PKS gene, participate in the mevalonate pathway and exhibit similarities with the phenazine A BGC. However, additional core biosynthetic phenazine genes were exclusively discovered in nine Brevibacterium strains, primarily isolated from cheese. Evaluating the antibacterial activity of strain H-BE7, it exhibited antimicrobial activity against Salmonella enterica and Listeria monocytogenes. Chemical dereplication identified bioactive compounds, such as 1-methoxyphenazine in the crude extracts of strain H-BE7, which could be responsible of the observed antibacterial activity. While strain H-BE7 lacks the core phenazine biosynthetic genes, it produces 1-methoxyphenazine, indicating the presence of an unknown biosynthetic pathway for this compound. This suggests the existence of alternative biosynthetic pathways or promiscuous enzymes within H-BE7's genome.
Collapse
Affiliation(s)
- Andrés Cumsille
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Néstor Serna-Cardona
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Valentina González
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Fernanda Claverías
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Agustina Undabarrena
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Vania Molina
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Francisco Salvà-Serra
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Region Västra Götaland and Sahlgrenska Academy, Culture Collection University of Gothenburg (CCUG), Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Edward R B Moore
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Region Västra Götaland and Sahlgrenska Academy, Culture Collection University of Gothenburg (CCUG), Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
- Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Beatriz Cámara
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile.
| |
Collapse
|
2
|
Lacey HJ, Chen R, Vuong D, Lacey E, Rutledge PJ, Chooi YH, Piggott AM, Booth TJ. Resorculins: hybrid polyketide macrolides from Streptomyces sp. MST-91080. Org Biomol Chem 2023; 21:2531-2538. [PMID: 36876905 DOI: 10.1039/d2ob02332f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Fourteen-membered macrolides are a class of compounds with significant clinical value as antibacterial agents. As part of our ongoing investigation into the metabolites of Streptomyces sp. MST-91080, we report the discovery of resorculins A and B, unprecedented 3,5-dihydroxybenzoic acid (α-resorcylic acid)-containing 14-membered macrolides. We sequenced the genome of MST-91080 and identified the putative resorculin biosynthetic gene cluster (rsn BGC). The rsn BGC is hybrid of type I and type III polyketide synthases. Bioinformatic analysis revealed that the resorculins are relatives of known hybrid polyketides: kendomycin and venemycin. Resorculin A exhibited antibacterial activity against Bacillus subtilis (MIC 19.8 μg mL-1), while resorculin B showed cytotoxic activity against the NS-1 mouse myeloma cell line (IC50 3.6 μg mL-1).
Collapse
Affiliation(s)
- Heather J Lacey
- Microbial Screening Technologies, Smithfield, NSW 2164, Australia
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Rachel Chen
- Microbial Screening Technologies, Smithfield, NSW 2164, Australia
| | - Daniel Vuong
- Microbial Screening Technologies, Smithfield, NSW 2164, Australia
| | - Ernest Lacey
- Microbial Screening Technologies, Smithfield, NSW 2164, Australia
- School of Natural Sciences, Macquarie University, NSW 2109, Australia
| | - Peter J Rutledge
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| | - Andrew M Piggott
- School of Natural Sciences, Macquarie University, NSW 2109, Australia
| | - Thomas J Booth
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
3
|
Tistechok S, Stierhof M, Myronovskyi M, Zapp J, Gromyko O, Luzhetskyy A. Furaquinocins K and L: Novel Naphthoquinone-Based Meroterpenoids from Streptomyces sp. Je 1-369. Antibiotics (Basel) 2022; 11:1587. [PMID: 36358243 PMCID: PMC9686526 DOI: 10.3390/antibiotics11111587] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 10/29/2023] Open
Abstract
Actinomycetes are the most prominent group of microorganisms that produce biologically active compounds. Among them, special attention is focused on bacteria in the genus Streptomyces. Streptomycetes are an important source of biologically active natural compounds that could be considered therapeutic agents. In this study, we described the identification, purification, and structure elucidation of two new naphthoquinone-based meroterpenoids, furaquinocins K and L, from Streptomyces sp. Je 1-369 strain, which was isolated from the rhizosphere soil of Juniperus excelsa (Bieb.). The main difference between furaquinocins K and L and the described furaquinocins was a modification in the polyketide naphthoquinone skeleton. In addition, the structure of furaquinocin L contained an acetylhydrazone fragment, which is quite rare for natural compounds. We also identified a furaquinocin biosynthetic gene cluster in the Je 1-369 strain, which showed similarity (60%) with the furaquinocin B biosynthetic gene cluster from Streptomyces sp. KO-3988. Furaquinocin L showed activity against Gram-positive bacteria without cytotoxic effects.
Collapse
Affiliation(s)
- Stepan Tistechok
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
| | - Marc Stierhof
- Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany
| | - Maksym Myronovskyi
- Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany
| | - Josef Zapp
- Department of Pharmaceutical Biology, Saarland University, 66123 Saarbruecken, Germany
| | - Oleksandr Gromyko
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
- Microbial Culture Collection of Antibiotic Producers, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
| | - Andriy Luzhetskyy
- Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, 66123 Saarbruecken, Germany
| |
Collapse
|
4
|
The Quantitative Trait Loci Mapping of Rice Plant and the Components of Its Extract Confirmed the Anti-Inflammatory and Platelet Aggregation Effects In Vitro and In Vivo. Antioxidants (Basel) 2021; 10:antiox10111691. [PMID: 34829563 PMCID: PMC8615199 DOI: 10.3390/antiox10111691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 11/30/2022] Open
Abstract
Unpredictable climate change might cause serious lack of food in the world. Therefore, in the present world, it is urgent to prepare countermeasures to solve problems in terms of human survival. In this research, quantitative trait loci (QTLs) were analyzed when rice attacked by white backed planthopper (WBPH) were analyzed using 120 Cheongcheong/Nagdong double haploid lines. Moreover, from the detected QTLs, WBPH resistance-related genes were screened in large candidate genes. Among them, OsCM, a major gene in the synthesis of Cochlioquinone-9 (cq-9), was screened. OsCM has high homology with the sequence of chorismate mutase, and exists in various functional and structural forms in plants that produce aromatic amino acids. It also induces resistance to biotic stress through the synthesis of secondary metabolites in plants. The WBPH resistance was improved in rice overexpressed through map-based cloning of the WBPH resistance-related gene OsCM, which was finally detected by QTL mapping. In addition, cq-9 increased the survival rate of caecal ligation puncture (CLP)-surgery mice by 60%. Moreover, the aorta of rat treated with cq-9 was effective in vasodilation response and significantly reduced the aggregation of rat platelets induced by collagen treatment. A cq-9, which is strongly associated with resistance to WBPH in rice, is also associated with positive effect of CLP surgery mice survival rate, vasodilation, and significantly reduced rat platelet aggregation induced by collagen treatment. Therefore, cq-9 presents research possibilities as a substance in a new paradigm that can act on both Plant-Insect in response to the present unpredictable future.
Collapse
|
5
|
Zhu C, Lew CI, Neuhaus GF, Adpressa DA, Zakharov LN, Kaweesa EN, Plitzko B, Loesgen S. Biodiversity, Bioactivity, and Metabolites of High Desert Derived Oregonian Soil Bacteria. Chem Biodivers 2021; 18:e2100046. [PMID: 33636028 DOI: 10.1002/cbdv.202100046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022]
Abstract
From arid, high desert soil samples collected near Bend, Oregon, 19 unique bacteria were isolated. Each strain was identified by 16S rRNA gene sequencing, and their organic extracts were tested for antibacterial and antiproliferative activities. Noteworthy, six extracts (30 %) exhibited strong inhibition resulting in less than 50 % cell proliferation in more than one cancer cell model, tested at 10 μg/mL. Principal component analysis (PCA) of LC/MS data revealed drastic differences in the metabolic profiles found in the organic extracts of these soil bacteria. In total, fourteen potent antibacterial and/or cytotoxic metabolites were isolated via bioactivity-guided fractionation, including two new natural products: a pyrazinone containing tetrapeptide and 7-methoxy-2,3-dimethyl-4H-chromen-4-one, as well as twelve known compounds: furanonaphthoquinone I, bafilomycin C1 and D, FD-594, oligomycin A, chloramphenicol, MY12-62A, rac-sclerone, isosclerone, tunicamycin VII, tunicamycin VIII, and (6S,16S)-anthrabenzoxocinone 1.264-C.
Collapse
Affiliation(s)
- Chenxi Zhu
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, USA.,Whitney Laboratory for Marine Bioscience, Department of Chemistry, University of Florida, St. Augustine, Florida, 32080, USA
| | - Cassandra I Lew
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, USA
| | - George F Neuhaus
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Donovon A Adpressa
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Lev N Zakharov
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Elizabeth N Kaweesa
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, USA.,Whitney Laboratory for Marine Bioscience, Department of Chemistry, University of Florida, St. Augustine, Florida, 32080, USA
| | - Birte Plitzko
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Sandra Loesgen
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, USA.,Whitney Laboratory for Marine Bioscience, Department of Chemistry, University of Florida, St. Augustine, Florida, 32080, USA
| |
Collapse
|
6
|
Murray LAM, McKinnie SMK, Moore BS, George JH. Meroterpenoid natural products from Streptomyces bacteria - the evolution of chemoenzymatic syntheses. Nat Prod Rep 2020; 37:1334-1366. [PMID: 32602506 PMCID: PMC7578067 DOI: 10.1039/d0np00018c] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Covering: Up to January 2020Meroterpenoids derived from the polyketide 1,3,6,8-tetrahydroxynaphthalene (THN) are complex natural products produced exclusively by Streptomyces bacteria. These antibacterial compounds include the napyradiomycins, merochlorins, marinones, and furaquinocins and have inspired many attempts at their chemical synthesis. In this review, we highlight the role played by biosynthetic studies in the stimulation of biomimetic and, ultimately, chemoenzymatic total syntheses of these natural products. In particular, the application of genome mining techniques to marine Streptomyces bacteria led to the discovery of unique prenyltransferase and vanadium-dependent haloperoxidase enzymes that can be used as highly selective biocatalysts in fully enzymatic total syntheses, thus overcoming the limitations of purely chemical reagents.
Collapse
Affiliation(s)
- Lauren A M Murray
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | | | | | | |
Collapse
|
7
|
Wang J, Ran H, Xie X, Wang K, Li SM. Spontaneous oxidative cyclisations of 1,3-dihydroxy-4-dimethylallylnaphthalene to tricyclic derivatives. Org Biomol Chem 2020; 18:2646-2649. [PMID: 32207506 DOI: 10.1039/d0ob00354a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The attachment of a dimethylallyl moiety to C4 of 1,3-dihydroxynaphthalene led to spontaneous oxidative cyclisations, resulting in the formation of two tetrahydrobenzofuran and one bicyclo[3.3.1]nonane derivatives. Incubation under an 18O-rich atmosphere proved that both the incorporated oxygen atoms originated from O2. A radical-involved mechanism is proposed for these cyclisations.
Collapse
Affiliation(s)
- Jinglin Wang
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany. and Union Hospital of Huazhong University of Science and Technology, Department of Pharmacy, No. 1227, Jiefang Road, 430030 Wuhan, China
| | - Huomiao Ran
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany.
| | - Xiulan Xie
- Fachbereich Chemie, Philipps-Universit-t Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany.
| |
Collapse
|
8
|
Moore BS. Asymmetric Alkene and Arene Halofunctionalization Reactions in Meroterpenoid Biosynthesis. Synlett 2018; 29:401-409. [PMID: 31031546 PMCID: PMC6483395 DOI: 10.1055/s-0036-1590919] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Meroterpenoid natural products are important bioactive molecules with broad distribution throughout nature. In Streptomyces bacteria, naphthoquinone-based meroterpenoids comprise a simple yet structurally fascinating group of natural product antibiotics that are enzymatically constructed through a series of asymmetric alkene and arene halofunctionalization reactions. This account article highlights our discovery and characterization of a group of vanadium-dependent chloroperoxidase enzymes that catalyze halogen-assisted cyclization and rearrangement reactions and have inspired biomimetic syntheses of numerous meroterpenoid natural products.
Collapse
Affiliation(s)
- Bradley S Moore
- Scripps Institution of Oceanography & Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
9
|
Remali J, Sarmin N'IM, Ng CL, Tiong JJL, Aizat WM, Keong LK, Zin NM. Genomic characterization of a new endophytic Streptomyces kebangsaanensis identifies biosynthetic pathway gene clusters for novel phenazine antibiotic production. PeerJ 2017; 5:e3738. [PMID: 29201559 PMCID: PMC5712208 DOI: 10.7717/peerj.3738] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/04/2017] [Indexed: 11/20/2022] Open
Abstract
Background Streptomyces are well known for their capability to produce many bioactive secondary metabolites with medical and industrial importance. Here we report a novel bioactive phenazine compound, 6-((2-hydroxy-4-methoxyphenoxy) carbonyl) phenazine-1-carboxylic acid (HCPCA) extracted from Streptomyces kebangsaanensis, an endophyte isolated from the ethnomedicinal Portulaca oleracea. Methods The HCPCA chemical structure was determined using nuclear magnetic resonance spectroscopy. We conducted whole genome sequencing for the identification of the gene cluster(s) believed to be responsible for phenazine biosynthesis in order to map its corresponding pathway, in addition to bioinformatics analysis to assess the potential of S. kebangsaanensis in producing other useful secondary metabolites. Results The S. kebangsaanensis genome comprises an 8,328,719 bp linear chromosome with high GC content (71.35%) consisting of 12 rRNA operons, 81 tRNA, and 7,558 protein coding genes. We identified 24 gene clusters involved in polyketide, nonribosomal peptide, terpene, bacteriocin, and siderophore biosynthesis, as well as a gene cluster predicted to be responsible for phenazine biosynthesis. Discussion The HCPCA phenazine structure was hypothesized to derive from the combination of two biosynthetic pathways, phenazine-1,6-dicarboxylic acid and 4-methoxybenzene-1,2-diol, originated from the shikimic acid pathway. The identification of a biosynthesis pathway gene cluster for phenazine antibiotics might facilitate future genetic engineering design of new synthetic phenazine antibiotics. Additionally, these findings confirm the potential of S. kebangsaanensis for producing various antibiotics and secondary metabolites.
Collapse
Affiliation(s)
- Juwairiah Remali
- School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurul 'Izzah Mohd Sarmin
- Centre of PreClinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia
| | - Chyan Leong Ng
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - John J L Tiong
- School of Pharmacy, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Wan M Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Loke Kok Keong
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Noraziah Mohamad Zin
- School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Biogenetic Relationships of Bioactive Sponge Merotriterpenoids. Mar Drugs 2017; 15:md15090285. [PMID: 28891968 PMCID: PMC5618424 DOI: 10.3390/md15090285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 02/01/2023] Open
Abstract
Hydroquinone meroterpenoids, especially those derived from marine sponges, display a wide range of biological activities. However, use of these compounds is limited by their inaccessibility; there is no sustainable supply of these compounds. Furthermore, our knowledge of their metabolic origin remains completely unstudied. In this review, an in depth structural analysis of sponge merotriterpenoids, including the adociasulfate family of kinesin motor protein inhibitors, provides insight into their biosynthesis. Several key structural features provide clues to the relationships between compounds. All adociasulfates appear to be derived from only four different hydroquinone hexaprenyl diphosphate precursors, each varying in the number and position of epoxidations. Proton-initiated cyclization of these precursors can lead to all carbon skeletons observed amongst sponge merotriterpenoids. Consideration of the enzymes involved in the proposed biosynthetic route suggests a bacterial source, and a hypothetical gene cluster was constructed that may facilitate discovery of the authentic pathway from the sponge metagenome. A similar rationale can be extended to other sponge meroterpenoids, for which no biosynthetic pathways have yet been identified.
Collapse
|
11
|
Guttenberger N, Blankenfeldt W, Breinbauer R. Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products. Bioorg Med Chem 2017; 25:6149-6166. [PMID: 28094222 DOI: 10.1016/j.bmc.2017.01.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/29/2016] [Accepted: 01/04/2017] [Indexed: 12/24/2022]
Abstract
Phenazines are natural products which are produced by bacteria or by archaeal Methanosarcina species. The tricyclic ring system enables redox processes, which producing organisms use for oxidation of NADH or for the generation of reactive oxygen species (ROS), giving them advantages over other microorganisms. In this review we summarize the progress in the field since 2005 regarding the isolation of new phenazine natural products, new insights in their biological function, and particularly the now almost completely understood biosynthesis. The review is complemented by a description of new synthetic methods and total syntheses of phenazines.
Collapse
Affiliation(s)
- Nikolaus Guttenberger
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria; Institute of Chemistry-Analytical Chemistry, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria
| | - Wulf Blankenfeldt
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany; Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria.
| |
Collapse
|
12
|
Gallagher KA, Jensen PR. Genomic insights into the evolution of hybrid isoprenoid biosynthetic gene clusters in the MAR4 marine streptomycete clade. BMC Genomics 2015; 16:960. [PMID: 26578069 PMCID: PMC4650096 DOI: 10.1186/s12864-015-2110-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/19/2015] [Indexed: 01/17/2023] Open
Abstract
Background Considerable advances have been made in our understanding of the molecular genetics of secondary metabolite biosynthesis. Coupled with increased access to genome sequence data, new insight can be gained into the diversity and distributions of secondary metabolite biosynthetic gene clusters and the evolutionary processes that generate them. Here we examine the distribution of gene clusters predicted to encode the biosynthesis of a structurally diverse class of molecules called hybrid isoprenoids (HIs) in the genus Streptomyces. These compounds are derived from a mixed biosynthetic origin that is characterized by the incorporation of a terpene moiety onto a variety of chemical scaffolds and include many potent antibiotic and cytotoxic agents. Results One hundred and twenty Streptomyces genomes were searched for HI biosynthetic gene clusters using ABBA prenyltransferases (PTases) as queries. These enzymes are responsible for a key step in HI biosynthesis. The strains included 12 that belong to the ‘MAR4’ clade, a largely marine-derived lineage linked to the production of diverse HI secondary metabolites. We found ABBA PTase homologs in all of the MAR4 genomes, which averaged five copies per strain, compared with 21 % of the non-MAR4 genomes, which averaged one copy per strain. Phylogenetic analyses suggest that MAR4 PTase diversity has arisen by a combination of horizontal gene transfer and gene duplication. Furthermore, there is evidence that HI gene cluster diversity is generated by the horizontal exchange of orthologous PTases among clusters. Many putative HI gene clusters have not been linked to their secondary metabolic products, suggesting that MAR4 strains will yield additional new compounds in this structure class. Finally, we confirm that the mevalonate pathway is not always present in genomes that contain HI gene clusters and thus is not a reliable query for identifying strains with the potential to produce HI secondary metabolites. Conclusions We found that marine-derived MAR4 streptomycetes possess a relatively high genetic potential for HI biosynthesis. The combination of horizontal gene transfer, duplication, and rearrangement indicate that complex evolutionary processes account for the high level of HI gene cluster diversity in these bacteria, the products of which may provide a yet to be defined adaptation to the marine environment. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2110-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kelley A Gallagher
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0204, USA.
| | - Paul R Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0204, USA.
| |
Collapse
|
13
|
Gessner A, Heitzler T, Zhang S, Klaus C, Murillo R, Zhao H, Vanner S, Zechel DL, Bechthold A. Changing Biosynthetic Profiles by ExpressingbldAinStreptomycesStrains. Chembiochem 2015; 16:2244-52. [DOI: 10.1002/cbic.201500297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Arne Gessner
- Department of Pharmaceutical Biology and Biotechnology; Institute of Pharmaceutical Sciences; Albert-Ludwigs-Universität Freiburg; Stefan-Meier-Strasse 19 79104 Freiburg Germany
| | - Tanja Heitzler
- Department of Pharmaceutical Biology and Biotechnology; Institute of Pharmaceutical Sciences; Albert-Ludwigs-Universität Freiburg; Stefan-Meier-Strasse 19 79104 Freiburg Germany
| | - Songya Zhang
- Department of Pharmaceutical Biology and Biotechnology; Institute of Pharmaceutical Sciences; Albert-Ludwigs-Universität Freiburg; Stefan-Meier-Strasse 19 79104 Freiburg Germany
| | - Christine Klaus
- Department of Pharmaceutical Biology and Biotechnology; Institute of Pharmaceutical Sciences; Albert-Ludwigs-Universität Freiburg; Stefan-Meier-Strasse 19 79104 Freiburg Germany
| | - Renato Murillo
- Department of Pharmaceutical Biology and Biotechnology; Institute of Pharmaceutical Sciences; Albert-Ludwigs-Universität Freiburg; Stefan-Meier-Strasse 19 79104 Freiburg Germany
| | - Hanna Zhao
- Department of Chemistry; Queen's University; Kingston ON K7L 3N6 Canada
| | - Stephanie Vanner
- Department of Chemistry; Queen's University; Kingston ON K7L 3N6 Canada
| | - David L. Zechel
- Department of Chemistry; Queen's University; Kingston ON K7L 3N6 Canada
| | - Andreas Bechthold
- Department of Pharmaceutical Biology and Biotechnology; Institute of Pharmaceutical Sciences; Albert-Ludwigs-Universität Freiburg; Stefan-Meier-Strasse 19 79104 Freiburg Germany
| |
Collapse
|
14
|
Complete genome sequence of Streptomyces sp. CNQ-509, a prolific producer of meroterpenoid chemistry. J Biotechnol 2015; 216:140-1. [PMID: 26319318 DOI: 10.1016/j.jbiotec.2015.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 08/14/2015] [Indexed: 11/24/2022]
Abstract
Streptomyces sp. CNQ-509 is a marine actinomycete belonging to the MAR4 streptomycete lineage. MAR4 strains have been linked to the production of diverse and otherwise rare meroterpenoid compounds. The genome sequence of Streptomyces sp. CNQ-509 was found to contain 29 putative gene clusters for the biosynthesis of secondary metabolites, some of them potentially involved in the formation of meroterpenoid molecules.
Collapse
|
15
|
Zhang C, Sheng C, Wang W, Hu H, Peng H, Zhang X. Identification of the Lomofungin Biosynthesis Gene Cluster and Associated Flavin-Dependent Monooxygenase Gene in Streptomyces lomondensis S015. PLoS One 2015; 10:e0136228. [PMID: 26305803 PMCID: PMC4549113 DOI: 10.1371/journal.pone.0136228] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 07/30/2015] [Indexed: 01/09/2023] Open
Abstract
Streptomyces lomondensis S015 synthesizes the broad-spectrum phenazine antibiotic lomofungin. Whole genome sequencing of this strain revealed a genomic locus consisting of 23 open reading frames that includes the core phenazine biosynthesis gene cluster lphzGFEDCB. lomo10, encoding a putative flavin-dependent monooxygenase, was also identified in this locus. Inactivation of lomo10 by in-frame partial deletion resulted in the biosynthesis of a new phenazine metabolite, 1-carbomethoxy-6-formyl-4,9-dihydroxy-phenazine, along with the absence of lomofungin. This result suggests that lomo10 is responsible for the hydroxylation of lomofungin at its C-7 position. This is the first description of a phenazine hydroxylation gene in Streptomyces, and the results of this study lay the foundation for further investigation of phenazine metabolite biosynthesis in Streptomyces.
Collapse
Affiliation(s)
- Chunxiao Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chaolan Sheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- * E-mail:
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Huasong Peng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
16
|
Heine D, Martin K, Hertweck C. Genomics-guided discovery of endophenazines from Kitasatospora sp. HKI 714. JOURNAL OF NATURAL PRODUCTS 2014; 77:1083-1087. [PMID: 24617951 DOI: 10.1021/np400915p] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this study we report on the genomics-guided exploration of the metabolic potential of the newly discovered strain Kitasatospora sp. HKI 714. The bioinformatics analysis of the whole genome sequence revealed the presence of a biosynthetic gene cluster presumably responsible for the biosynthesis of formerly unknown endophenazine derivatives. A 200 L cultivation combined with bioactivity-guided isolation techniques revealed four new natural products belonging to the endophenazines and the 5,10-dihydrophenazines. Detailed descriptions of their biological effects, mainly focused on antimicrobial properties against several mycobacteria, are given.
Collapse
Affiliation(s)
- Daniel Heine
- Leibniz Institute for Natural Product Research and Infection Biology , HKI , Beutenbergstraße 11a, 07745 Jena, Germany , and Friedrich Schiller University , Jena, Germany
| | | | | |
Collapse
|
17
|
Isogai S, Nishiyama M, Kuzuyama T. Identification of 8-amino-2,5,7-trihydroxynaphthalene-1,4-dione, a novel intermediate in the biosynthesis of Streptomyces meroterpenoids. Bioorg Med Chem Lett 2012; 22:5823-6. [DOI: 10.1016/j.bmcl.2012.07.084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 07/15/2012] [Accepted: 07/24/2012] [Indexed: 10/28/2022]
|
18
|
Genome sequence of Sphingomonas wittichii DP58, the first reported phenazine-1-carboxylic acid-degrading strain. J Bacteriol 2012; 194:3535-6. [PMID: 22689229 DOI: 10.1128/jb.00330-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sphingomonas wittichii DP58 (CCTCC M 2012027), the first reported phenazine-1-carboxylic acid (PCA)-degrading strain, was isolated from pimiento rhizosphere soils. Here we present a 5.6-Mb assembly of its genome. This sequence would contribute to the elucidation of the molecular mechanism of PCA degradation to improve the antifungal's effectiveness or remove superfluous PCA.
Collapse
|
19
|
Zhang W, Wang L, Kong L, Wang T, Chu Y, Deng Z, You D. Unveiling the post-PKS redox tailoring steps in biosynthesis of the type II polyketide antitumor antibiotic xantholipin. ACTA ACUST UNITED AC 2012; 19:422-32. [PMID: 22444597 DOI: 10.1016/j.chembiol.2012.01.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/12/2012] [Accepted: 01/17/2012] [Indexed: 11/25/2022]
Abstract
Xantholipin from Streptomyces flavogriseus is a curved hexacyclic aromatic polyketide antitumor antibiotic. The entire 52 kb xantholipin (xan) biosynthetic gene cluster was sequenced, and bioinformatic analysis revealed open reading frames encoding type II polyketide synthases, regulators, and polyketide tailoring enzymes. Individual in-frame mutagenesis of five tailoring enzymes lead to the production of nine xantholipin analogs, revealing that the xanthone scaffold formation was catalyzed by the FAD binding monooxygenase XanO4, the δ-lactam formation by the asparagine synthetase homolog XanA, the methylenedioxy bridge generation by the P450 monooxygenase XanO2 and the hydroxylation of the carbon backbone by the FAD binding monooxygenase XanO5. These findings may also apply to other polycyclic xanthone antibiotics, and they form the basis for genetic engineering of the xantholipin and similar biosynthetic gene clusters for the generation of compounds with improved antitumor activities.
Collapse
Affiliation(s)
- Weike Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Kaysser L, Bernhardt P, Nam SJ, Loesgen S, Ruby JG, Skewes-Cox P, Jensen PR, Fenical W, Moore BS. Merochlorins A-D, cyclic meroterpenoid antibiotics biosynthesized in divergent pathways with vanadium-dependent chloroperoxidases. J Am Chem Soc 2012; 134:11988-91. [PMID: 22784372 DOI: 10.1021/ja305665f] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Meroterpenoids are mixed polyketide-terpenoid natural products with a broad range of biological activities. Herein, we present the structures of four new meroterpenoid antibiotics, merochlorins A-D, produced by the marine bacterium Streptomyces sp. strain CNH-189, which possess novel chemical skeletons unrelated to known bacterial agents. Draft genome sequencing, mutagenesis, and heterologous biosynthesis in the genome-minimized model actinomycete Streptomyces coelicolor provided the 57.6 kb merochlorin gene cluster that contains two genes encoding rare bacterial vanadium-dependent haloperoxidase (VHPO) genes. Pathway expression of two different fosmid clones that differ largely by the presence or absence of the VHPO gene mcl40 resulted in the differential biosynthesis of merochlorin C, suggesting that Mcl40 catalyzes an unprecedented 15-membered chloronium-induced macrocyclization reaction converting merochlorin D to merochlorin C.
Collapse
Affiliation(s)
- Leonard Kaysser
- Scripps Institution of Oceanography, University of California, San Diego, California 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Schuller JM, Zocher G, Liebhold M, Xie X, Stahl M, Li SM, Stehle T. Structure and catalytic mechanism of a cyclic dipeptide prenyltransferase with broad substrate promiscuity. J Mol Biol 2012; 422:87-99. [PMID: 22683356 DOI: 10.1016/j.jmb.2012.05.033] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/11/2012] [Accepted: 05/13/2012] [Indexed: 11/30/2022]
Abstract
Fungal indole prenyltransferases (PTs) typically act on specific substrates, and they are able to prenylate their target compounds with remarkably high regio- and stereoselectivity. Similar to several indole PTs characterized to date, the cyclic dipeptide N-prenyltransferase (CdpNPT) is able to prenylate a range of diverse substrates, thus exhibiting an unusually broad substrate promiscuity. To define the structural basis for this promiscuity, we have determined crystal structures of unliganded CdpNPT and of a ternary complex of CdpNPT bound to (S)-benzodiazepinedione and thiolodiphosphate. Analysis of the structures reveals a limited number of specific interactions with (S)-benzodiazepinedione, which projects into a largely hydrophobic surface. This surface can also accommodate other substrates, explaining the ability of the enzyme to prenylate a range of compounds. The location of the bound substrates suggests a likely reaction mechanism for the conversion of (S)-benzodiazepinedione. Structure-guided mutagenesis experiments confirm that, in addition to (S)-benzodiazepinedione, CdpNPT can also act on (R)-benzodiazepinedione and several cyclic dipeptides, albeit with relaxed specificity. Finally, nuclear magnetic resonance spectroscopy demonstrates that CdpNPT is a C-3 reverse PT that catalyzes the formation of C-3β prenylated indolines from diketopiperazines of tryptophan-containing cyclic dipeptides.
Collapse
Affiliation(s)
- Jan Michael Schuller
- Interfakultäres Institut für Biochemie, Universität Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
A novel anticancer and antifungus phenazine derivative from a marine actinomycete BM-17. Microbiol Res 2012; 167:616-22. [PMID: 22494896 DOI: 10.1016/j.micres.2012.02.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 02/25/2012] [Accepted: 02/26/2012] [Indexed: 11/23/2022]
Abstract
A marine actinomycete, designated strain BM-17, was isolated from a sediment sample collected in the Arctic Ocean. The strain was identified as Nocardia dassonvillei based on morphological, cultural, physiological, biochemical characteristics, along with the cell wall analysis and 16S rDNA gene sequence analysis. A new secondary metabolite (1), N-(2-hydroxyphenyl)-2-phenazinamine (NHP), and six known antibiotics (2-7) have been isolated from the saline culture broth of the stain by sequentially purification over macroporous resin D101, silica gel, Sephadex LH-20 column chromatography and preparative HPLC after the stain was incubated in soy bean media at 28°C for 7 days. The chemical structures of the compounds were elucidated on the basis of spectroscopic analysis, including two-dimensional (2D) NMR and HR-ESI-MS data. The new compound showed significant antifungal activity against Candida albicans, with a MIC of 64 μg/ml and high cancer cell cytotoxicity against HepG2, A549, HCT-116 and COC1 cells.
Collapse
|
23
|
Saleh O, Flinspach K, Westrich L, Kulik A, Gust B, Fiedler HP, Heide L. Mutational analysis of a phenazine biosynthetic gene cluster in Streptomyces anulatus 9663. Beilstein J Org Chem 2012; 8:501-13. [PMID: 22509222 PMCID: PMC3326630 DOI: 10.3762/bjoc.8.57] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 03/06/2012] [Indexed: 11/23/2022] Open
Abstract
The biosynthetic gene cluster for endophenazines, i.e., prenylated phenazines from Streptomyces anulatus 9663, was heterologously expressed in several engineered host strains derived from Streptomyces coelicolor M145. The highest production levels were obtained in strain M512. Mutations in the rpoB and rpsL genes of the host, which result in increased production of other secondary metabolites, had no beneficial effect on the production of phenazines. The heterologous expression strains produced, besides the known phenazine compounds, a new prenylated phenazine, termed endophenazine E. The structure of endophenazine E was determined by high-resolution mass spectrometry and by one- and two-dimensional NMR spectroscopy. It represented a conjugate of endophenazine A (9-dimethylallylphenazine-1-carboxylic acid) and L-glutamine (L-Gln), with the carboxyl group of endophenazine A forming an amide bond to the α-amino group of L-Gln. Gene inactivation experiments in the gene cluster proved that ppzM codes for a phenazine N-methyltransferase. The gene ppzV apparently represents a new type of TetR-family regulator, specifically controlling the prenylation in endophenazine biosynthesis. The gene ppzY codes for a LysR-type regulator and most likely controls the biosynthesis of the phenazine core. A further putative transcriptional regulator is located in the vicinity of the cluster, but was found not to be required for phenazine or endophenazine formation. This is the first investigation of the regulatory genes of phenazine biosynthesis in Streptomyces.
Collapse
Affiliation(s)
- Orwah Saleh
- Pharmaceutical Institute, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Saleh O, Bonitz T, Flinspach K, Kulik A, Burkard N, Mühlenweg A, Vente A, Polnick S, Lämmerhofer M, Gust B, Fiedler HP, Heide L. Activation of a silent phenazine biosynthetic gene cluster reveals a novel natural product and a new resistance mechanism against phenazines. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20045g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Yan X, Probst K, Linnenbrink A, Arnold M, Paululat T, Zeeck A, Bechthold A. Cloning and heterologous expression of three type II PKS gene clusters from Streptomyces bottropensis. Chembiochem 2011; 13:224-30. [PMID: 22162248 DOI: 10.1002/cbic.201100574] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Indexed: 11/05/2022]
Abstract
Mensacarcin is a potent cytotoxic agent isolated from Streptomyces bottropensis. It possesses a high content of oxygen atoms and two epoxide groups, and shows cytostatic and cytotoxic activity comparable to that of doxorubicin, a widely used drug for antitumor therapy. Another natural compound, rishirilide A, was also isolated from the fermentation broth of S. bottropensis. Screening a cosmid library of S. bottropensis with minimal PKS-gene-specific primers revealed the presence of three different type II polyketide synthase (PKS) gene clusters in this strain: the msn cluster (mensacarcin biosynthesis), the rsl cluster (rishirilide biosynthesis), and the mec cluster (putative spore pigment biosynthesis). Interestingly, luciferase-like oxygenases, which are very rare in Streptomyces species, are enriched in both the msn cluster and the rsl cluster. Three cosmids, cos2 (containing the major part of the msn cluster), cos3 (harboring the mec cluster), and cos4 (spanning probably the whole rsl cluster) were introduced into the general heterologous host Streptomyces albus by intergeneric conjugation. Expression of cos2 and cos4 in S. albus led to the production of didesmethylmensacarcin (DDMM, a precursor of mensacarcin) and the production of rishirilide A and B (a precursor of rishirilide A), respectively. However, no product was detected from the expression of cos3. In addition, based on the results of isotope-feeding experiments in S. bottropensis, a putative biosynthesis pathway for mensacarcin is proposed.
Collapse
Affiliation(s)
- Xiaohui Yan
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität, Pharmazeutische Biologie und Biotechnologie, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Li WL, Zhan GH, Zheng H. [Advances on actinomycetic terpenoid biosynthesis]. YI CHUAN = HEREDITAS 2011; 33:1087-92. [PMID: 21993283 DOI: 10.3724/sp.j.1005.2011.01087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Terpenoids are the most diverse class of natural products. Recently, a series of terpenoids with novel structures have been isolated from actinomyces. Their biosynthetic gene clusters have been identified and characterized either by direct cloning or genomic mining, which promoted investigations of their biosynthetic pathways, as well as the key enzymatic mechanisms. This paper provides a brief overview of the major research published in the last five years.
Collapse
Affiliation(s)
- Wen-Li Li
- Ocean University of China, Qingdao, China.
| | | | | |
Collapse
|
28
|
Schneemann I, Wiese J, Kunz AL, Imhoff JF. Genetic approach for the fast discovery of phenazine producing bacteria. Mar Drugs 2011; 9:772-789. [PMID: 21673888 PMCID: PMC3111181 DOI: 10.3390/md9050772] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/01/2011] [Accepted: 04/29/2011] [Indexed: 12/18/2022] Open
Abstract
A fast and efficient approach was established to identify bacteria possessing the potential to biosynthesize phenazines, which are of special interest regarding their antimicrobial activities. Sequences of phzE genes, which are part of the phenazine biosynthetic pathway, were used to design one universal primer system and to analyze the ability of bacteria to produce phenazine. Diverse bacteria from different marine habitats and belonging to six major phylogenetic lines were investigated. Bacteria exhibiting phzE gene fragments affiliated to Firmicutes, Alpha- and Gammaproteobacteria, and Actinobacteria. Thus, these are the first primers for amplifying gene fragments from Firmicutes and Alphaproteobacteria. The genetic potential for phenazine production was shown for four type strains belonging to the genera Streptomyces and Pseudomonas as well as for 13 environmental isolates from marine habitats. For the first time, the genetic ability of phenazine biosynthesis was verified by analyzing the metabolite pattern of all PCR-positive strains via HPLC-UV/MS. Phenazine production was demonstrated for the type strains known to produce endophenazines, 2-hydroxy-phenazine, phenazine-1-carboxylic acid, phenazine-1,6-dicarboxylic acid, and chlororaphin as well as for members of marine Actinobacteria. Interestingly, a number of unidentified phenazines possibly represent new phenazine structures.
Collapse
Affiliation(s)
| | | | | | - Johannes F. Imhoff
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-431-600-4450; Fax: +49-431-600-4452
| |
Collapse
|
29
|
Seeger K, Flinspach K, Haug-Schifferdecker E, Kulik A, Gust B, Fiedler HP, Heide L. The biosynthetic genes for prenylated phenazines are located at two different chromosomal loci of Streptomyces cinnamonensis DSM 1042. Microb Biotechnol 2011; 4:252-62. [PMID: 21342470 PMCID: PMC3818865 DOI: 10.1111/j.1751-7915.2010.00234.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 10/13/2010] [Indexed: 11/30/2022] Open
Abstract
Streptomyces cinnamonensis DSM 1042 produces two types of isoprenoid secondary metabolites: the prenylated naphthalene derivative furanonaphthoquinone I (FNQ I), and isoprenylated phenazines which are termed endophenazines. Previously, a 55 kb gene cluster was identified which contained genes for both FNQ I and endophenazine biosynthesis. However, several genes required for the biosynthesis of these metabolites were not present in this cluster. We now re-screened the cosmid library for genes of the mevalonate pathway and identified a separate genomic locus which contains the previously missing genes. This locus (15 kb) comprised orthologues of four phenazine biosynthesis genes known from Pseudomonas strains. Furthermore, the locus contained a putative operon of six genes of the mevalonate pathway, as well as the gene epzP which showed sequence similarity to a recently discovered class of prenyltransferases. Inactivation and complementation experiments proved the involvement of epzP in the prenylation reaction in endophenazine biosynthesis. This newly identified genomic locus is more than 40 kb distant from the previously identified cluster. The protein EpzP was expressed in Escherichia coli in form of a his-tag fusion protein and purified. The enzyme catalysed the prenylation of 5,10-dihydrophenazine-1-carboxylic acid (dihydro-PCA) using dimethylallyl diphosphate (DMAPP) as isoprenoid substrate. K(m) values were determined as 108 µM for dihydro-PCA and 25 µM for DMAPP.
Collapse
Affiliation(s)
- Kerstin Seeger
- Eberhard-Karls-University of Tübingen, Pharmaceutical Institute, Auf der Morgenstelle 8, D-72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Wang Y, Luo Q, Zhang X, Wang W. Isolation and purification of a modified phenazine, griseoluteic acid, produced by Streptomyces griseoluteus P510. Res Microbiol 2011; 162:311-9. [PMID: 21262358 DOI: 10.1016/j.resmic.2011.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 01/01/2011] [Indexed: 10/18/2022]
Abstract
Antibiotic phenazine derivatives and their formation pathways were studied in a new Streptomyces strain P510. Culture characteristics and 16S rRNA nucleotide analysis confirmed strain P510 as Streptomyces griseoluteus. The culture medium of this strain showed strong antimicrobial and antifungal activities. Using organic solvent extraction, silica gel column chromatography and HPLC, a modified phenazine, griseoluteic acid, and a shikimic acid-derived metabolite, p-hydroxybenzaldehyde, were separated and purified. In addition, the biological activity of griseoluteic acid (GA), an important intermediate for biosynthesis of phenazine derivatives, was also investigated in this research. It significantly inhibited growth of Bacillus subtilis. The presence of GA and p-hydroxybenzaldehyde implied that the phenazine biosynthesis pathway in S. griseoluteus P510 might be initiated with shikimic acid, using phenazine-1, 6-dicarboxylic acid as the precursor. The discovery of a partial analogical sequence of phenazine biosynthetic genes, sgpC, sgpD and sgpE, in S. griseoluteus P510 further supported this hypothesis.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Microbial Metabolism, Ministry of Education, College of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | | | | | | |
Collapse
|
31
|
Metzger U, Keller S, Stevenson CEM, Heide L, Lawson DM. Structure and mechanism of the magnesium-independent aromatic prenyltransferase CloQ from the clorobiocin biosynthetic pathway. J Mol Biol 2010; 404:611-26. [PMID: 20946900 DOI: 10.1016/j.jmb.2010.09.067] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 09/27/2010] [Accepted: 09/30/2010] [Indexed: 11/27/2022]
Abstract
CloQ is an aromatic prenyltransferase from the clorobiocin biosynthetic pathway of Streptomyces roseochromogenes var. oscitans. It is involved in the synthesis of the prenylated hydroxybenzoate moiety of the antibiotic, specifically catalyzing the attachment of a dimethylallyl moiety to 4-hydroxyphenylpyruvate. Herein, we report the crystal structure of CloQ and use it as a framework for interpreting biochemical data from both wild-type and variant proteins. CloQ belongs to the aromatic prenyltransferase family, which is characterized by an unusual core fold comprising five consecutive ααββ elements that form a central 10-stranded anti-parallel β-barrel. The latter delineates a solvent-accessible cavity where substrates bind and catalysis takes place. This cavity has well-defined polar and nonpolar regions, which have distinct roles in substrate binding and facilitate a Friedel-Crafts-type mechanism. We propose that the juxtaposition of five positively charged residues in the polar region circumvents the necessity for a Mg(2+), which, by contrast, is a strict requirement for the majority of prenyltransferases characterized to date. Our structure of CloQ complexed with 4-hydroxyphenylpyruvate reveals the formation of a covalent link between the substrate and Cys215 to yield a thiohemiketal species. Through site-directed mutagenesis, we show that this link is not essential for enzyme activity in vitro. Furthermore, we demonstrate that CloQ will accept alternative substrates and, therefore, has the capacity to generate a range of prenylated compounds. Since prenylation is thought to enhance the bioactivity of many natural products, CloQ offers considerable promise as a biocatalyst for the chemoenzymatic synthesis of novel compounds with therapeutic potential.
Collapse
Affiliation(s)
- Ute Metzger
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
| | | | | | | | | |
Collapse
|
32
|
Kumano T, Tomita T, Nishiyama M, Kuzuyama T. Functional characterization of the promiscuous prenyltransferase responsible for furaquinocin biosynthesis: identification of a physiological polyketide substrate and its prenylated reaction products. J Biol Chem 2010; 285:39663-71. [PMID: 20937800 PMCID: PMC3000947 DOI: 10.1074/jbc.m110.153957] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Furaquinocin is a natural polyketide-isoprenoid hybrid (meroterpenoid) that exhibits antitumor activity and is produced by the Streptomyces sp. strain KO-3988. Bioinformatic analysis of furaquinocin biosynthesis has identified Fur7 as a possible prenyltransferase that attaches a geranyl group to an unidentified polyketide scaffold. Here, we report the identification of a physiological polyketide substrate for Fur7, as well as its reaction product and the biochemical characterization of Fur7. A Streptomyces albus transformant (S. albus/pWHM-Fur2_del7) harboring the furaquinocin biosynthetic gene cluster lacking the fur7 gene did not produce furaquinocin but synthesized the novel intermediate 2-methoxy-3-methyl-flaviolin. After expression and purification from Escherichia coli, the recombinant Fur7 enzyme catalyzed the transfer of a geranyl group to 2-methoxy-3-methyl-flaviolin to yield 6-prenyl-2-methoxy-3-methyl-flaviolin and 7-O-geranyl-2-methoxy-3-methyl-flaviolin in a 10:1 ratio. The reaction proceeded independently of divalent cations. When 6-prenyl-2-methoxy-3-methyl-flaviolin was added to the culture medium of S. albus/pWHM-Fur2_del7, furaquinocin production was restored. The promiscuous substrate specificity of Fur7 was demonstrated with respect to prenyl acceptor substrates and prenyl donor substrates. The steady-state kinetic constants of Fur7 with each prenyl acceptor substrate were also calculated.
Collapse
Affiliation(s)
- Takuto Kumano
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
33
|
Itoh T, Tokunaga K, Matsuda Y, Fujii I, Abe I, Ebizuka Y, Kushiro T. Reconstitution of a fungal meroterpenoid biosynthesis reveals the involvement of a novel family of terpene cyclases. Nat Chem 2010; 2:858-64. [DOI: 10.1038/nchem.764] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 06/15/2010] [Indexed: 11/09/2022]
|
34
|
Formation and attachment of the deoxysugar moiety and assembly of the gene cluster for caprazamycin biosynthesis. Appl Environ Microbiol 2010; 76:4008-18. [PMID: 20418426 DOI: 10.1128/aem.02740-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Caprazamycins are antimycobacterials produced by Streptomyces sp. MK730-62F2. Previously, cosmid cpzLK09 was shown to direct the biosynthesis of caprazamycin aglycones, but not of intact caprazamycins. Sequence analysis of cpzLK09 identified 23 genes involved in the formation of the caprazamycin aglycones and the transfer and methylation of the sugar moiety, together with genes for resistance, transport, and regulation. In this study, coexpression of cpzLK09 in Streptomyces coelicolor M512 with pRHAM, containing all the required genes for dTDP-l-rhamnose biosynthesis, led to the production of intact caprazamycins. In vitro studies showed that Cpz31 is responsible for the attachment of the l-rhamnose to the caprazamycin aglycones, generating a rare acylated deoxyhexose. An l-rhamnose gene cluster was identified elsewhere on the Streptomyces sp. MK730-62F2 genome, and its involvement in caprazamycin formation was demonstrated by insertional inactivation of cpzDIII. The l-rhamnose subcluster was assembled with cpzLK09 using Red/ET-mediated recombination. Heterologous expression of the resulting cosmid, cpzEW07, led to the production of caprazamycins, demonstrating that both sets of genes are required for caprazamycin biosynthesis. Knockouts of cpzDI and cpzDV in the l-rhamnose subcluster confirmed that four genes, cpzDII, cpzDIII, cpzDIV, and cpzDVI, are sufficient for the biosynthesis of the deoxysugar moiety. The presented recombineering strategy may provide a useful tool for the assembly of biosynthetic building blocks for heterologous production of microbial compounds.
Collapse
|
35
|
Zhao XQ, Gust B, Heide L. S-Adenosylmethionine (SAM) and antibiotic biosynthesis: effect of external addition of SAM and of overexpression of SAM biosynthesis genes on novobiocin production in Streptomyces. Arch Microbiol 2010; 192:289-97. [DOI: 10.1007/s00203-010-0548-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 12/14/2009] [Accepted: 01/04/2010] [Indexed: 11/27/2022]
|
36
|
Mentel M, Ahuja EG, Mavrodi DV, Breinbauer R, Thomashow LS, Blankenfeldt W. Of two make one: the biosynthesis of phenazines. Chembiochem 2010; 10:2295-304. [PMID: 19658148 DOI: 10.1002/cbic.200900323] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Matthias Mentel
- Institute of Organic Chemistry, University of Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Roberts AA, Ryan KS, Moore BS, Gulder TA. Total (bio)synthesis: strategies of nature and of chemists. Top Curr Chem (Cham) 2010; 297:149-203. [PMID: 21495259 PMCID: PMC3109256 DOI: 10.1007/128_2010_79] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The biosynthetic pathways to a number of natural products have been reconstituted in vitro using purified enzymes. Many of these molecules have also been synthesized by organic chemists. Here we compare the strategies used by nature and by chemists to reveal the underlying logic and success of each total synthetic approach for some exemplary molecules with diverse biosynthetic origins.
Collapse
|
38
|
Olano C, Méndez C, Salas JA. Post-PKS tailoring steps in natural product-producing actinomycetes from the perspective of combinatorial biosynthesis. Nat Prod Rep 2010; 27:571-616. [DOI: 10.1039/b911956f] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Abstract
Phenazines are versatile secondary metabolites of bacterial origin that function in biological control of plant pathogens and contribute to the ecological fitness and pathogenicity of the producing strains. In this study, we employed a collection of 94 strains having various geographic, environmental, and clinical origins to study the distribution and evolution of phenazine genes in members of the genera Pseudomonas, Burkholderia, Pectobacterium, Brevibacterium, and Streptomyces. Our results confirmed the diversity of phenazine producers and revealed that most of them appear to be soil-dwelling and/or plant-associated species. Genome analyses and comparisons of phylogenies inferred from sequences of the key phenazine biosynthesis (phzF) and housekeeping (rrs, recA, rpoB, atpD, and gyrB) genes revealed that the evolution and dispersal of phenazine genes are driven by mechanisms ranging from conservation in Pseudomonas spp. to horizontal gene transfer in Burkholderia spp. and Pectobacterium spp. DNA extracted from cereal crop rhizospheres and screened for the presence of phzF contained sequences consistent with the presence of a diverse population of phenazine producers in commercial farm fields located in central Washington state, which provided the first evidence of United States soils enriched in indigenous phenazine-producing bacteria.
Collapse
|
40
|
Saleh O, Haagen Y, Seeger K, Heide L. Prenyl transfer to aromatic substrates in the biosynthesis of aminocoumarins, meroterpenoids and phenazines: the ABBA prenyltransferase family. PHYTOCHEMISTRY 2009; 70:1728-1738. [PMID: 19559450 DOI: 10.1016/j.phytochem.2009.05.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 05/14/2009] [Accepted: 05/19/2009] [Indexed: 05/28/2023]
Abstract
Aromatic prenyltransferases transfer prenyl moieties onto aromatic acceptor molecules, catalyzing an electrophilic substitution of the aromatic ring under formation of carbon-carbon bonds. They give rise to an astounding diversity of primary and secondary metabolites in plants, fungi and bacteria. This review describes a recently discovered family of aromatic prenyltransferases. The structure of these enyzmes shows a type of beta/alpha fold with antiparallel beta strands. Due to the alpha-beta-beta-alpha architecture of this fold, this group of enzymes was designated as ABBA prenyltransferases. They lack the (N/D)DxxD motif which is characteristic for many other prenyltransferases. At present, 14 genes with sequence similarity to ABBA prenyltransferases can be identified in the database. A phylogenetic analysis of these genes separates them into two clades. One of them comprises the 4-hydroxyphenylpyruvate 3-dimethylallyltransferases CloQ and NovQ involved in aminocoumarin antibiotic biosynthesis in Streptomyces strains, as well as four genes of unknown function from fungal genomes. The other clade comprises genes involved in the biosynthesis of prenylated naphthoquinones and prenylated phenazines in different streptomycetes. ABBA prenyltransferases are soluble biocatalysts which can easily be obtained as homogeneous proteins in significant amounts. Their substrates are accommodated in a surprisingly spacious central cavity which explains their promiscuity for different aromatic substrates. Therefore, the enzymes of this family represent attractive tools for the chemoenzymatic synthesis of bioactive molecules.
Collapse
Affiliation(s)
- Orwah Saleh
- Pharmazeutische Biologie, Pharmazeutisches Institut, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | | | | | | |
Collapse
|
41
|
Brandt W, Bräuer L, Günnewich N, Kufka J, Rausch F, Schulze D, Schulze E, Weber R, Zakharova S, Wessjohann L. Molecular and structural basis of metabolic diversity mediated by prenyldiphosphate converting enzymes. PHYTOCHEMISTRY 2009; 70:1758-1775. [PMID: 19878958 DOI: 10.1016/j.phytochem.2009.09.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 08/31/2009] [Accepted: 09/01/2009] [Indexed: 05/28/2023]
Abstract
General thermodynamic calculations using the semiempiric PM3 method have led to the conclusion that prenyldiphosphate converting enzymes require at least one divalent metal cation for the activation and cleavage of the diphosphate-prenyl ester bond, or they must provide structural elements for the efficient stabilization of the intermediate prenyl cation. The most important common structural features, which guide the product specificity in both terpene synthases and aromatic prenyl transferases are aromatic amino acid side chains, which stabilize prenyl cations by cation-pi interactions. In the case of aromatic prenyl transferases, a proton abstraction from the phenolic hydroxyl group of the second substrate will enhance the electron density in the phenolic ortho-position at which initial prenylation of the aromatic compound usually occurs. A model of the structure of the integral transmembrane-bound aromatic prenyl transferase UbiA was developed, which currently represents the first structural insight into this group of prenylating enzymes with a fold different from most other aromatic prenyl transferases. Based on this model, the structure-activity relationships and mechanistic aspects of related proteins, for example those of Lithospermum erythrorhizon or the enzyme AuaA from Stigmatella aurantiaca involved in the aurachin biosynthesis, were elucidated. The high similarity of this group of aromatic prenyltransferases to 5-epi-aristolochene synthase is an indication of an evolutionary relationship with terpene synthases (cyclases). This is further supported by the conserved DxxxD motif found in both protein families. In contrast, there is no such relationship to the aromatic prenyl transferases with an ABBA-fold, such as NphB, or to any other known family of prenyl converting enzymes. Therefore, it is possible that these two groups might have different evolutionary ancestors.
Collapse
Affiliation(s)
- Wolfgang Brandt
- Leibniz Institute of Plant Biochemistry, Department of Bioorganic Chemistry, Halle (Saale), Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Genes and enzymes involved in bacterial isoprenoid biosynthesis. Curr Opin Chem Biol 2009; 13:180-8. [DOI: 10.1016/j.cbpa.2009.02.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 02/17/2009] [Accepted: 02/20/2009] [Indexed: 11/24/2022]
|
43
|
Saleh O, Gust B, Boll B, Fiedler HP, Heide L. Aromatic prenylation in phenazine biosynthesis: dihydrophenazine-1-carboxylate dimethylallyltransferase from Streptomyces anulatus. J Biol Chem 2009; 284:14439-47. [PMID: 19339241 DOI: 10.1074/jbc.m901312200] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterium Streptomyces anulatus 9663, isolated from the intestine of different arthropods, produces prenylated derivatives of phenazine 1-carboxylic acid. From this organism, we have identified the prenyltransferase gene ppzP. ppzP resides in a gene cluster containing orthologs of all genes known to be involved in phenazine 1-carboxylic acid biosynthesis in Pseudomonas strains as well as genes for the six enzymes required to generate dimethylallyl diphosphate via the mevalonate pathway. This is the first complete gene cluster of a phenazine natural compound from streptomycetes. Heterologous expression of this cluster in Streptomyces coelicolor M512 resulted in the formation of prenylated derivatives of phenazine 1-carboxylic acid. After inactivation of ppzP, only nonprenylated phenazine 1-carboxylic acid was formed. Cloning, overexpression, and purification of PpzP resulted in a 37-kDa soluble protein, which was identified as a 5,10-dihydrophenazine 1-carboxylate dimethylallyltransferase, forming a C-C bond between C-1 of the isoprenoid substrate and C-9 of the aromatic substrate. In contrast to many other prenyltransferases, the reaction of PpzP is independent of the presence of magnesium or other divalent cations. The K(m) value for dimethylallyl diphosphate was determined as 116 microm. For dihydro-PCA, half-maximal velocity was observed at 35 microm. K(cat) was calculated as 0.435 s(-1). PpzP shows obvious sequence similarity to a recently discovered family of prenyltransferases with aromatic substrates, the ABBA prenyltransferases. The present finding extends the substrate range of this family, previously limited to phenolic compounds, to include also phenazine derivatives.
Collapse
Affiliation(s)
- Orwah Saleh
- Pharmazeutische Biologie, Pharmazeutisches Institut, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
44
|
Heide L. Prenyl transfer to aromatic substrates: genetics and enzymology. Curr Opin Chem Biol 2009; 13:171-9. [PMID: 19299193 DOI: 10.1016/j.cbpa.2009.02.020] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 02/17/2009] [Accepted: 02/18/2009] [Indexed: 10/21/2022]
Abstract
Aromatic prenyltransferases catalyze the transfer of prenyl moieties to aromatic acceptor molecules and give rise to an astounding diversity of primary and secondary metabolites in plants, fungi and bacteria. Significant progress has been made in the biochemistry and genetics of this heterogeneous group of enzymes in the past years. After 30 years of extensive research on plant prenylflavonoid biosynthesis, finally the first aromatic prenyltransferases involved in the formation of these compounds have been cloned. In bacteria, investigations of the newly discovered family of ABBA prenyltransferases revealed a novel type of protein fold, the PT barrel. In fungi, a group of closely related indole prenyltransferase was found to carry out aromatic prenylations with different substrate specificity and regiospecificity, and to catalyze both regular and reverse prenylations.
Collapse
Affiliation(s)
- Lutz Heide
- Pharmazeutische Biologie, Pharmazeutisches Institut, Eberhard Karls-Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
45
|
Fitzpatrick DA. Lines of evidence for horizontal gene transfer of a phenazine producing operon into multiple bacterial species. J Mol Evol 2009; 68:171-85. [PMID: 19189039 DOI: 10.1007/s00239-009-9198-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 12/06/2008] [Accepted: 01/12/2009] [Indexed: 10/21/2022]
Abstract
Phenazines are secondary metabolites with broad-spectrum antibiotic activity against bacteria, fungi, and eukaryotes. In pseudomonad species, a conserved seven-gene phenazine operon (phzABCDEFG) is required for the conversion of chorismic acid to the broad-spectrum antibiotic phenazine-1-carboxylate. Previous analyses of genes involved in phenazine production from nonpseudomonad species uncovered a high degree of sequence similarity to pseudomonad homologues. The analyses undertaken in this study wished to eluciadate the evolutionary history of genes involved in the production of phenazines. Furthermore, I wanted to determine if the phenazine operon has been transferred through horizontal gene transfer. Analyses of GC content, codon usage patterns, frequency of 3:1 dinucleotides, sequence similarities, and phylogenetic reconstructions were undertaken to map the evolutionary history of phenazine genes from multiple bacterial species. Patchy phyletic distribution, high sequence similarities, and phylogenetic evidence infer that pseudomonad, Streptomyces cinnamonensis, Pantoea agglomerans, Burkholderia cepacia, Pectobacterium atrosepticum, Brevibacterium linens, and Mycobacterium abscessus species all contain a phenazine operon which has most likely been transferred among these species through horizontal gene transfer. The acquisition of an antibiotic-associated operon is significant, as it may increase the relative fitness of the recipient species.
Collapse
Affiliation(s)
- David A Fitzpatrick
- Department of Biology, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
46
|
Ahuja EG, Janning P, Mentel M, Graebsch A, Breinbauer R, Hiller W, Costisella B, Thomashow LS, Mavrodi DV, Blankenfeldt W. PhzA/B Catalyzes the Formation of the Tricycle in Phenazine Biosynthesis. J Am Chem Soc 2008; 130:17053-61. [DOI: 10.1021/ja806325k] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ekta G. Ahuja
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany, Technical University of Dortmund, Faculty of Chemistry, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany, University of Leipzig, Institute of Organic Chemistry, Johannisallee 29, 04103 Leipzig, Germany, Graz University of Technology, Institute of Organic Chemistry, Stremayrgasse 16, 8010 Graz, Austria, Washington State University, Pullman, Washington 99164-6430, and USDA, Agricultural Research Service, Root Disease
| | - Petra Janning
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany, Technical University of Dortmund, Faculty of Chemistry, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany, University of Leipzig, Institute of Organic Chemistry, Johannisallee 29, 04103 Leipzig, Germany, Graz University of Technology, Institute of Organic Chemistry, Stremayrgasse 16, 8010 Graz, Austria, Washington State University, Pullman, Washington 99164-6430, and USDA, Agricultural Research Service, Root Disease
| | - Matthias Mentel
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany, Technical University of Dortmund, Faculty of Chemistry, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany, University of Leipzig, Institute of Organic Chemistry, Johannisallee 29, 04103 Leipzig, Germany, Graz University of Technology, Institute of Organic Chemistry, Stremayrgasse 16, 8010 Graz, Austria, Washington State University, Pullman, Washington 99164-6430, and USDA, Agricultural Research Service, Root Disease
| | - Almut Graebsch
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany, Technical University of Dortmund, Faculty of Chemistry, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany, University of Leipzig, Institute of Organic Chemistry, Johannisallee 29, 04103 Leipzig, Germany, Graz University of Technology, Institute of Organic Chemistry, Stremayrgasse 16, 8010 Graz, Austria, Washington State University, Pullman, Washington 99164-6430, and USDA, Agricultural Research Service, Root Disease
| | - Rolf Breinbauer
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany, Technical University of Dortmund, Faculty of Chemistry, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany, University of Leipzig, Institute of Organic Chemistry, Johannisallee 29, 04103 Leipzig, Germany, Graz University of Technology, Institute of Organic Chemistry, Stremayrgasse 16, 8010 Graz, Austria, Washington State University, Pullman, Washington 99164-6430, and USDA, Agricultural Research Service, Root Disease
| | - Wolf Hiller
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany, Technical University of Dortmund, Faculty of Chemistry, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany, University of Leipzig, Institute of Organic Chemistry, Johannisallee 29, 04103 Leipzig, Germany, Graz University of Technology, Institute of Organic Chemistry, Stremayrgasse 16, 8010 Graz, Austria, Washington State University, Pullman, Washington 99164-6430, and USDA, Agricultural Research Service, Root Disease
| | - Burkhard Costisella
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany, Technical University of Dortmund, Faculty of Chemistry, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany, University of Leipzig, Institute of Organic Chemistry, Johannisallee 29, 04103 Leipzig, Germany, Graz University of Technology, Institute of Organic Chemistry, Stremayrgasse 16, 8010 Graz, Austria, Washington State University, Pullman, Washington 99164-6430, and USDA, Agricultural Research Service, Root Disease
| | - Linda S. Thomashow
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany, Technical University of Dortmund, Faculty of Chemistry, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany, University of Leipzig, Institute of Organic Chemistry, Johannisallee 29, 04103 Leipzig, Germany, Graz University of Technology, Institute of Organic Chemistry, Stremayrgasse 16, 8010 Graz, Austria, Washington State University, Pullman, Washington 99164-6430, and USDA, Agricultural Research Service, Root Disease
| | - Dmitri V. Mavrodi
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany, Technical University of Dortmund, Faculty of Chemistry, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany, University of Leipzig, Institute of Organic Chemistry, Johannisallee 29, 04103 Leipzig, Germany, Graz University of Technology, Institute of Organic Chemistry, Stremayrgasse 16, 8010 Graz, Austria, Washington State University, Pullman, Washington 99164-6430, and USDA, Agricultural Research Service, Root Disease
| | - Wulf Blankenfeldt
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany, Technical University of Dortmund, Faculty of Chemistry, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany, University of Leipzig, Institute of Organic Chemistry, Johannisallee 29, 04103 Leipzig, Germany, Graz University of Technology, Institute of Organic Chemistry, Stremayrgasse 16, 8010 Graz, Austria, Washington State University, Pullman, Washington 99164-6430, and USDA, Agricultural Research Service, Root Disease
| |
Collapse
|
47
|
Tello M, Kuzuyama T, Heide L, Noel JP, Richard SB. The ABBA family of aromatic prenyltransferases: broadening natural product diversity. Cell Mol Life Sci 2008; 65:1459-63. [PMID: 18322648 PMCID: PMC2861910 DOI: 10.1007/s00018-008-7579-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- M. Tello
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037 USA
| | - T. Kuzuyama
- Biotechnology Research Centre, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113–8657 Japan
| | - L. Heide
- Pharmazeutisches Institut, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - J. P. Noel
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037 USA
| | - S. B. Richard
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037 USA
| |
Collapse
|
48
|
Anderle C, Li SM, Kammerer B, Gust B, Heide L. New aminocoumarin antibiotics derived from 4-hydroxycinnamic acid are formed after heterologous expression of a modified clorobiocin biosynthetic gene cluster. J Antibiot (Tokyo) 2007; 60:504-10. [PMID: 17827661 DOI: 10.1038/ja.2007.64] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Three new aminocoumarin antibiotics, termed ferulobiocin, 3-chlorocoumarobiocin and 8'-dechloro-3-chlorocoumarobiocin, were isolated from the culture broth of a Streptomyces coelicolor M512 strain expressing a modified clorobiocin biosynthetic gene cluster. Structural analysis showed that these new aminocoumarins were very similar to clorobiocin, with a substituted 4-hydroxycinnamoyl moieties instead of the prenylated 4-hydroxybenzoyl moiety of clorobiocin. The possible biosynthetic origin of these moieties is discussed.
Collapse
Affiliation(s)
- Christine Anderle
- Pharmazeutisches Institut, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
49
|
Characterization of the saframycin A gene cluster from Streptomyces lavendulae NRRL 11002 revealing a nonribosomal peptide synthetase system for assembling the unusual tetrapeptidyl skeleton in an iterative manner. J Bacteriol 2007; 190:251-63. [PMID: 17981978 DOI: 10.1128/jb.00826-07] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saframycin A (SFM-A), produced by Streptomyces lavendulae NRRL 11002, belongs to the tetrahydroisoquinoline family of antibiotics, and its core is structurally similar to the core of ecteinascidin 743, which is a highly potent antitumor drug isolated from a marine tunicate. In this study, the biosynthetic gene cluster for SFM-A was cloned and localized to a 62-kb contiguous DNA region. Sequence analysis revealed 30 genes that constitute the SFM-A gene cluster, encoding an unusual nonribosomal peptide synthetase (NRPS) system and tailoring enzymes and regulatory and resistance proteins. The results of substrate prediction and in vitro characterization of the adenylation specificities of this NRPS system support the hypothesis that the last module acts in an iterative manner to form a tetrapeptidyl intermediate and that the colinearity rule does not apply. Although this mechanism is different from those proposed for the SFM-A analogs SFM-Mx1 and safracin B (SAC-B), based on the high similarity of these systems, it is likely they share a common mechanism of biosynthesis as we describe here. Construction of the biosynthetic pathway of SFM-Y3, an aminated SFM-A, was achieved in the SAC-B producer (Pseudomonas fluorescens). These findings not only shed new insight on tetrahydroisoquinoline biosynthesis but also demonstrate the feasibility of engineering microorganisms to generate structurally more complex and biologically more active analogs by combinatorial biosynthesis.
Collapse
|
50
|
Haagen Y, Unsöld I, Westrich L, Gust B, Richard SB, Noel JP, Heide L. A soluble, magnesium-independent prenyltransferase catalyzes reverse and regular C-prenylations and O-prenylations of aromatic substrates. FEBS Lett 2007; 581:2889-93. [PMID: 17543953 PMCID: PMC2860617 DOI: 10.1016/j.febslet.2007.05.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 04/30/2007] [Accepted: 05/14/2007] [Indexed: 11/17/2022]
Abstract
Fnq26 from Streptomyces cinnamonensis DSM 1042 is a new member of the recently identified CloQ/Orf2 class of prenyltransferases. The enzyme was overexpressed in E. coli and purified to apparent homogeneity, resulting in a soluble, monomeric protein of 33.2 kDa. The catalytic activity of Fnq26 is independent of the presence of Mg(2+) or other divalent metal ions. With flaviolin (2,5,7-trihydroxy-1,4-naphthoquinone) as substrate, Fnq26 catalyzes the formation of a carbon-carbon-bond between C-3 (rather than C-1) of geranyl diphosphate and C-3 of flaviolin, i.e. an unusual "reverse" prenylation. With 1,3-dihydroxynaphthalene and 4-hydroxybenzoate as substrates Fnq26 catalyzes O-prenylations.
Collapse
Affiliation(s)
- Yvonne Haagen
- Pharmazeutisches Institut, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Inge Unsöld
- Pharmazeutisches Institut, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Lucia Westrich
- Pharmazeutisches Institut, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Bertolt Gust
- Pharmazeutisches Institut, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Stéphane B. Richard
- Jack Skirball Chemical Biology and Proteomics Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Joseph P. Noel
- Jack Skirball Chemical Biology and Proteomics Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Lutz Heide
- Pharmazeutisches Institut, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Corresponding author. Fax: +49 7071 29 5250., (L. Heide)
| |
Collapse
|