1
|
Chen PHB, Li XL, Baskin JM. Synthetic Lipid Biology. Chem Rev 2025. [PMID: 39805091 DOI: 10.1021/acs.chemrev.4c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Cells contain thousands of different lipids. Their rapid and redundant metabolism, dynamic movement, and many interactions with other biomolecules have justly earned lipids a reputation as a vexing class of molecules to understand. Further, as the cell's hydrophobic metabolites, lipids assemble into supramolecular structures─most commonly bilayers, or membranes─from which they carry out myriad biological functions. Motivated by this daunting complexity, researchers across disciplines are bringing order to the seeming chaos of biological lipids and membranes. Here, we formalize these efforts as "synthetic lipid biology". Inspired by the idea, central to synthetic biology, that our abilities to understand and build biological systems are intimately connected, we organize studies and approaches across numerous fields to create, manipulate, and analyze lipids and biomembranes. These include construction of lipids and membranes from scratch using chemical and chemoenzymatic synthesis, editing of pre-existing membranes using optogenetics and protein engineering, detection of lipid metabolism and transport using bioorthogonal chemistry, and probing of lipid-protein interactions and membrane biophysical properties. What emerges is a portrait of an incipient field where chemists, biologists, physicists, and engineers work together in proximity─like lipids themselves─to build a clearer description of the properties, behaviors, and functions of lipids and membranes.
Collapse
Affiliation(s)
- Po-Hsun Brian Chen
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xiang-Ling Li
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy M Baskin
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
2
|
Hu R, Cao J, Rong C, Wu S, Wu L. Increasing the flexibility of the substrate binding pocket of Streptomyces phospholipase D can enhance its catalytic efficiency in soybean phosphatidylcholine. Int J Biol Macromol 2024; 280:135824. [PMID: 39306159 DOI: 10.1016/j.ijbiomac.2024.135824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
The catalytic efficiency of Streptomyces klenkii phospholipase D (SkPLD) in soybean phosphatidylcholine (soy-PC) processing is constrained by its acyl chain specificity. To address this limitation, we engineered the substrate-binding pocket of SkPLD to increase its flexibility. The mutant P343A/Y383L exhibited a 7.14-fold increase in catalytic efficiency toward soy-PC compared to the wild type. This enhancement was attributed to improved substrate-binding pocket flexibility, as evidenced by the significantly higher specific activity of the mutant toward PCs with various acyl chains (58.20-327.76 U/mg vs. 13.56-76.67 U/mg). Monomolecular film experiments demonstrated that the P343A/Y383L mutant reduced the energy barrier for PC binding, facilitating favorable interactions with the soy-PC monolayer. Molecular dynamics simulations revealed that the mutant's increased flexibility allowed for easier diffusion and penetration into the soy-PC monolayer, while the non-polar amino acids in the substrate-binding pocket promoted rapid interactions with the acyl chains of PC, ultimately leading to enhanced catalytic activity.
Collapse
Affiliation(s)
- Rongkang Hu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, PR China; Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, PR China.
| | - Jiale Cao
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, PR China; Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, PR China
| | - Chenghao Rong
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, PR China; Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, PR China
| | - Siyi Wu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, PR China; Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, PR China
| | - Linxiu Wu
- Translational Medicine Center, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, PR China.
| |
Collapse
|
3
|
de Kok NAW, Driessen AJM. The catalytic and structural basis of archaeal glycerophospholipid biosynthesis. Extremophiles 2022; 26:29. [PMID: 35976526 PMCID: PMC9385802 DOI: 10.1007/s00792-022-01277-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022]
Abstract
Archaeal glycerophospholipids are the main constituents of the cytoplasmic membrane in the archaeal domain of life and fundamentally differ in chemical composition compared to bacterial phospholipids. They consist of isoprenyl chains ether-bonded to glycerol-1-phosphate. In contrast, bacterial glycerophospholipids are composed of fatty acyl chains ester-bonded to glycerol-3-phosphate. This largely domain-distinguishing feature has been termed the “lipid-divide”. The chemical composition of archaeal membranes contributes to the ability of archaea to survive and thrive in extreme environments. However, ether-bonded glycerophospholipids are not only limited to extremophiles and found also in mesophilic archaea. Resolving the structural basis of glycerophospholipid biosynthesis is a key objective to provide insights in the early evolution of membrane formation and to deepen our understanding of the molecular basis of extremophilicity. Many of the glycerophospholipid enzymes are either integral membrane proteins or membrane-associated, and hence are intrinsically difficult to study structurally. However, in recent years, the crystal structures of several key enzymes have been solved, while unresolved enzymatic steps in the archaeal glycerophospholipid biosynthetic pathway have been clarified providing further insights in the lipid-divide and the evolution of early life.
Collapse
Affiliation(s)
- Niels A W de Kok
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Groningen, The Netherlands
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Groningen, The Netherlands.
| |
Collapse
|
4
|
Characterization of inositol lipid metabolism in gut-associated Bacteroidetes. Nat Microbiol 2022; 7:986-1000. [PMID: 35725777 PMCID: PMC9246714 DOI: 10.1038/s41564-022-01152-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/17/2022] [Indexed: 12/13/2022]
Abstract
Inositol lipids are ubiquitous in eukaryotes and have finely tuned roles in cellular signalling and membrane homoeostasis. In Bacteria, however, inositol lipid production is relatively rare. Recently, the prominent human gut bacterium Bacteroides thetaiotaomicron (BT) was reported to produce inositol lipids and sphingolipids, but the pathways remain ambiguous and their prevalence unclear. Here, using genomic and biochemical approaches, we investigated the gene cluster for inositol lipid synthesis in BT using a previously undescribed strain with inducible control of sphingolipid synthesis. We characterized the biosynthetic pathway from myo-inositol-phosphate (MIP) synthesis to phosphoinositol dihydroceramide, determined the crystal structure of the recombinant BT MIP synthase enzyme and identified the phosphatase responsible for the conversion of bacterially-derived phosphatidylinositol phosphate (PIP-DAG) to phosphatidylinositol (PI-DAG). In vitro, loss of inositol lipid production altered BT capsule expression and antimicrobial peptide resistance. In vivo, loss of inositol lipids decreased bacterial fitness in a gnotobiotic mouse model. We identified a second putative, previously undescribed pathway for bacterial PI-DAG synthesis without a PIP-DAG intermediate, common in Prevotella. Our results indicate that inositol sphingolipid production is widespread in host-associated Bacteroidetes and has implications for symbiosis. The pathways responsible for inositol lipid production in human gut Bacteroides are characterized and these lipids are important for capsule expression and antimicrobial peptide resistance in vitro and colonization in vivo.
Collapse
|
5
|
Determination of Glycerophospholipids in Biological Material Using High-Performance Liquid Chromatography with Charged Aerosol Detector HPLC-CAD-A New Approach for Isolation and Quantification. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103356. [PMID: 35630833 PMCID: PMC9146369 DOI: 10.3390/molecules27103356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
The method of using high-performance liquid chromatography with a charged aerosol detector method (HPLC-CAD) was developed for the separation and determination of phospholipids isolated from cell membranes. The established cell lines—normal and neoplastic prostate cells and normal skin fibroblasts and melanoma cells—were selected for the study. Chromatographic separation was performed in the diol stationary phase using a gradient elution based on a mixture of n-hexane, isopropanol and water with the addition of triethylamine and acetic acid as buffer additives. Taking the elements of the Folch and Bligh–Dyer methods, an improved procedure for lipid isolation from biological material was devised. Ultrasound-assisted extraction included three extraction steps and changed the composition of the extraction solvent, which led to higher recovery of the tested phospholipids. This method was validated by assessing the analytical range, precision, intermediate precision and accuracy. The analytical range was adjusted to the expected concentrations in cell extracts of various origins (from 40 µg/mL for PS up to 10 mg/mL for PC). Both precision and intermediate precision were at a similar level and ranged from 3.5% to 9.0%. The recovery for all determined phospholipids was found to be between 95% and 110%. The robustness of the method in terms of the use of equivalent columns was also confirmed. Due to the curvilinear response of CAD, the quantification was based on an internal standard method combined with a power function transformation of the normalized peak areas, allowing the linearization of the signal with an R2 greater than 0.996. The developed method was applied for the isolation and determination of glycerophospholipids from cell membranes, showing that the profile of the tested substances was characteristic of various types of cells. This method can be used to assess changes in metabolism between normal cells and neoplastic cells or cells with certain pathologies or genetic changes.
Collapse
|
6
|
Zhang P, Gong JS, Qin J, Li H, Hou HJ, Zhang XM, Xu ZH, Shi JS. Phospholipids (PLs) know-how: exploring and exploiting phospholipase D for its industrial dissemination. Crit Rev Biotechnol 2021; 41:1257-1278. [PMID: 33985392 DOI: 10.1080/07388551.2021.1921690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 12/26/2020] [Accepted: 02/24/2021] [Indexed: 10/21/2022]
Abstract
Owing to their numerous nutritional and bioactive functions, phospholipids (PLs), which are major components of biological membranes in all living organisms, have been widely applied as nutraceuticals, food supplements, and cosmetic ingredients. To date, PLs are extracted solely from soybean or egg yolk, despite the diverse market demands and high cost, owing to a tedious and inefficient manufacturing process. A microbial-based manufacturing process, specifically phospholipase D (PLD)-based biocatalysis and biotransformation process for PLs, has the potential to address several challenges associated with the soybean- or egg yolk-based supply chain. However, poor enzyme properties and inefficient microbial expression systems for PLD limit their wide industrial dissemination. Therefore, sourcing new enzyme variants with improved properties and developing advanced PLD expression systems are important. In the present review, we systematically summarize recent achievements and trends in the discovery, their structural properties, catalytic mechanisms, expression strategies for enhancing PLD production, and its multiple applications in the context of PLs. This review is expected to assist researchers to understand current advances in this field and provide insights for further molecular engineering efforts toward PLD-mediated bioprocessing.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, P. R. China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, P. R. China
| | - Jiufu Qin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Hui Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, P. R. China
| | - Hai-Juan Hou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, P. R. China
| | - Xiao-Mei Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, P. R. China
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, P. R. China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
7
|
Hu R, Cui R, Tang Q, Lan D, Wang F, Wang Y. Enhancement of Phospholipid Binding and Catalytic Efficiency of Streptomyces klenkii Phospholipase D by Increasing Hydrophobicity of the Active Site Loop. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11110-11120. [PMID: 34516129 DOI: 10.1021/acs.jafc.1c04078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The mechanism of active site loops of Streptomyces phospholipase D (PLD) binding to the lipid-water interface for catalytic reactions still remains elusive. A flexible loop (residues 376-382) in the active site of Streptomyces klenkii PLD (SkPLD) is conserved within PLDs in most of the Streptomyces species. The residue Ser380 was found to be essential for the enzyme's adsorption to the interface and its substrate recognition. The S380V mutant showed a 4.8 times higher catalytic efficiency and nearly seven times higher adsorption equilibrium coefficient compared to the wild-type SkPLD. The monolayer film technique has confirmed that the substitution of Ser380 with valine in the loop exhibited positive interaction between the enzyme and PCs with different acyl chain lengths. The results of the interfacial binding properties indicated that the S380V mutant might display suitable phosphatidylserine synthesis activity. The present study will be helpful to explain the role of residue 380 in the active site loops of Streptomyces PLD.
Collapse
Affiliation(s)
- Rongkang Hu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
- Guangdong Youmei Institute of Inteligent Bio-manufacturing Co., Ltd., Foshan, Guangdong 528200, People's Republic of China
| | - Ruiguo Cui
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
- Guangdong Youmei Institute of Inteligent Bio-manufacturing Co., Ltd., Foshan, Guangdong 528200, People's Republic of China
| | - Qingyun Tang
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Dongming Lan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
- Guangdong Youmei Institute of Inteligent Bio-manufacturing Co., Ltd., Foshan, Guangdong 528200, People's Republic of China
| | - Fanghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
- Guangdong Youmei Institute of Inteligent Bio-manufacturing Co., Ltd., Foshan, Guangdong 528200, People's Republic of China
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
- Guangdong Youmei Institute of Inteligent Bio-manufacturing Co., Ltd., Foshan, Guangdong 528200, People's Republic of China
| |
Collapse
|
8
|
Structures of an engineered phospholipase D with specificity for secondary alcohol transphosphatidylation: insights into plasticity of substrate binding and activation. Biochem J 2021; 478:1749-1767. [PMID: 33843991 PMCID: PMC8133832 DOI: 10.1042/bcj20210117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 11/17/2022]
Abstract
Phospholipase D (PLD) is an enzyme useful for the enzymatic modification of phospholipids. In the presence of primary alcohols, the enzyme catalyses transphosphatidylation of the head group of phospholipid substrates to synthesise a modified phospholipid product. However, the enzyme is specific for primary alcohols and thus the limitation of the molecular size of the acceptor compounds has restricted the type of phospholipid species that can be synthesised. An engineered variant of PLD from Streptomyces antibioticus termed TNYR SaPLD was developed capable of synthesising 1-phosphatidylinositol with positional specificity of up to 98%. To gain a better understanding of the substrate binding features of the TNYR SaPLD, crystal structures have been determined for the free enzyme and its complexes with phosphate, phosphatidic acid and 1-inositol phosphate. Comparisons of these structures with the wild-type SaPLD show a larger binding site able to accommodate a bulkier secondary alcohol substrate as well as changes to the position of a flexible surface loop proposed to be involved in substrate recognition. The complex of the active TNYR SaPLD with 1-inositol phosphate reveals a covalent intermediate adduct with the ligand bound to H442 rather than to H168, the proposed nucleophile in the wild-type enzyme. This structural feature suggests that the enzyme exhibits plasticity of the catalytic mechanism different from what has been reported to date for PLDs. These structural studies provide insights into the underlying mechanism that governs the recognition of myo-inositol by TNYR SaPLD, and an important foundation for further studies of the catalytic mechanism.
Collapse
|
9
|
Huang L, Ma J, Sang J, Wang N, Wang S, Wang C, Kang H, Liu F, Lu F, Liu Y. Enhancing the thermostability of phospholipase D from Streptomyces halstedii by directed evolution and elucidating the mechanism of a key amino acid residue using molecular dynamics simulation. Int J Biol Macromol 2020; 164:3065-3074. [PMID: 32858108 DOI: 10.1016/j.ijbiomac.2020.08.160] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/19/2020] [Accepted: 08/20/2020] [Indexed: 12/28/2022]
Abstract
To enhance the thermostability of phospholipase D (PLD), error-prone polymerase chain reaction method was used to create mutants of PLD (PLDsh) from Streptomyces halstedii. One desirable mutant (S163F) with Ser to Phe substitution at position 163 was screened with high-throughput assay. S163F exhibited a 10 °C higher optimum temperature than wild-type (WT). Although WT exhibited almost no activity after incubating at 50 °C for 40 min, S163F still displayed 27% of its highest activity after incubating at 50 °C for 60 min. Furthermore, the half-life of S163F at 50 °C was 3.04-fold higher than that of WT. The analysis of molecular dynamics simulation suggested that the Ser163Phe mutation led to the formation of salt bridge between Lys300 and Glu314 and a stronger hydrophobic interaction of Phe163 with Pro341, Leu342, and Trp460, resulting in an increased structural rigidity and overall enhanced stability at high temperature. This study provides novel insights on PLD tolerance to high temperature by investigating the structure-activity relationship. In addition, it provides strong theoretical foundation and preliminary information on the engineering of PLD with improved characteristics to meet industrial demand.
Collapse
Affiliation(s)
- Lin Huang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jieying Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jingcheng Sang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Nan Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shuang Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Chen Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Hongwei Kang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
10
|
Abstract
Microbial lipases represent one of the most important groups of biotechnological biocatalysts. However, the high-level production of lipases requires an understanding of the molecular mechanisms of gene expression, folding, and secretion processes. Stable, selective, and productive lipase is essential for modern chemical industries, as most lipases cannot work in different process conditions. However, the screening and isolation of a new lipase with desired and specific properties would be time consuming, and costly, so researchers typically modify an available lipase with a certain potential for minimizing cost. Improving enzyme properties is associated with altering the enzymatic structure by changing one or several amino acids in the protein sequence. This review detailed the main sources, classification, structural properties, and mutagenic approaches, such as rational design (site direct mutagenesis, iterative saturation mutagenesis) and direct evolution (error prone PCR, DNA shuffling), for achieving modification goals. Here, both techniques were reviewed, with different results for lipase engineering, with a particular focus on improving or changing lipase specificity. Changing the amino acid sequences of the binding pocket or lid region of the lipase led to remarkable enzyme substrate specificity and enantioselectivity improvement. Site-directed mutagenesis is one of the appropriate methods to alter the enzyme sequence, as compared to random mutagenesis, such as error-prone PCR. This contribution has summarized and evaluated several experimental studies on modifying the substrate specificity of lipases.
Collapse
|
11
|
Iwasaki Y, Sakurai Y, Damnjanović J. A simple chemo-enzymatic synthesis of alkyl-acyl (plasmanyl) phospholipids. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Zhang Z, Chen M, Xu W, Zhang W, Zhang T, Guang C, Mu W. Microbial phospholipase D: Identification, modification and application. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.12.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Zhang H, Chu W, Sun J, Liu Z, Huang WC, Xue C, Mao X. Combining Cell Surface Display and DNA-Shuffling Technology for Directed Evolution of Streptomyces Phospholipase D and Synthesis of Phosphatidylserine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13119-13126. [PMID: 31686506 DOI: 10.1021/acs.jafc.9b05394] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phospholipids have been widely used in food, medicine, cosmetics, and other fields because of their unique chemical structure and healthcare functions. Phospholipase D (PLD) is a key biocatalyst for the biotransformation of phospholipids. Here, an autodisplay expression system was constructed for rapid screening of mutants, and PLD variants were recombined using DNA shuffling technology and three beneficial mutations were obtained. The results of enzymatic performance and sequence information comparison indicated that C-terminal amino acids exerted a greater impact on the correct folding of PLDs, and N-terminal amino acids are more important for catalytic reaction. The best-performing recombinant enzyme in transphosphatidylation reactions was Recom-34, with a phosphatidylserine content accounting for 80.3% of total phospholipids and a 3.24-fold increased conversion rate compared to the parent enzyme. This study demonstrates great significance for screening ideal biocatalysts, facilitating soluble expression of inclusion body proteins, and identifying key amino acids.
Collapse
Affiliation(s)
- Haiyang Zhang
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , Shandong , China
| | - Wenqin Chu
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , Shandong , China
| | - Jianan Sun
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , Shandong , China
| | - Zhen Liu
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , Shandong , China
| | - Wen-Can Huang
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , Shandong , China
| | - Changhu Xue
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , Shandong , China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , Shandong , China
| | - Xiangzhao Mao
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , Shandong , China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , Shandong , China
| |
Collapse
|
14
|
Damnjanović J, Nakano H, Iwasaki Y. Acyl chain that matters: introducing sn-2 acyl chain preference to a phospholipase D by protein engineering. Protein Eng Des Sel 2019; 32:1-11. [DOI: 10.1093/protein/gzz019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/22/2019] [Accepted: 07/03/2019] [Indexed: 01/19/2023] Open
Abstract
AbstractPhospholipase D (PLD) is an enzyme widely used for enzymatic synthesis of structured phospholipids (PLs) with modified head groups. These PLs are mainly used as food supplements and liposome ingredients. Still, there is a need for an enzyme that discriminates between PLs and lysoPLs, for specific detection of lysoPLs in various specimens and enzymatic synthesis of certain PLs from a mixed substrate. To meet this demand, we aimed at altering sn-2 acyl chain recognition of a PLD, leading to a variant enzyme preferably reacting on lysoPLs, by protein engineering. Based on the crystal structure of Streptomyces antibioticus PLD, W166 was targeted for saturation mutagenesis due to its strong interaction with the sn-2 acyl chain of the PL. Screening result pointed at W166R and W166K PLDs to selectively react on lysophosphatidylcholine (lysoPC), while not on PC. These variants showed a negative correlation between activity and sn-2 chain length of PL substrates. This behavior was not observed in the wild-type (WT)-PLD. Kinetic analysis revealed that the W166R and W166K variants have 7–10 times higher preference to lysoPC compared to the WT-PLD. Additionally, W166R PLD showed detectable activity toward glycero-3-phosphocholine, unlike the WT-PLD. Applicability of the lysoPC-preferring PLD was demonstrated by detection of lysoPC in the mixed PC/lysoPC sample and by the synthesis of cyclic phosphatidic acid. Structure model analyses supported the experimental findings and provided a basis for the structure model-based hypothesis on the observed behavior of the enzymes.
Collapse
Affiliation(s)
- Jasmina Damnjanović
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hideo Nakano
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yugo Iwasaki
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
15
|
Damnjanović J, Matsunaga N, Adachi M, Nakano H, Iwasaki Y. Facile Enzymatic Synthesis of Phosphatidylthreonine Using an Engineered Phospholipase D. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201800089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jasmina Damnjanović
- Laboratory of Molecular BiotechnologyDepartment of Bioengineering SciencesGraduate School of Bioagricultural ScienceNagoya University, Furo‐choChikusa‐kuNagoya464‐8601Japan
| | - Nozomi Matsunaga
- Laboratory of Molecular BiotechnologyDepartment of Bioengineering SciencesGraduate School of Bioagricultural ScienceNagoya University, Furo‐choChikusa‐kuNagoya464‐8601Japan
| | - Masaatsu Adachi
- Laboratory of Organic ChemistryDepartment of Applied Molecular BiosciencesGraduate School of Bioagricultural SciencesNagoya University, Furo‐choChikusa‐kuNagoya464‐8601Japan
| | - Hideo Nakano
- Laboratory of Molecular BiotechnologyDepartment of Bioengineering SciencesGraduate School of Bioagricultural ScienceNagoya University, Furo‐choChikusa‐kuNagoya464‐8601Japan
| | - Yugo Iwasaki
- Laboratory of Molecular BiotechnologyDepartment of Bioengineering SciencesGraduate School of Bioagricultural ScienceNagoya University, Furo‐choChikusa‐kuNagoya464‐8601Japan
| |
Collapse
|
16
|
Streptomyces spp. in the biocatalysis toolbox. Appl Microbiol Biotechnol 2018; 102:3513-3536. [PMID: 29502181 DOI: 10.1007/s00253-018-8884-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/17/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
Abstract
About 20,100 research publications dated 2000-2017 were recovered searching the PubMed and Web of Science databases for Streptomyces, which are the richest known source of bioactive molecules. However, these bacteria with versatile metabolism are powerful suppliers of biocatalytic tools (enzymes) for advanced biotechnological applications such as green chemical transformations and biopharmaceutical and biofuel production. The recent technological advances, especially in DNA sequencing coupled with computational tools for protein functional and structural prediction, and the improved access to microbial diversity enabled the easier access to enzymes and the ability to engineer them to suit a wider range of biotechnological processes. The major driver behind a dramatic increase in the utilization of biocatalysis is sustainable development and the shift toward bioeconomy that will, in accordance to the UN policy agenda "Bioeconomy to 2030," become a global effort in the near future. Streptomyces spp. already play a significant role among industrial microorganisms. The intention of this minireview is to highlight the presence of Streptomyces in the toolbox of biocatalysis and to give an overview of the most important advances in novel biocatalyst discovery and applications. Judging by the steady increase in a number of recent references (228 for the 2000-2017 period), it is clear that biocatalysts from Streptomyces spp. hold promises in terms of valuable properties and applicative industrial potential.
Collapse
|
17
|
Hänninen S, Batchu KC, Hokynar K, Somerharju P. Simple and rapid biochemical method to synthesize labeled or unlabeled phosphatidylinositol species. J Lipid Res 2017; 58:1259-1264. [PMID: 28420658 DOI: 10.1194/jlr.d075960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/18/2017] [Indexed: 11/20/2022] Open
Abstract
Phosphatidylinositol (PI) is the precursor of many important signaling molecules in eukaryotic cells and, most probably, PI also has important functions in cellular membranes. However, these functions are poorly understood, which is largely due to that i) only few PI species with specific acyl chains are available commercially and ii) there are no simple methods to synthesize such species. Here, we present a simple biochemical protocol to synthesize a variety of labeled or unlabeled PI species from corresponding commercially available phosphatidylcholines. The protocol can be carried out in a single vial in a two-step process which employs three enzymatic reactions mediated by i) commercial phospholipase D from Streptomyces chromofuscus, ii) CDP-diacylglycerol synthase overexpressed in E. coli and iii) PI synthase of Arabidopsis thaliana ectopically expressed in E. coli The PI product is readily purified from the reaction mixture by liquid chromatography since E. coli does not contain endogenous PI or other coeluting lipids. The method allows one to synthesize and purify labeled or unlabeled PI species in 1 or 2 days.Typically, 40-60% of (unsaturated) PC was converted to PI albeit the final yield of PI was less (25-35%) due to losses upon purification.
Collapse
Affiliation(s)
- Satu Hänninen
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland and
| | - Krishna Chaithanya Batchu
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland and
| | - Kati Hokynar
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland and.,Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pentti Somerharju
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland and
| |
Collapse
|
18
|
Muraki M, Damnjanović J, Nakano H, Iwasaki Y. Salt-induced increase in the yield of enzymatically synthesized phosphatidylinositol and the underlying mechanism. J Biosci Bioeng 2016; 122:276-82. [DOI: 10.1016/j.jbiosc.2016.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 01/09/2023]
|
19
|
Inoue A, Adachi M, Damnjanović J, Nakano H, Iwasaki Y. Direct Enzymatic Synthesis of 1-Phosphatidyl-β-D-glucose by Engineered Phospholipase D. ChemistrySelect 2016. [DOI: 10.1002/slct.201600839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Arisa Inoue
- Laboratory of Molecular Biotechnology; Department of Bioengineering Sciences; Graduate School of Bioagricultural Sciences, Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
| | - Masaatsu Adachi
- Laboratory of Organic Chemistry; Department of Applied Molecular Biosciences; Graduate School of Bioagricultural Sciences, Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
| | - Jasmina Damnjanović
- Laboratory of Molecular Biotechnology; Department of Bioengineering Sciences; Graduate School of Bioagricultural Sciences, Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
| | - Hideo Nakano
- Laboratory of Molecular Biotechnology; Department of Bioengineering Sciences; Graduate School of Bioagricultural Sciences, Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
| | - Yugo Iwasaki
- Laboratory of Molecular Biotechnology; Department of Bioengineering Sciences; Graduate School of Bioagricultural Sciences, Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
| |
Collapse
|
20
|
Yang XY, Li ZQ, She Z, Geng Z, Xu JH, Gao ZQ, Dong YH. Structural analysis of Pseudomonas aeruginosa H3-T6SS immunity proteins. FEBS Lett 2016; 590:2787-96. [PMID: 27397502 DOI: 10.1002/1873-3468.12291] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/31/2016] [Accepted: 06/27/2016] [Indexed: 01/13/2023]
Abstract
The Pseudomonas aeruginosa PldB protein is a transkingdom effector secreted by the Type VI Secretion System (T6SS). PA5088, PA5087, and PA5086 are three immunity proteins that can suppress the virulence of PldB. We report the crystal structures of PA5088 and PA5087 at 2.0 and 2.1 Å resolution, respectively. PA5088 and PA5087 both consist of several Sel1-like Repeats (SLRs) and form super-ring folds. Our structural analysis of these proteins revealed key differences among PA5088, PA5087, and their homologs. Our docking experiments have shed light on the putative interaction mechanism of their function as phospholipase D inhibitors.
Collapse
Affiliation(s)
- Xiao-Yun Yang
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zong-Qiang Li
- College of Life Science and Technology, Huazhong Agriculture University, Wuhan, China
| | - Zhun She
- Multidiscipline Research Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Zhi Geng
- Multidiscipline Research Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Jian-Hua Xu
- Multidiscipline Research Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Zeng-Qiang Gao
- Multidiscipline Research Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Yu-Hui Dong
- Multidiscipline Research Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Zorn K, Oroz-Guinea I, Brundiek H, Bornscheuer UT. Engineering and application of enzymes for lipid modification, an update. Prog Lipid Res 2016; 63:153-64. [DOI: 10.1016/j.plipres.2016.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/30/2016] [Accepted: 06/10/2016] [Indexed: 12/21/2022]
|
22
|
Damnjanović J, Kuroiwa C, Tanaka H, Ishida K, Nakano H, Iwasaki Y. Directing positional specificity in enzymatic synthesis of bioactive 1-phosphatidylinositol by protein engineering of a phospholipase D. Biotechnol Bioeng 2015; 113:62-71. [PMID: 26154602 DOI: 10.1002/bit.25697] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/23/2015] [Accepted: 06/29/2015] [Indexed: 12/26/2022]
Abstract
Phosphatidylinositol (PI) holds a potential of becoming an important dietary supplement due to its effects on lipid metabolism in animals and humans manifested as a decrease of the blood cholesterol and lipids, and relief of the metabolic syndrome. To establish an efficient, enzymatic system for PI production from phosphatidylcholine and myo-inositol as an alcohol acceptor, our previous study started with the wild-type Streptomyces antibioticus phospholipase D (SaPLD) as a template for generation of PI-synthesizing variants by saturation mutagenesis targeting positions involved in acceptor accommodation, W187, Y191, and Y385. The isolated variants generated PI as a mixture of positional isomers, among which only 1-PI exists in nature. Thus, the current study has focused to improve positional specificity of W187N/Y191Y/Y385R SaPLD (NYR) which generates PI as a mixture of 1-PI and 3-PI in the ratio of 76/24, by subjecting four residues of its acceptor-binding site to saturation mutagenesis. Subsequent screening pointed at NYR-186T and NYR-186L as the most improved variants producing PI with a ratio of 1-/3-PI = 93/7 and 87/13, respectively, at 37°C. Lowering the reaction temperature further improved the specificity of both variants to 1-/3-PI > 97/3 at 20°C with no change in total PI yield. Structure model analyses imply that G186T and G186L mutations increased rigidity of the acceptor-binding site, thus limiting the possible orientations of myo-inositol. The two newly isolated PLDs are promising for future application in large-scale 1-PI production.
Collapse
Affiliation(s)
- Jasmina Damnjanović
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Chisato Kuroiwa
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Hidetoshi Tanaka
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Ken Ishida
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Hideo Nakano
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Yugo Iwasaki
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
23
|
Damnjanović J, Nakano H, Iwasaki Y. Deletion of a dynamic surface loop improves stability and changes kinetic behavior of phosphatidylinositol-synthesizing Streptomyces phospholipase D. Biotechnol Bioeng 2013; 111:674-82. [PMID: 24222582 DOI: 10.1002/bit.25149] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/17/2013] [Accepted: 11/04/2013] [Indexed: 11/07/2022]
Abstract
Supplementary phosphatidylinositol (PI) was shown to improve lipid metabolism in animals, thus it is interesting for pharmaceutical and nutritional applications. Homogenous PI can be produced in transphosphatidylation of phosphatidylcholine (PC) with myo-inositol catalyzed by phospholipase D (PLD). Only bacterial enzymes able to catalyze PI synthesis are Streptomyces antibioticus PLD (SaPLD) variants, among which DYR (W187D/Y191Y/Y385R) has the best kinetic profile. Increase in PI yield is possible by providing excess of solvated myo-inositol, which is achievable at high temperatures due to its highly temperature-dependent solubility. However, high-temperature PI synthesis requires the thermostable PLD. Previous site-directed combinatorial mutagenesis at the residues of DYR having high B-factor yielded the most improved variant, D40H/T291Y DYR, obtained by the combination of two selected mutations. D40 and T291 are located within dynamic surface loops, D37-G45 (termed D40 loop) and G273-T313. Thus, in this work, thermostabilization of DYR SaPLD was attempted by rational design based on deletion of the D40 loop, generating two variants, Δ37-45 DYR and Δ38-46 DYR PLD. Δ38-46 DYR showed highest thermostability as its activity half-life at 70°C proved 11.7 and 8.0 times longer than that of the DYR and Δ37-45 DYR, respectively. Studies on molecular dynamics predicted Δ38-46 DYR to have the least average RMSD change as temperature dramatically increases. At 60 and 70°C, both mutants synthesized PI in a twofold higher yield compared to the DYR, while at the same time produced less of the hydrolytic side-product, phosphatidic acid.
Collapse
Affiliation(s)
- Jasmina Damnjanović
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | | | | |
Collapse
|
24
|
Phospholipase D as a catalyst: application in phospholipid synthesis, molecular structure and protein engineering. J Biosci Bioeng 2013; 116:271-80. [PMID: 23639419 DOI: 10.1016/j.jbiosc.2013.03.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/12/2013] [Accepted: 03/13/2013] [Indexed: 12/21/2022]
Abstract
Phospholipase D (PLD) is a useful enzyme for its transphosphatidylation activity, which enables the enzymatic synthesis of various phospholipids (PLs). Many reports exist on PLD-mediated synthesis of natural and tailor-made PLs with functional head groups, from easily available lecithin or phosphatidylcholine. Early studies on PLD-mediated synthesis mainly employed enzymes of plant origin, which were later supplanted by ones from microorganisms, especially actinomycetes. Many PLDs are members of the PLD superfamily, having one or two copies of a signature sequence, HxKxxxxD or HKD motif, in the primary structures. PLD superfamily members share a common core structure, and thereby, a common catalytic mechanism. The catalysis proceeds via two-step reaction with the formation of phosphatidyl-enzyme intermediate. Both of the two catalytic His residues are critical in the reaction course, where one acts as a nucleophile, while the other functions as a general acid/base. PLD is being engineered to improve its activity and stability, alter head group specificity and further identify catalytically important residues. Since the knowledge on PLD enzymology is constantly expanding, this review focuses on recent advances in the field, regarding PLD-catalyzed synthesis of bioactive PLs, deeper understanding of substrate recognition and binding mechanism, altering substrate specificity, and improving thermostability. We introduced some of our recent results in combination with existing facts to further deepen the story on the nature of this useful enzyme.
Collapse
|
25
|
IWASAKI Y. Engineering of Streptomyces Phospholipase D and Its Application for Phospholipid Synthesis. ACTA ACUST UNITED AC 2013. [DOI: 10.5650/oleoscience.13.465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Yugo IWASAKI
- Graduate School of Bioagriculatural Sciences, Nagoya University
| |
Collapse
|
26
|
Damnjanović J, Takahashi R, Suzuki A, Nakano H, Iwasaki Y. Improving thermostability of phosphatidylinositol-synthesizing Streptomyces phospholipase D. Protein Eng Des Sel 2012; 25:415-24. [PMID: 22718790 DOI: 10.1093/protein/gzs038] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aimed to produce thermostable phosphatidylinositol (PI)-synthesizing phospholipase D (PLD), we initiated site-directed combinatorial mutagenesis followed by high-throughput screening. Previous site-directed combinatorial mutagenesis of wild-type Streptomyces PLD produced a mutant, DYR (W187D/Y191Y/Y385R) with PI-synthesizing ability. Deriving PI as a product of transphosphatidylation between phosphatidylcholine and myo-inositol, with myo-inositol in excess at high-temperature reaction conditions can increase yield due to enhanced solubility of this substrate. Thus, we improved DYR's thermostability by introduction of random mutations into selected amino acid positions having high B-factor. Screening of the libraries under restricted conditions yielded single-point mutants, specifically D40H, T291Y and R329G. Combinations of these point mutations yielded double (D40H/T291Y, D40H/R329G and T291Y/R329G) and triple (D40H/T291Y/R329G) mutants. PI synthesis at elevated temperatures pointed at D40H/T291Y as the most efficient enzyme. Circular dichroism analysis revealed D40H/T291Y to have increased melting temperature and postponed onset of thermal unfolding compared with DYR. Thermal tolerance study at 65°C confirmed D40H/T291Y's thermostability as its half-inactivation time was 8.7 min longer compared with DYR. This mutant had significantly less root-mean-square deviation change compared with DYR and showed no change in root-mean-square fluctuation when temperature shifts from 40 to 60°C, as determined by molecular dynamics analysis. Acquired different degrees of thermostability were also observed for several other DYR mutants.
Collapse
Affiliation(s)
- Jasmina Damnjanović
- Laboratory of Molecular Biotechnology, Department of Bioengineering Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | | | | | | | | |
Collapse
|
27
|
Selvy PE, Lavieri RR, Lindsley CW, Brown HA. Phospholipase D: enzymology, functionality, and chemical modulation. Chem Rev 2011; 111:6064-119. [PMID: 21936578 PMCID: PMC3233269 DOI: 10.1021/cr200296t] [Citation(s) in RCA: 272] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Paige E Selvy
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37064, USA
| | | | | | | |
Collapse
|
28
|
Martín JF, Sola-Landa A, Santos-Beneit F, Fernández-Martínez LT, Prieto C, Rodríguez-García A. Cross-talk of global nutritional regulators in the control of primary and secondary metabolism in Streptomyces. Microb Biotechnol 2010; 4:165-74. [PMID: 21342462 PMCID: PMC3818857 DOI: 10.1111/j.1751-7915.2010.00235.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Limitation of different nutrients in Streptomyces coelicolor A3(2) triggers nutrient‐stress responses, mediated by PhoP, GlnR, AfsR and other regulators, that are integrated at the molecular level and control secondary metabolite biosynthesis and differentiation. In addition, utilization of chitin or N‐acetylglucosamine regulates secondary metabolite biosynthesis by a mechanism mediated by DasR. Phosphate control of primary and secondary metabolism in Streptomyces species is mediated by the two‐component PhoR–PhoP system. In S. coelicolor, PhoP controls secondary metabolism by binding to a PHO box in the afsS promoter overlapping with the AfsR binding site. Therefore, the afsS promoter serves to integrate the PhoP‐mediated response to phosphate limitation and AfsR‐mediated responses to other unknown environmental stimuli. Interestingly, phosphate control oversees nitrogen regulation but not vice versa. In ΔphoP mutants, expression of some nitrogen metabolism genes including glnA, glnII and glnK is increased. Phosphate control of these genes is exerted through binding of PhoP to the promoters of glnR (the global nitrogen regulator), glnA, glnII and the amtB–glnK–glnD operon. This regulation allows a ‘metabolic homeostasis’ of phosphate and nitrogen utilization pathways, preventing nutritional unbalances. Similar mechanisms of interaction between phosphate control and carbon catabolite regulation or between phosphate and DasR‐mediated N‐acetylglucosamine regulation appear to exist. Transport of N‐acetylglucosamine by the NagE2 permease and, therefore, regulation of secondary metabolism, is dependent upon the balance of phosphorylated/dephosphorylated proteins of the N‐acetylglucosamine phosphotransferase system. These findings provide the bases for understanding the mechanisms underlying systems biology of Streptomyces species.
Collapse
Affiliation(s)
- Juan F Martín
- INBIOTEC, Instituto de Biotecnología de León, Avda. Real n°. 1, Parque Científico de León, 24006 León, Spain.
| | | | | | | | | | | |
Collapse
|
29
|
Ozaki A, Masayama A, Nakano H, Iwasaki Y. Synthesis of phosphatidylinositols having various inositol stereoisomers by engineered phospholipase D. J Biosci Bioeng 2010; 109:337-40. [DOI: 10.1016/j.jbiosc.2009.09.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 09/15/2009] [Accepted: 09/17/2009] [Indexed: 11/28/2022]
|
30
|
Mansfeld J, Ulbrich-Hofmann R. Modulation of phospholipase D activity in vitro. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:913-26. [DOI: 10.1016/j.bbalip.2009.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 03/03/2009] [Accepted: 03/04/2009] [Indexed: 11/30/2022]
|
31
|
Composition analysis of positional isomers of phosphatidylinositol by high-performance liquid chromatography. J Chromatogr A 2009; 1216:6077-80. [DOI: 10.1016/j.chroma.2009.06.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 05/22/2009] [Accepted: 06/22/2009] [Indexed: 11/23/2022]
|
32
|
Yamamoto Y, Hosokawa M, Miyashita K. Application of Phospholipases for Highly Functional Phospholipid Preparation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2009. [DOI: 10.1201/9781420077070.ch23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Morasso C, Bellini T, Monti D, Bassi M, Prosperi D, Riva S. Dispersed Phantom Scatterer Technique Reveals Subtle Differences in Substrate Recognition by Phospholipase D Inactive Mutants. Chembiochem 2009; 10:639-44. [DOI: 10.1002/cbic.200800718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Masayama A, Tsukada K, Ikeda C, Nakano H, Iwasaki Y. Isolation of Phospholipase D Mutants Having Phosphatidylinositol-Synthesizing Activity with Positional Specificity onmyo-Inositol. Chembiochem 2009; 10:559-64. [DOI: 10.1002/cbic.200800651] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Uesugi Y, Hatanaka T. Phospholipase D mechanism using Streptomyces PLD. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:962-9. [PMID: 19416643 DOI: 10.1016/j.bbalip.2009.01.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 01/19/2009] [Accepted: 01/28/2009] [Indexed: 11/17/2022]
Abstract
Phospholipase D (PLD) plays various roles in important biological processes and physiological functions, including cell signaling. Streptomyces PLDs show significant sequence similarity and belong to the PLD superfamily containing two catalytic HKD motifs. These PLDs have conserved catalytic regions and are among the smallest PLD enzymes. Therefore, Streptomyces PLDs are thought to be suitable models for studying the reaction mechanism among PLDs from other sources. Furthermore, Streptomyces PLDs present advantages related to their broad substrate specificity and ease of enzyme preparation. Moreover, the tertiary structure of PLD has been elucidated only for PLD from Streptomyces sp. PMF. This article presents a review of recently reported studies of the mechanism of the catalytic reaction, substrate recognition, substrate specificity and stability of Streptomyces PLD using various protein engineering methods and surface plasmon resonance analysis.
Collapse
Affiliation(s)
- Yoshiko Uesugi
- Research Institute for Biological Sciences (RIBS), Kaga-gun, Okayama, Japan
| | | |
Collapse
|
36
|
|