1
|
Janzing NBM, Niehoff M, Sander W, Senges CHR, Schäkermann S, Bandow JE. A metabolomics perspective on clorobiocin biosynthesis: discovery of bromobiocin and novel derivatives through LC-MS E-based molecular networking. Microbiol Spectr 2024; 12:e0042324. [PMID: 38864648 PMCID: PMC11218499 DOI: 10.1128/spectrum.00423-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/17/2024] [Indexed: 06/13/2024] Open
Abstract
Clorobiocin is a well-known, highly effective inhibitor of DNA gyrase belonging to the aminocoumarin antibiotics. To identify potentially novel derivatives of this natural product, we conducted an untargeted investigation of clorobiocin biosynthesis in the known producer Streptomyces roseochromogenes DS 12.976 using LC-MSE, molecular networking, and analysis of fragmentation spectra. Previously undescribed clorobiocin derivatives uncovered in this study include bromobiocin, a variant halogenated with bromine instead of chlorine, hydroxylated clorobiocin, carrying an additional hydroxyl group on its 5-methyl-pyrrole 2-carboxyl moiety, and two other derivatives with modifications on their 3-dimethylallyl 4-hydroxybenzoate moieties. Furthermore, we identified several compounds not previously considered clorobiocin pathway products, which provide new insights into the clorobiocin biosynthetic pathway. By supplementing the medium with different concentrations of potassium bromide, we confirmed that the clorobiocin halogenase can utilize bromine instead of chlorine. The reaction, however, is impeded such that non-halogenated clorobiocin derivatives accumulate. Preliminary assays indicate that the antibacterial activity of bromobioin against Bacillus subtilis and efflux-impaired Escherichia coli matches that of clorobiocin. Our findings emphasize that yet unexplored compounds can be discovered from established strains and biosynthetic gene clusters by means of metabolomics analysis and highlight the utility of LC-MSE-based methods to contribute to unraveling natural product biosynthetic pathways. IMPORTANCE The aminocoumarin clorobiocin is a well-known gyrase inhibitor produced by the gram-positive bacterium Streptomyces roseochromogenes DS 12.976. To gain a deeper understanding of the biosynthetic pathway of this complex composite of three chemically distinct entities and the product spectrum, we chose a metabolite-centric approach. Employing high-resolution LC-MSE analysis, we investigated the pathway products in extracted culture supernatants of the natural producer. Novel pathway products were identified that expand our understanding of three aspects of the biosynthetic pathway, namely the modification of the noviose, transfer and methylation of the pyrrole 2-carboxyl moiety, and halogenation. For the first time, brominated products were detected. Their levels and the levels of non-halogenated products increased in medium supplemented with KBr. Based on the presented data, we propose that the enzyme promiscuity contributes to a broad product spectrum.
Collapse
Affiliation(s)
- Niklas B. M. Janzing
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Maurice Niehoff
- Organic Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Wolfram Sander
- Organic Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Christoph H. R. Senges
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Sina Schäkermann
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Julia E. Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
2
|
Peh G, Tay T, Tan LL, Tiong E, Bi J, Goh YL, Ye S, Lin F, Tan CJX, Tan YZ, Wong J, Zhao H, Wong FT, Ang EL, Lim YH. Site-selective chlorination of pyrrolic heterocycles by flavin dependent enzyme PrnC. Commun Chem 2024; 7:7. [PMID: 38182798 PMCID: PMC10770391 DOI: 10.1038/s42004-023-01083-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 12/06/2023] [Indexed: 01/07/2024] Open
Abstract
Halogenation of pyrrole requires strong electrophilic reagents and often leads to undesired polyhalogenated products. Biocatalytic halogenation is a highly attractive approach given its chemoselectivity and benign reaction conditions. While there are several reports of enzymatic phenol and indole halogenation in organic synthesis, corresponding reports on enzymatic pyrrole halogenation have been lacking. Here we describe the in vitro functional and structural characterization of PrnC, a flavin-dependent halogenase that can act on free-standing pyrroles. Computational modeling and site mutagenesis studies identified three key residues in the catalytic pocket. A moderate resolution map using single-particle cryogenic electron microscopy reveals PrnC to be a dimer. This native PrnC can halogenate a library of structurally diverse pyrrolic heterocycles in a site-selective manner and be applied in the chemoenzymatic synthesis of a chlorinated analog of the agrochemical fungicide Fludioxonil.
Collapse
Affiliation(s)
- GuangRong Peh
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Terence Tay
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Lee Ling Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Elaine Tiong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Jiawu Bi
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Yi Ling Goh
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Suming Ye
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Fu Lin
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Cheryl Jia Xin Tan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yong Zi Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Disease Intervention Technology Laboratory (DITL), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Joel Wong
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Huimin Zhao
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Fong Tian Wong
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Ee Lui Ang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
- Synthetic Biology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore.
| | - Yee Hwee Lim
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
- Synthetic Biology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore.
| |
Collapse
|
3
|
Abstract
The ability to site-selectively modify equivalent functional groups in a molecule has the potential to streamline syntheses and increase product yields by lowering step counts. Enzymes catalyze site-selective transformations throughout primary and secondary metabolism, but leveraging this capability for non-native substrates and reactions requires a detailed understanding of the potential and limitations of enzyme catalysis and how these bounds can be extended by protein engineering. In this review, we discuss representative examples of site-selective enzyme catalysis involving functional group manipulation and C-H bond functionalization. We include illustrative examples of native catalysis, but our focus is on cases involving non-native substrates and reactions often using engineered enzymes. We then discuss the use of these enzymes for chemoenzymatic transformations and target-oriented synthesis and conclude with a survey of tools and techniques that could expand the scope of non-native site-selective enzyme catalysis.
Collapse
Affiliation(s)
- Dibyendu Mondal
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Harrison M Snodgrass
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Christian A Gomez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
4
|
Lai HE, Obled AMC, Chee SM, Morgan RM, Lynch R, Sharma SV, Moore SJ, Polizzi KM, Goss RJM, Freemont PS. GenoChemetic Strategy for Derivatization of the Violacein Natural Product Scaffold. ACS Chem Biol 2021; 16:2116-2123. [PMID: 34648268 PMCID: PMC8609527 DOI: 10.1021/acschembio.1c00483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Natural products and their analogues are often challenging to synthesize due to their complex scaffolds and embedded functional groups. Solely relying on engineering the biosynthesis of natural products may lead to limited compound diversity. Integrating synthetic biology with synthetic chemistry allows rapid access to much more diverse portfolios of xenobiotic compounds, which may accelerate the discovery of new therapeutics. As a proof-of-concept, by supplementing an Escherichia coli strain expressing the violacein biosynthesis pathway with 5-bromo-tryptophan in vitro or tryptophan 7-halogenase RebH in vivo, six halogenated analogues of violacein or deoxyviolacein were generated, demonstrating the promiscuity of the violacein biosynthesis pathway. Furthermore, 20 new derivatives were generated from 5-brominated violacein analogues via the Suzuki-Miyaura cross-coupling reaction directly using the crude extract without prior purification. Herein we demonstrate a flexible and rapid approach to access a diverse chemical space that can be applied to a wide range of natural product scaffolds.
Collapse
Affiliation(s)
- Hung-En Lai
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, U.K
| | - Alan M. C. Obled
- School of Chemistry and Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, U.K
| | - Soo Mei Chee
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, U.K
- London Biofoundry, Imperial College Translation & Innovation Hub, London W12 0BZ, U.K
| | - Rhodri M. Morgan
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Rosemary Lynch
- School of Chemistry and Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, U.K
| | - Sunil V. Sharma
- School of Chemistry and Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, U.K
| | - Simon J. Moore
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, U.K
| | - Karen M. Polizzi
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Rebecca J. M. Goss
- School of Chemistry and Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, U.K
| | - Paul S. Freemont
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, U.K
- London Biofoundry, Imperial College Translation & Innovation Hub, London W12 0BZ, U.K
- UK DRI Care Research and Technology Centre, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, U.K
| |
Collapse
|
5
|
Shimo S, Ushimaru R, Engelbrecht A, Harada M, Miyamoto K, Kulik A, Uchiyama M, Kaysser L, Abe I. Stereodivergent Nitrocyclopropane Formation during Biosynthesis of Belactosins and Hormaomycins. J Am Chem Soc 2021; 143:18413-18418. [PMID: 34710328 DOI: 10.1021/jacs.1c10201] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Belactosins and hormaomycins are peptide natural products containing 3-(2-aminocyclopropyl)alanine and 3-(2-nitrocyclopropyl)alanine residues, respectively, with opposite stereoconfigurations of the cyclopropane ring. Herein we demonstrate that the heme oxygenase-like enzymes BelK and HrmI catalyze the N-oxygenation of l-lysine to generate 6-nitronorleucine. The nonheme iron enzymes BelL and HrmJ then cyclize the nitroalkane moiety to the nitrocyclopropane ring with the desired stereochemistry found in the corresponding natural products. We also show that both cyclopropanases remove the 4-proS-H of 6-nitronorleucine during the cyclization, establishing the inversion and retention of the configuration at C4 during the BelL and HrmJ reactions, respectively. This study reveals the unique strategy for stereocontrolled cyclopropane synthesis in nature.
Collapse
Affiliation(s)
- Shotaro Shimo
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,ACT-X, Japan Science and Technology Agency (JST), Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Alicia Engelbrecht
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Mei Harada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Andreas Kulik
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, 72076 Tübingen, Germany
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,Research Initiative for Supra-Materials (RISM), Shinshu University, Ueda, 386-8567, Japan
| | - Leonard Kaysser
- Institute for Drug Discovery, Department of Pharmaceutical Biology, University of Leipzig, Eilenburger Str. 14, 04317 Leipzig, Germany
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
6
|
Menon BRK, Richmond D, Menon N. Halogenases for biosynthetic pathway engineering: Toward new routes to naturals and non-naturals. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2020. [DOI: 10.1080/01614940.2020.1823788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Binuraj R. K. Menon
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, UK
| | - Daniel Richmond
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, UK
| | - Navya Menon
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
7
|
Jaremko MJ, Davis TD, Corpuz JC, Burkart MD. Type II non-ribosomal peptide synthetase proteins: structure, mechanism, and protein-protein interactions. Nat Prod Rep 2020; 37:355-379. [PMID: 31593192 PMCID: PMC7101270 DOI: 10.1039/c9np00047j] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: 1990 to 2019 Many medicinally-relevant compounds are derived from non-ribosomal peptide synthetase (NRPS) products. Type I NRPSs are organized into large modular complexes, while type II NRPS systems contain standalone or minimal domains that often encompass specialized tailoring enzymes that produce bioactive metabolites. Protein-protein interactions and communication between the type II biosynthetic machinery and various downstream pathways are critical for efficient metabolite production. Importantly, the architecture of type II NRPS proteins makes them ideal targets for combinatorial biosynthesis and metabolic engineering. Future investigations exploring the molecular basis or protein-protein recognition in type II NRPS pathways will guide these engineering efforts. In this review, we consolidate the broad range of NRPS systems containing type II proteins and focus on structural investigations, enzymatic mechanisms, and protein-protein interactions important to unraveling pathways that produce unique metabolites, including dehydrogenated prolines, substituted benzoic acids, substituted amino acids, and cyclopropanes.
Collapse
Affiliation(s)
- Matt J Jaremko
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, USA.
| | - Tony D Davis
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, USA.
| | - Joshua C Corpuz
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, USA.
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, USA.
| |
Collapse
|
8
|
Domergue J, Erdmann D, Fossey-Jouenne A, Petit JL, Debard A, de Berardinis V, Vergne-Vaxelaire C, Zaparucha A. XszenFHal, a novel tryptophan 5-halogenase from Xenorhabdus szentirmaii. AMB Express 2019; 9:175. [PMID: 31673806 PMCID: PMC6823310 DOI: 10.1186/s13568-019-0898-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/17/2019] [Indexed: 11/27/2022] Open
Abstract
Flavin-dependent halogenases (FHals) catalyse the halogenation of electron-rich substrates, mainly aromatics. Halogenated compounds have many applications, as pharmaceutical, agrochemicals or as starting materials for the synthesis of complex molecules. By exploring the sequenced bacterial diversity, we discovered and characterized XszenFHal, a novel FHal from Xenorhabdus szentirmaii, a symbiotic bacterium of entomopathogenic nematode. The substrate scope of XszenFHal was examined and revealed activities towards tryptophan, indole and indole derivatives, leading to the formation of the corresponding 5-chloro products. XszenFHal makes a valuable addition to the panel of flavin-dependent halogenases already discovered and enriches the potential for biotechnology applications by allowing access to 5-halogenated indole derivatives.
Collapse
|
9
|
Heine T, van Berkel WJH, Gassner G, van Pée KH, Tischler D. Two-Component FAD-Dependent Monooxygenases: Current Knowledge and Biotechnological Opportunities. BIOLOGY 2018; 7:biology7030042. [PMID: 30072664 PMCID: PMC6165268 DOI: 10.3390/biology7030042] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022]
Abstract
Flavoprotein monooxygenases create valuable compounds that are of high interest for the chemical, pharmaceutical, and agrochemical industries, among others. Monooxygenases that use flavin as cofactor are either single- or two-component systems. Here we summarize the current knowledge about two-component flavin adenine dinucleotide (FAD)-dependent monooxygenases and describe their biotechnological relevance. Two-component FAD-dependent monooxygenases catalyze hydroxylation, epoxidation, and halogenation reactions and are physiologically involved in amino acid metabolism, mineralization of aromatic compounds, and biosynthesis of secondary metabolites. The monooxygenase component of these enzymes is strictly dependent on reduced FAD, which is supplied by the reductase component. More and more representatives of two-component FAD-dependent monooxygenases have been discovered and characterized in recent years, which has resulted in the identification of novel physiological roles, functional properties, and a variety of biocatalytic opportunities.
Collapse
Affiliation(s)
- Thomas Heine
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
| | - Willem J H van Berkel
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - George Gassner
- Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA.
| | - Karl-Heinz van Pée
- Allgemeine Biochemie, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Dirk Tischler
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
- Microbial Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| |
Collapse
|
10
|
Janata J, Kamenik Z, Gazak R, Kadlcik S, Najmanova L. Biosynthesis and incorporation of an alkylproline-derivative (APD) precursor into complex natural products. Nat Prod Rep 2018. [DOI: 10.1039/c7np00047b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review covers the biosynthetic and evolutionary aspects of lincosamide antibiotics, antitumour pyrrolobenzodiazepines (PBDs) and the quorum-sensing molecule hormaomycin.
Collapse
Affiliation(s)
- J. Janata
- Institute of Microbiology
- Czech Academy of Sciences
- BIOCEV
- Vestec
- Czech Republic
| | - Z. Kamenik
- Institute of Microbiology
- Czech Academy of Sciences
- BIOCEV
- Vestec
- Czech Republic
| | - R. Gazak
- Institute of Microbiology
- Czech Academy of Sciences
- BIOCEV
- Vestec
- Czech Republic
| | - S. Kadlcik
- Institute of Microbiology
- Czech Academy of Sciences
- BIOCEV
- Vestec
- Czech Republic
| | - L. Najmanova
- Institute of Microbiology
- Czech Academy of Sciences
- BIOCEV
- Vestec
- Czech Republic
| |
Collapse
|
11
|
Schnepel C, Sewald N. Enzymatic Halogenation: A Timely Strategy for Regioselective C−H Activation. Chemistry 2017; 23:12064-12086. [DOI: 10.1002/chem.201701209] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Christian Schnepel
- Organische und Bioorganische Chemie; Fakultät für Chemie; Universität Bielefeld; Universitätsstraße 25 33615 Bielefeld Germany
| | - Norbert Sewald
- Organische und Bioorganische Chemie; Fakultät für Chemie; Universität Bielefeld; Universitätsstraße 25 33615 Bielefeld Germany
| |
Collapse
|
12
|
Agarwal V, Miles ZD, Winter JM, Eustáquio AS, El Gamal AA, Moore BS. Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse. Chem Rev 2017; 117:5619-5674. [PMID: 28106994 PMCID: PMC5575885 DOI: 10.1021/acs.chemrev.6b00571] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Naturally produced halogenated compounds are ubiquitous across all domains of life where they perform a multitude of biological functions and adopt a diversity of chemical structures. Accordingly, a diverse collection of enzyme catalysts to install and remove halogens from organic scaffolds has evolved in nature. Accounting for the different chemical properties of the four halogen atoms (fluorine, chlorine, bromine, and iodine) and the diversity and chemical reactivity of their organic substrates, enzymes performing biosynthetic and degradative halogenation chemistry utilize numerous mechanistic strategies involving oxidation, reduction, and substitution. Biosynthetic halogenation reactions range from simple aromatic substitutions to stereoselective C-H functionalizations on remote carbon centers and can initiate the formation of simple to complex ring structures. Dehalogenating enzymes, on the other hand, are best known for removing halogen atoms from man-made organohalogens, yet also function naturally, albeit rarely, in metabolic pathways. This review details the scope and mechanism of nature's halogenation and dehalogenation enzymatic strategies, highlights gaps in our understanding, and posits where new advances in the field might arise in the near future.
Collapse
Affiliation(s)
- Vinayak Agarwal
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
| | - Zachary D. Miles
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego
| | | | - Alessandra S. Eustáquio
- College of Pharmacy, Department of Medicinal Chemistry & Pharmacognosy and Center for Biomolecular Sciences, University of Illinois at Chicago
| | - Abrahim A. El Gamal
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
| | - Bradley S. Moore
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego
| |
Collapse
|
13
|
Zarins-Tutt JS, Abraham ER, Bailey CS, Goss RJM. Bluegenics: Bioactive Natural Products of Medicinal Relevance and Approaches to Their Diversification. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 55:159-186. [PMID: 28238038 DOI: 10.1007/978-3-319-51284-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nature provides a valuable resource of medicinally relevant compounds, with many antimicrobial and antitumor agents entering clinical trials being derived from natural products. The generation of analogues of these bioactive natural products is important in order to gain a greater understanding of structure activity relationships; probing the mechanism of action, as well as to optimise the natural product's bioactivity and bioavailability. This chapter critically examines different approaches to generating natural products and their analogues, exploring the way in which synthetic and biosynthetic approaches may be blended together to enable expeditious access to new designer natural products.
Collapse
Affiliation(s)
| | - Emily R Abraham
- School of Chemistry, University of St Andrews, St Andrews, Scotland, UK
| | | | - Rebecca J M Goss
- School of Chemistry, University of St Andrews, St Andrews, Scotland, UK.
| |
Collapse
|
14
|
Scope and potential of halogenases in biosynthetic applications. Curr Opin Chem Biol 2013; 17:276-83. [DOI: 10.1016/j.cbpa.2013.01.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 11/24/2022]
|
15
|
Goss RJM, Shankar S, Fayad AA. The generation of "unnatural" products: synthetic biology meets synthetic chemistry. Nat Prod Rep 2012; 29:870-89. [PMID: 22744619 DOI: 10.1039/c2np00001f] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Natural product analogue generation is important, providing tools for chemical biology, enabling structure activity relationship determination and insight into the way in which natural products interact with their target biomolecules. The generation of analogues is also often necessary in order to improve bioavailability and to fine tune compounds' activity. This review provides an overview of the catalogue of approaches available for accessing series of analogues. Over the last few years there have been major advances in genome sequencing and the development of tools for biosynthetic pathway engineering; it is therefore becoming increasingly easy to combine molecular biology and synthetic organic chemistry in order to enable expeditious access to series of natural products. This review outlines the various ways of combining biology and chemistry that have been applied to analogue generation, drawing upon a series of examples to illustrate each approach.
Collapse
Affiliation(s)
- Rebecca J M Goss
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, UKNR4 7TJ
| | | | | |
Collapse
|
16
|
Höfer I, Crüsemann M, Radzom M, Geers B, Flachshaar D, Cai X, Zeeck A, Piel J. Insights into the biosynthesis of hormaomycin, an exceptionally complex bacterial signaling metabolite. ACTA ACUST UNITED AC 2011; 18:381-91. [PMID: 21439483 DOI: 10.1016/j.chembiol.2010.12.018] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 11/26/2010] [Accepted: 12/02/2010] [Indexed: 11/19/2022]
Abstract
Hormaomycin produced by Streptomyces griseoflavus is a structurally highly modified depsipeptide that contains several unique building blocks with cyclopropyl, nitro, and chlorine moieties. Within the genus Streptomyces, it acts as a bacterial hormone that induces morphological differentiation and the production of bioactive secondary metabolites. In addition, hormaomycin is an extremely potent narrow-spectrum antibiotic. In this study, we shed light on hormaomycin biosynthesis by a combination of feeding studies, isolation of the biosynthetic nonribosomal peptide synthetase (NRPS) gene cluster, and in vivo and in vitro functional analysis of enzymes. In addition, several nonnatural hormaomycin congeners were generated by feeding-induced metabolic rerouting. The NRPS contains numerous highly repetitive regions that suggest an evolutionary scenario for this unusual bacterial hormone, providing new opportunities for evolution-inspired metabolic engineering of novel nonribosomal peptides.
Collapse
Affiliation(s)
- Ivonne Höfer
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Deb Roy A, Grüschow S, Cairns N, Goss RJM. Gene expression enabling synthetic diversification of natural products: chemogenetic generation of pacidamycin analogs. J Am Chem Soc 2010; 132:12243-5. [PMID: 20712319 DOI: 10.1021/ja1060406] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Introduction of prnA, the halogenase gene from pyrrolnitrin biosynthesis, into Streptomyces coeruleorubidus resulted in efficient in situ chlorination of the uridyl peptide antibotic pacidamycin. The installed chlorine provided a selectably functionalizable handle enabling synthetic modification of the natural product using mild cross-coupling conditions in crude aqueous extracts of the culture broth.
Collapse
Affiliation(s)
- Abhijeet Deb Roy
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | | | |
Collapse
|
19
|
|
20
|
Wagner C, El Omari M, König GM. Biohalogenation: nature's way to synthesize halogenated metabolites. JOURNAL OF NATURAL PRODUCTS 2009; 72:540-553. [PMID: 19245259 DOI: 10.1021/np800651m] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Halogenated natural products are widely distributed in nature, some of them showing potent biological activities. Incorporation of halogen atoms in drug leads is a common strategy to modify molecules in order to vary their bioactivities and specificities. Chemical halogenation, however, often requires harsh reaction conditions and results in unwanted byproduct formation. It is thus of great interest to investigate the biosynthesis of halogenated natural products and the biotechnological potential of halogenating enzymes. This review aims to give a comprehensive overview on the current knowledge concerning biological halogenations.
Collapse
Affiliation(s)
- Claudia Wagner
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany
| | | | | |
Collapse
|
21
|
Heide L. Aminocoumarins mutasynthesis, chemoenzymatic synthesis, and metabolic engineering. Methods Enzymol 2009; 459:437-55. [PMID: 19362650 DOI: 10.1016/s0076-6879(09)04618-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aminocoumarin antibiotics novobiocin, clorobiocin and coumermycin A(1) are formed by different Streptomyces strains and are potent inhibitors of bacterial gyrase. Their biosynthetic gene clusters have been analyzed in detail by genetic and biochemical investigations. Heterologous expression of these gene clusters by site-specific integration into the genome of the fully sequenced host Streptomyces coelicolor A3(2) readily results in an accumulation of the antibiotics in yields similar to the wildtype strains. In recent years, the aminocoumarins have developed into a model system for the generation of new antibiotics by genetic methods. Prior to heterologous expression in S. coelicolor, cosmids containing the complete biosynthetic clusters can be manipulated in Escherichia coli by lambda RED-mediated recombination, creating single or multiple gene replacements or gene deletions. Thereby, mutant strains are generated which are blocked in the synthesis of certain intermediates or in specific tailoring reactions. For instance, mutasynthetic experiments can subsequently be carried out to generate aminocoumarin antibiotics that contain modified acyl moieties attached to the aminocoumarin core, and chemoenzymatic synthesis can be employed for the acylation of the deoxysugar moiety of structural analogues of the aminocoumarin antibiotics. Metabolic engineering-the combination of gene deletions and foreign gene expression via replicative expression vectors-can be used to generate further structural variants of these antibiotics. These methods can be combined, allowing the generation of a wide variety of new compounds. This chapter may provide general pointers for the use of genetic methods in the generation of new antibiotics.
Collapse
Affiliation(s)
- Lutz Heide
- Pharmazeutische Biologie, Pharmazeutisches Institut, Universität Tübingen, Tübingen, Germany
| |
Collapse
|