1
|
Sonallya T, Juhász T, Szigyártó IC, Ilyés K, Singh P, Khamari D, Buzás EI, Varga Z, Beke-Somfai T. Categorizing interaction modes of antimicrobial peptides with extracellular vesicles: Disruption, membrane trespassing, and clearance of the protein corona. J Colloid Interface Sci 2025; 679:496-509. [PMID: 39378685 DOI: 10.1016/j.jcis.2024.09.244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/21/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Host antimicrobial peptides (AMPs) and extracellular vesicles (EVs) are known to play important roles as part of the immune system, from antimicrobial actions to immune regulation. Recent results also demonstrate that EVs could serve as carriers for AMPs. Related, it was shown that some AMPs can remove the protein corona (PC), the externally adsorbed layer of proteins, from EVs which can be exploited for subtractive proteomics strategies. The interaction of these compounds is thus interesting for multiple reasons from better insight to natural processes to direct applications in EV-based bioengineering. However, we have only limited information on the various ways these species may interact with each other. To reach a broader overview, here we selected twenty-six AMPs, including cell-penetrating peptides (CPPs), and investigated their interactions with red blood cell-derived vesicles (REVs). For this, we employed a complex lipid biophysics including linearly polarized light spectroscopy, flow cytometry, nanoparticle tracking analysis, electron microscopy and also zeta-potential measurements. This enabled the categorization of these peptides into distinct groups. At specific low concentrations, peptides such as LL-37 and lasioglossin-III were effective in PC elimination with minimal disruption of the membrane. In contrast, AMPs like KLA, bradykinin, histatin-5, and most of the tested CPPs (e.g. octa-arginine, penetratin, and buforin II), demonstrate cell-penetrating mechanisms as they could sustain large peptide concentrations with minimal membrane damage. The systematic overview presented here shows the potential mechanism of how AMPs and EVs could interact in vivo, and also how certain peptides may be employed to manipulate EVs for specific applications.
Collapse
Affiliation(s)
- Tasvilla Sonallya
- Biomolecular Self-assembly Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest H-1117, Magyar Tudósok Körútja 2, Hungary; Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Budapest H-1117, Pázmány Péter Sétány 1/A, Hungary
| | - Tünde Juhász
- Biomolecular Self-assembly Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest H-1117, Magyar Tudósok Körútja 2, Hungary
| | - Imola Cs Szigyártó
- Biomolecular Self-assembly Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest H-1117, Magyar Tudósok Körútja 2, Hungary
| | - Kinga Ilyés
- Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Budapest H-1117, Pázmány Péter Sétány 1/A, Hungary; Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest H-1117, Magyar Tudósok Körútja 2, Hungary
| | - Priyanka Singh
- Biomolecular Self-assembly Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest H-1117, Magyar Tudósok Körútja 2, Hungary
| | - Delaram Khamari
- Department of Genetics, Cell and Immunobiology, Semmelweis University, H-1089 Budapest, Nagyvárad tér 4, Hungary
| | - Edit I Buzás
- Department of Genetics, Cell and Immunobiology, Semmelweis University, H-1089 Budapest, Nagyvárad tér 4, Hungary; HCEMM Extracellular Vesicle Research Group, Semmelweis University, H-1089 Budapest, Nagyvárad tér 4, Hungary; HUN-REN-SU Translational Extracellular Vesicle Research Group, H-1089 Budapest, Nagyvárad tér 4, Hungary
| | - Zoltán Varga
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest H-1117, Magyar Tudósok Körútja 2, Hungary; Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest 1111, Hungary
| | - Tamás Beke-Somfai
- Biomolecular Self-assembly Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest H-1117, Magyar Tudósok Körútja 2, Hungary.
| |
Collapse
|
2
|
Campanile M, Kurtul ED, Dec R, Möbitz S, Del Vecchio P, Petraccone L, Tatzelt J, Oliva R, Winter R. Morphological Transformations of SARS-CoV-2 Nucleocapsid Protein Biocondensates Mediated by Antimicrobial Peptides. Chemistry 2024; 30:e202400048. [PMID: 38483823 DOI: 10.1002/chem.202400048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Indexed: 04/12/2024]
Abstract
Recently, the discovery of antimicrobial peptides (AMPs) as excellent candidates for overcoming antibiotic resistance has attracted significant attention. AMPs are short peptides active against bacteria, cancer cells, and viruses. It has been shown that the SARS-CoV-2 nucleocapsid protein (N-P) undergoes liquid-liquid phase separation in the presence of RNA, resulting in biocondensate formation. These biocondensates are crucial for viral replication as they concentrate the viral RNA with the host cell's protein machinery required for viral protein expression. Thus, N-P biocondensates are promising targets to block or slow down viral RNA transcription and consequently virion assembly. We investigated the ability of three AMPs to interfere with N-P/RNA condensates. Using microscopy techniques, supported by biophysical characterization, we found that the AMP LL-III partitions into the condensate, leading to clustering. Instead, the AMP CrACP1 partitions into the droplets without affecting their morphology but reducing their dynamics. Conversely, GKY20 leads to the formation of fibrillar structures after partitioning. It can be expected that such morphological transformation severely impairs the normal functionality of the N-P droplets and thus virion assembly. These results could pave the way for the development of a new class of AMP-based antiviral agents targeting biocondensates.
Collapse
Affiliation(s)
- Marco Campanile
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 26, 80126, Naples, Italy
| | - Emine Dila Kurtul
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Robert Dec
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Simone Möbitz
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 26, 80126, Naples, Italy
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 26, 80126, Naples, Italy
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 26, 80126, Naples, Italy
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| |
Collapse
|
3
|
Bui Thi Phuong H, Doan Ngan H, Le Huy B, Vu Dinh H, Luong Xuan H. The amphipathic design in helical antimicrobial peptides. ChemMedChem 2024; 19:e202300480. [PMID: 38408263 DOI: 10.1002/cmdc.202300480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/18/2023] [Indexed: 02/28/2024]
Abstract
Amphipathicity is a critical characteristic of helical antimicrobial peptides (AMPs). The hydrophilic region, primarily composed of cationic residues, plays a pivotal role in the initial binding to negatively charged components on bacterial membranes through electrostatic interactions. Subsequently, the hydrophobic region interacts with hydrophobic components, inducing membrane perturbation, ultimately leading to cell death, or inhibiting intracellular function. Due to the extensive diversity of natural and synthetic AMPs with regard to the design of amphipathicity, it is complicated to study the structure-activity relationships. Therefore, this work aims to categorize the common amphipathic design and investigate their impact on the biological properties of AMPs. Besides, the connection between current structural modification approaches and amphipathic styles was also discussed.
Collapse
Affiliation(s)
| | - Hoa Doan Ngan
- Faculty of Medical Technology, PHENIKAA University, Hanoi, 12116, Vietnam
| | - Binh Le Huy
- Center for High Technology Development, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Hanoi, 11307, Vietnam
- School of Chemical Engineering -, Hanọi University of Science and Technology, 1 Dai Co Viet, Hai Ba Trung, Hanoi, 11615, Vietnam
| | - Hoang Vu Dinh
- School of Chemical Engineering -, Hanọi University of Science and Technology, 1 Dai Co Viet, Hai Ba Trung, Hanoi, 11615, Vietnam
| | - Huy Luong Xuan
- Faculty of Pharmacy, PHENIKAA University, Hanoi, 12116, Vietnam
| |
Collapse
|
4
|
Bui Thi Phuong H, Le Uyen C, Doan Ngan H, Luong Xuan H. Impact of chemical modifications on the antimicrobial and hemolytic activity of helical amphipathic peptide Lasioglossin LL-III. Amino Acids 2023; 55:1531-1544. [PMID: 37737904 DOI: 10.1007/s00726-023-03326-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023]
Abstract
Insect venom is abundant in potential antimicrobial peptides (AMPs), which can serve as novel alternatives to conventional antibiotics. Among them, Lasioglossin III LL-III) is a promising candidate with a broad spectrum against many fungi strains and both types of bacteria, whereas almost non-toxic to red blood cells. Many chemical approaches have been recently applied to improve its pharmacological properties and provide useful information regarding structure-activity relationships. Hence, this review focused on highlighting the lesson learned from each modification and supporting the future design of potent, selective, and metabolically stable AMPs.
Collapse
Affiliation(s)
| | - Chi Le Uyen
- Faculty of Pharmacy, Phenikaa University, Hanoi, 12116, Vietnam
| | - Hoa Doan Ngan
- Faculty of Medical Technology, Phenikaa University, Hanoi, 12116, Vietnam
| | - Huy Luong Xuan
- Faculty of Pharmacy, Phenikaa University, Hanoi, 12116, Vietnam.
- Phenikaa Institute for Advanced Study (PIAS), Phenikaa University, Hanoi, 12116, Vietnam.
| |
Collapse
|
5
|
Nabizadeh S, Rahbarnia L, Nowrozi J, Farajnia S, Hosseini F. Rational design of hybrid peptide with high antimicrobial property derived from Melittin and Lasioglossin. J Biomol Struct Dyn 2023; 42:13091-13099. [PMID: 37885265 DOI: 10.1080/07391102.2023.2274971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
Hybridization of Antimicrobial peptides (AMPs) with unique abilities is now considered to improve AMPs' function as promising therapeutic candidates. In the current research, Lasioglossin (LL-III) with a high antimicrobial effect on Acinetobacter (A.) baumanni and Melittin with a high antimicrobial effect against Staphylococcus (S.) aureus were selected for designing a hybrid peptide with modified properties. In the present study, a hybrid peptide with modified properties was designed. Molecular dynamic (MD) and coarse-grained (CG) simulations were done to evaluate the stability and interaction of the hybrid peptide with related membrane models. In this study, a truncated Melittin peptide (11 amino acids) was fused to an LL-III peptide (15 amino acids) to raise the antimicrobial activity. A new hybrid peptide analog (LM1) was selected by replacing the arginine with isoleucine in the fifth position of truncated Melittin to raise the antimicrobial rate of the peptide. The potential for binding of the LM1 to lipid membrane (D factor) was increased from 2.02 related to Melittin to 3.62. Based on VMD results, the N-terminal of LM1 peptide related to LL-III was the alpha helix during 200 ns. However, the C-terminal region related to the Melittin peptide only at 50 ns was in alpha helix form. The RMSD of the LM1 peptide was in the range of 0.2 to 0.8, which, after 160 ns, reached stability. RMSD and RMSF results indicated no unwanted fluctuations during the 200 ns MD simulation. A significant movement of LM1 peptide inside the S. aureus membrane(4.76 nm) and A. baumanni membrane (3.2 nm) was observed by CG simulation. Our findings highlight the high stability of the designed hybrid peptide and its antimicrobial potential to halter A. baumanii and S. aureus bacteria.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Somayeh Nabizadeh
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Leila Rahbarnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamileh Nowrozi
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University, Tabriz, Iran
| | - Farzaneh Hosseini
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Turrina C, Cookman J, Bellan R, Song J, Paar M, Dankers PYW, Berensmeier S, Schwaminger SP. Iron Oxide Nanoparticles with Supramolecular Ureido-Pyrimidinone Coating for Antimicrobial Peptide Delivery. Int J Mol Sci 2023; 24:14649. [PMID: 37834098 PMCID: PMC10573039 DOI: 10.3390/ijms241914649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 10/15/2023] Open
Abstract
Antimicrobial peptides (AMPs) can kill bacteria by disrupting their cytoplasmic membrane, which reduces the tendency of antibacterial resistance compared to conventional antibiotics. Their possible toxicity to human cells, however, limits their applicability. The combination of magnetically controlled drug delivery and supramolecular engineering can help to reduce the dosage of AMPs, control the delivery, and improve their cytocompatibility. Lasioglossin III (LL) is a natural AMP form bee venom that is highly antimicrobial. Here, superparamagnetic iron oxide nanoparticles (IONs) with a supramolecular ureido-pyrimidinone (UPy) coating were investigated as a drug carrier for LL for a controlled delivery to a specific target. Binding to IONs can improve the antimicrobial activity of the peptide. Different transmission electron microscopy (TEM) techniques showed that the particles have a crystalline iron oxide core with a UPy shell and UPy fibers. Cytocompatibility and internalization experiments were carried out with two different cell types, phagocytic and nonphagocytic cells. The drug carrier system showed good cytocompatibility (>70%) with human kidney cells (HK-2) and concentration-dependent toxicity to macrophagic cells (THP-1). The particles were internalized by both cell types, giving them the potential for effective delivery of AMPs into mammalian cells. By self-assembly, the UPy-coated nanoparticles can bind UPy-functionalized LL (UPy-LL) highly efficiently (99%), leading to a drug loading of 0.68 g g-1. The binding of UPy-LL on the supramolecular nanoparticle system increased its antimicrobial activity against E. coli (MIC 3.53 µM to 1.77 µM) and improved its cytocompatible dosage for HK-2 cells from 5.40 µM to 10.6 µM. The system showed higher cytotoxicity (5.4 µM) to the macrophages. The high drug loading, efficient binding, enhanced antimicrobial behavior, and reduced cytotoxicity makes ION@UPy-NH2 an interesting drug carrier for AMPs. The combination with superparamagnetic IONs allows potential magnetically controlled drug delivery and reduced drug amount of the system to address intracellular infections or improve cancer treatment.
Collapse
Affiliation(s)
- Chiara Turrina
- Chair of Bioseparation Engineering, School of Engineering and Design, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany; (C.T.)
| | - Jennifer Cookman
- Department of Chemical Sciences, Bernal Institute, University of Limerick, V94 T9PX Castletroy, Ireland;
| | - Riccardo Bellan
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; (R.B.)
| | - Jiankang Song
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; (R.B.)
| | - Margret Paar
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Patricia Y. W. Dankers
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; (R.B.)
| | - Sonja Berensmeier
- Chair of Bioseparation Engineering, School of Engineering and Design, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany; (C.T.)
| | - Sebastian P. Schwaminger
- Chair of Bioseparation Engineering, School of Engineering and Design, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany; (C.T.)
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12, 8010 Graz, Austria
| |
Collapse
|
7
|
Hilpert K, Munshi T, López-Pérez PM, Sequeira-Garcia J, Hofmann S, Bull TJ. Discovery of Antimicrobial Peptides That Can Accelerate Culture Diagnostics of Slow-Growing Mycobacteria Including Mycobacterium tuberculosis. Microorganisms 2023; 11:2225. [PMID: 37764069 PMCID: PMC10536189 DOI: 10.3390/microorganisms11092225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Antimicrobial peptides (AMPs) can directly kill Gram-positive bacteria, Gram-negative bacteria, mycobacteria, fungi, enveloped viruses, and parasites. At sublethal concentrations, some AMPs and also conventional antibiotics can stimulate bacterial response increasing their resilience, also called the hormetic response. This includes stimulation of growth, mobility, and biofilm production. Here, we describe the discovery of AMPs that stimulate the growth of certain mycobacteria. Peptide 14 showed a growth stimulating effect on Mycobacteria tuberculosis (MTB), M. bovis, M. avium subsp. paratuberculosis (MAP), M. marinum, M. avium-intracellulare, M. celatum, and M. abscessus. The effect was more pronounced at low bacterial inocula. The peptides induce a faster transition from the lag phase to the log phase and keep the bacteria longer in the log phase before entering stationary phase when compared to nontreated controls. In some cases, an increase in the division rate was observed. An initial screen using MAP and a collection of 75 peptides revealed 13 peptides with a hormetic effect. For MTB, a collection of 25 artificial peptides were screened and 13 were found to reduce the time to positivity (TTP) by at least 5%, improving growth. A screen of 43 naturally occurring peptides, 11 fragments of naturally occurring peptides and 5 designed peptides, all taken from the database APD3, identified a further 44 peptides that also lowered TTP by at least 5%. Lasioglossin LL-III (Bee) and Ranacyclin E (Frog) were the most active natural peptides, and the human cathelicidin LL37 fragment GF-17 and a porcine cathelicidin protegrin-1 fragment were the most active fragments of naturally occurring peptides. Peptide 14 showed growth-stimulating activity between 10 ng/mL and 10 µg/mL, whereas the stability-optimised Peptide 14D had a narrow activity range of 0.1-1 µg/mL. Peptides identified in this study are currently in commercial use to improve recovery and culture for the diagnostics of mycobacteria in humans and animals.
Collapse
Affiliation(s)
- Kai Hilpert
- Institute of Infection and Immunity, St George’s, University of London, Cranmer Terrace, London SW17 0RE, UK (T.J.B.)
| | - Tulika Munshi
- Institute of Infection and Immunity, St George’s, University of London, Cranmer Terrace, London SW17 0RE, UK (T.J.B.)
| | | | | | - Sven Hofmann
- Institute of Infection and Immunity, St George’s, University of London, Cranmer Terrace, London SW17 0RE, UK (T.J.B.)
| | - Tim J. Bull
- Institute of Infection and Immunity, St George’s, University of London, Cranmer Terrace, London SW17 0RE, UK (T.J.B.)
| |
Collapse
|
8
|
Hilpert K, Rumancev C, Gani J, Collis DWP, Lopez-Perez PM, Garamus VM, Mikut R, Rosenhahn A. Can BioSAXS detect ultrastructural changes of antifungal compounds in Candida albicans?-an exploratory study. Front Pharmacol 2023; 14:1141785. [PMID: 37533629 PMCID: PMC10393279 DOI: 10.3389/fphar.2023.1141785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/06/2023] [Indexed: 08/04/2023] Open
Abstract
The opportunistic yeast Candida albicans is the most common cause of candidiasis. With only four classes of antifungal drugs on the market, resistance is becoming a problem in the treatment of fungal infections, especially in immunocompromised patients. The development of novel antifungal drugs with different modes of action is urgent. In 2016, we developed a groundbreaking new medium-throughput method to distinguish the effects of antibacterial agents. Using small-angle X-ray scattering for biological samples (BioSAXS), it is now possible to screen hundreds of new antibacterial compounds and select those with the highest probability for a novel mode of action. However, yeast (eukaryotic) cells are highly structured compared to bacteria. The fundamental question to answer was if the ultrastructural changes induced by the action of an antifungal drug can be detected even when most structures in the cell stay unchanged. In this exploratory work, BioSAXS was used to measure the ultrastructural changes of C. albicans that were directly or indirectly induced by antifungal compounds. For this, the well-characterized antifungal drug Flucytosine was used. BioSAXS measurements were performed on the synchrotron P12 BioSAXS beamline, EMBL (DESY, Hamburg) on treated and untreated yeast C. albicans. BioSAXS curves were analysed using principal component analysis (PCA). The PCA showed that Flucytosine-treated and untreated yeast were separated. Based on that success further measurements were performed on five antifungal peptides {1. Cecropin A-melittin hybrid [CA (1-7) M (2-9)], KWKLFKKIGAVLKVL; 2. Lasioglossin LL-III, VNWKKILGKIIKVVK; 3. Mastoparan M, INLKAIAALAKKLL; 4. Bmkn2, FIGAIARLLSKIFGKR; and 5. optP7, KRRVRWIIW}. The ultrastructural changes of C. albicans indicate that the peptides may have different modes of action compared to Flucytosine as well as to each other, except for the Cecropin A-melittin hybrid [CA (1-7) M (2-9)] and optP7, showing very similar effects on C. albicans. This very first study demonstrates that BioSAXS shows promise to be used for antifungal drug development. However, this first study has limitations and further experiments are necessary to establish this application.
Collapse
Affiliation(s)
- Kai Hilpert
- Institute of Infection and Immunology, St. George’s, University of London (SGUL), London, United Kingdom
| | - Christoph Rumancev
- Laboratory Analytical Chemistry—Biointerfaces, Ruhr-University Bochum, Bochum, Germany
| | - Jurnorain Gani
- Institute of Infection and Immunology, St. George’s, University of London (SGUL), London, United Kingdom
| | | | | | | | - Ralf Mikut
- Institute for Automation and Applied Informatics (IAI), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Axel Rosenhahn
- Laboratory Analytical Chemistry—Biointerfaces, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
9
|
Campanile M, Oliva R, Del Vecchio P, Winter R, Petraccone L. The anticancer peptide LL-III binds with nanomolar affinity to human telomeric and cMyc G-quadruplexes. Chem Commun (Camb) 2023; 59:6179-6182. [PMID: 37114333 DOI: 10.1039/d3cc00737e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
LL-III is a natural anticancer peptide able to cross the membrane of cancer cells and to localize in the nucleolus, but its intracellular target is unknown. Here, we show that LL-III is able to bind with nM affinity to specific G-quadruplex structures known to be relevant anticancer targets.
Collapse
Affiliation(s)
- Marco Campanile
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Naples, Italy.
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Naples, Italy.
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Naples, Italy.
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, Dortmund 44227, Germany
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Naples, Italy.
| |
Collapse
|
10
|
Dashevsky D, Baumann K, Undheim EAB, Nouwens A, Ikonomopoulou MP, Schmidt JO, Ge L, Kwok HF, Rodriguez J, Fry BG. Functional and Proteomic Insights into Aculeata Venoms. Toxins (Basel) 2023; 15:toxins15030224. [PMID: 36977115 PMCID: PMC10053895 DOI: 10.3390/toxins15030224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Aculeate hymenopterans use their venom for a variety of different purposes. The venom of solitary aculeates paralyze and preserve prey without killing it, whereas social aculeates utilize their venom in defence of their colony. These distinct applications of venom suggest that its components and their functions are also likely to differ. This study investigates a range of solitary and social species across Aculeata. We combined electrophoretic, mass spectrometric, and transcriptomic techniques to characterize the compositions of venoms from an incredibly diverse taxon. In addition, in vitro assays shed light on their biological activities. Although there were many common components identified in the venoms of species with different social behavior, there were also significant variations in the presence and activity of enzymes such as phospholipase A2s and serine proteases and the cytotoxicity of the venoms. Social aculeate venom showed higher presence of peptides that cause damage and pain in victims. The venom-gland transcriptome from the European honeybee (Apis mellifera) contained highly conserved toxins which match those identified by previous investigations. In contrast, venoms from less-studied taxa returned limited results from our proteomic databases, suggesting that they contain unique toxins.
Collapse
Affiliation(s)
- Daniel Dashevsky
- Australian National Insect Collection, Commonwealth Scientific & Industrial Research Organisation, Canberra, ACT 2601, Australia
- Correspondence: (D.D.); (B.G.F.)
| | - Kate Baumann
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Eivind A. B. Undheim
- Centre for Ecological and Evolutionary Synthesis, Department of Bioscience, University of Oslo, N-0316 Oslo, Norway
| | - Amanda Nouwens
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Maria P. Ikonomopoulou
- Translational Venomics Group, Madrid Institute for Advanced Studies in Food, 4075 Madrid, Spain
| | - Justin O. Schmidt
- Southwestern Biological Institute, 1961 W. Brichta Dr., Tucson, AZ 85745, USA
| | - Lilin Ge
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210046, China
- Institute of Translational Medicine, Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Hang Fai Kwok
- Institute of Translational Medicine, Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Juanita Rodriguez
- Australian National Insect Collection, Commonwealth Scientific & Industrial Research Organisation, Canberra, ACT 2601, Australia
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Correspondence: (D.D.); (B.G.F.)
| |
Collapse
|
11
|
The impact of N-glycosylation on the properties of the antimicrobial peptide LL-III. Sci Rep 2023; 13:3733. [PMID: 36878924 PMCID: PMC9988962 DOI: 10.1038/s41598-023-29984-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
The misuse of antibiotics has led to the emergence of drug-resistant pathogens. Antimicrobial peptides (AMPs) may represent valuable alternative to antibiotics; nevertheless, the easy degradation due to environmental stress and proteolytic enzyme action, limits their use. So far, different strategies have been developed to overcome this drawback. Among them, glycosylation of AMPs represents a promising approach. In this work, we synthesized and characterized the N-glycosilated form of the antimicrobial peptide LL-III (g-LL-III). The N-acetylglucosamine (NAG) was covalently linked to the Asn residue and the interaction of g-LL-III with bacterial model membranes, together with its resistance to proteases, were investigated. Glycosylation did not affect the peptide mechanism of action and its biological activity against both bacteria and eukaryotic cells. Interestingly, a higher resistance to the activity of proteolytic enzymes was achieved. The reported results pave the way for the successful application of AMPs in medicine and biotechnological fields.
Collapse
|
12
|
Makowska M, Kosikowska-Adamus P, Zdrowowicz M, Wyrzykowski D, Prahl A, Sikorska E. Lipidation of Naturally Occurring α-Helical Antimicrobial Peptides as a Promising Strategy for Drug Design. Int J Mol Sci 2023; 24:ijms24043951. [PMID: 36835362 PMCID: PMC9959048 DOI: 10.3390/ijms24043951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
In this paper, we describe the chemical synthesis, preliminary evaluation of antimicrobial properties and mechanisms of action of a novel group of lipidated derivatives of three naturally occurring α-helical antimicrobial peptides, LL-I (VNWKKVLGKIIKVAK-NH2), LK6 (IKKILSKILLKKL-NH2), ATRA-1 (KRFKKFFKKLK-NH2). The obtained results showed that biological properties of the final compounds were defined both by the length of the fatty acid and by the structural and physico-chemical properties of the initial peptide. We consider C8-C12 length of the hydrocarbon chain as the optimal for antimicrobial activity improvement. However, the most active analogues exerted relatively high cytotoxicity toward keratinocytes, with the exception of the ATRA-1 derivatives, which had a higher selectivity for microbial cells. The ATRA-1 derivatives had relatively low cytotoxicity against healthy human keratinocytes but high cytotoxicity against human breast cancer cells. Taking into account that ATRA-1 analogues carry the highest positive net charge, it can be assumed that this feature contributes to cell selectivity. As expected, the studied lipopeptides showed a strong tendency to self-assembly into fibrils and/or elongated and spherical micelles, with the least cytotoxic ATRA-1 derivatives forming apparently smaller assemblies. The results of the study also confirmed that the bacterial cell membrane is the target for the studied compounds.
Collapse
Affiliation(s)
- Marta Makowska
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
- Correspondence: (M.M.); (E.S.)
| | - Paulina Kosikowska-Adamus
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Magdalena Zdrowowicz
- Department of Physical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Dariusz Wyrzykowski
- Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Adam Prahl
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Emilia Sikorska
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
- Correspondence: (M.M.); (E.S.)
| |
Collapse
|
13
|
Yang Z, Zhang J, Wu FG, Lin F. Structural Characterization, Functional Profiling, and Mechanism Study of Four Antimicrobial Peptides for Antibacterial and Anticancer Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2161-2170. [PMID: 36730301 DOI: 10.1021/acs.langmuir.2c02526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Antimicrobial peptides (AMPs) are potent compounds for treating bacterial infection and cancer, drawing ever-increasing interest. However, the function and mechanism of most AMPs remain to be explored. In this research, we focused on investigating the antibacterial and anticancer activities of four AMPs (Dhvar4, Lasioglossin-III, Macropin 1, and Temporin La) and the possible corresponding mechanisms. All four AMPs are cationic α-helical with moderate hydrophobicity and high helicity. They have broad-spectrum antibacterial capacities, among which the antibacterial activities of Dhvar4 and Temporin La are not as effective as Lasioglossin-III and Macropin 1. Macropin 1 exhibited the highest antibacterial effect with a pretty low minimal inhibitory concentration (MIC) of 2-8 μM. Meanwhile, Lasioglossin-III exhibited the strongest anticancer activities, displaying the IC50 of 26.36 μM for A549 and 7.75 μM for HepG2. Although Dhvar4 possessed the highest positive charge and entered the bacterial and animal cells in large amounts, it displayed the lowest bactericidal and anticancer activities which might be ascribed to its lowest hydrophobicity and thus the weakest cell membrane damage capability. It seems that the positive charge and cell internalization play a supporting rather than a determined role in antibacterial and anticancer activities of AMPs. All the four AMPs damaged the bacterial cell membrane with Macropin 1 damaging the cell membrane of Escherichia coli the most and Lasioglossin-III destroying the cell membrane of Staphylococcus aureus the worst. In addition, the animal cellular internalization of the four peptides was temperature-dependent and mainly mediated by caveolae-mediated endocytosis, and they were distributed in lysosomes once inside the cells. These findings expand our knowledge on the function and mechanism of AMPs, laying the fundamental theoretical basis for designing and engineering AMPs for infection and cancer treatment.
Collapse
Affiliation(s)
- Zihuayuan Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jie Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Fengming Lin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
14
|
You Y, Liu H, Zhu Y, Zheng H. Rational design of stapled antimicrobial peptides. Amino Acids 2023; 55:421-442. [PMID: 36781451 DOI: 10.1007/s00726-023-03245-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023]
Abstract
The global increase in antimicrobial drug resistance has dramatically reduced the effectiveness of traditional antibiotics. Structurally diverse antibiotics are urgently needed to combat multiple-resistant bacterial infections. As part of innate immunity, antimicrobial peptides have been recognized as the most promising candidates because they comprise diverse sequences and mechanisms of action and have a relatively low induction rate of resistance. However, because of their low chemical stability, susceptibility to proteases, and high hemolytic effect, their usage is subject to many restrictions. Chemical modifications such as D-amino acid substitution, cyclization, and unnatural amino acid modification have been used to improve the stability of antimicrobial peptides for decades. Among them, a side-chain covalent bridge modification, the so-called stapled peptide, has attracted much attention. The stapled side-chain bridge stabilizes the secondary structure, induces protease resistance, and increases cell penetration and biological activity. Recent progress in computer-aided drug design and artificial intelligence methods has also been used in the design of stapled antimicrobial peptides and has led to the successful discovery of many prospective peptides. This article reviews the possible structure-activity relationships of stapled antimicrobial peptides, the physicochemical properties that influence their activity (such as net charge, hydrophobicity, helicity, and dipole moment), and computer-aided methods of stapled peptide design. Antimicrobial peptides under clinical trial: Pexiganan (NCT01594762, 2012-05-07). Omiganan (NCT02576847, 2015-10-13).
Collapse
Affiliation(s)
- YuHao You
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - HongYu Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - YouZhuo Zhu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
15
|
Campanile M, Oliva R, D'Errico G, Del Vecchio P, Petraccone L. The anticancer peptide LL-III alters the physico-chemical properties of a model tumor membrane promoting lipid bilayer permeabilization. Phys Chem Chem Phys 2023; 25:3639-3650. [PMID: 36541682 DOI: 10.1039/d2cp03528f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
LL-III is an anticancer peptide and has the ability to translocate across tumor cell membranes, which indicates that its action mechanism could be non-membranolytic. However, the exact mechanism through which the peptide gains access into the cell cytoplasm is still unknown. Here, we use a plethora of physico-chemical techniques to characterize the interaction of LL-III with liposomes mimicking the lipid matrix of the tumor cell membrane and its effect on the microstructure and thermotropic properties of the membrane. Furthermore, the effect of the presence of Ca2+ cations at physiological concentration was also investigated. For comparison, the interaction of LL-III with liposomes mimicking the normal cell membrane was also studied. Our results show that the peptide selectively interacts with the model tumor cell membrane. This interaction does not disrupt the lipid bilayer but deeply alters its properties by promoting lipid lateral reorganization and increasing membrane permeability. Overall, our data provide a molecular level description of the interaction of the peptide with the model tumor membrane and are fully consistent with the non-membranolytic action mechanism.
Collapse
Affiliation(s)
- Marco Campanile
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy.
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy.
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy.
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy.
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy.
| |
Collapse
|
16
|
Carboxymethyl-Dextran-Coated Superparamagnetic Iron Oxide Nanoparticles for Drug Delivery: Influence of the Coating Thickness on the Particle Properties. Int J Mol Sci 2022; 23:ijms232314743. [PMID: 36499070 PMCID: PMC9740466 DOI: 10.3390/ijms232314743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Carboxymethyl-dextran (CMD)-coated iron oxide nanoparticles (IONs) are of great interest in nanomedicine, especially for applications in drug delivery. To develop a magnetically controlled drug delivery system, many factors must be considered, including the composition, surface properties, size and agglomeration, magnetization, cytocompatibility, and drug activity. This study reveals how the CMD coating thickness can influence these particle properties. ION@CMD are synthesized by co-precipitation. A higher quantity of CMD leads to a thicker coating and a reduced superparamagnetic core size with decreasing magnetization. Above 12.5−25.0 g L−1 of CMD, the particles are colloidally stable. All the particles show hydrodynamic diameters < 100 nm and a good cell viability in contact with smooth muscle cells, fulfilling two of the most critical characteristics of drug delivery systems. New insights into the significant impact of agglomeration on the magnetophoretic behavior are shown. Remarkable drug loadings (62%) with the antimicrobial peptide lasioglossin and an excellent efficiency (82.3%) were obtained by covalent coupling with the EDC/NHS (N-ethyl-N′-(3-(dimethylamino)propyl)carbodiimide/N-hydroxysuccinimide) method in comparison with the adsorption method (24% drug loading, 28% efficiency). The systems showed high antimicrobial activity with a minimal inhibitory concentration of 1.13 µM (adsorption) and 1.70 µM (covalent). This system successfully combines an antimicrobial peptide with a magnetically controllable drug carrier.
Collapse
|
17
|
Zakharova E, Orsi M, Capecchi A, Reymond J. Machine Learning Guided Discovery of Non-Hemolytic Membrane Disruptive Anticancer Peptides. ChemMedChem 2022; 17:e202200291. [PMID: 35880810 PMCID: PMC9541320 DOI: 10.1002/cmdc.202200291] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/29/2022] [Indexed: 12/05/2022]
Abstract
Most antimicrobial peptides (AMPs) and anticancer peptides (ACPs) fold into membrane disruptive cationic amphiphilic α-helices, many of which are however also unpredictably hemolytic and toxic. Here we exploited the ability of recurrent neural networks (RNN) to distinguish active from inactive and non-hemolytic from hemolytic AMPs and ACPs to discover new non-hemolytic ACPs. Our discovery pipeline involved: 1) sequence generation using either a generative RNN or a genetic algorithm, 2) RNN classification for activity and hemolysis, 3) selection for sequence novelty, helicity and amphiphilicity, and 4) synthesis and testing. Experimental evaluation of thirty-three peptides resulted in eleven active ACPs, four of which were non-hemolytic, with properties resembling those of the natural ACP lasioglossin III. These experiments show the first example of direct machine learning guided discovery of non-hemolytic ACPs.
Collapse
Affiliation(s)
- Elena Zakharova
- Department of ChemistryBiochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 33012BernSwitzerland
| | - Markus Orsi
- Department of ChemistryBiochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 33012BernSwitzerland
| | - Alice Capecchi
- Department of ChemistryBiochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 33012BernSwitzerland
| | - Jean‐Louis Reymond
- Department of ChemistryBiochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 33012BernSwitzerland
| |
Collapse
|
18
|
Perez-Rodriguez A, Eraso E, Quindós G, Mateo E. Antimicrobial Peptides with Anti-Candida Activity. Int J Mol Sci 2022; 23:ijms23169264. [PMID: 36012523 PMCID: PMC9409312 DOI: 10.3390/ijms23169264] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 02/06/2023] Open
Abstract
Mycoses are accountable for millions of infections yearly worldwide. Invasive candidiasis is the most usual, presenting a high morbidity and mortality. Candida albicans remains the prevalent etiologic agent, but the incidence of other species such as Candida parapsilosis, Candida glabrata and Candida auris keeps increasing. These pathogens frequently show a reduced susceptibility to commonly used antifungal drugs, including polyenes, triazoles and echinocandins, and the incidence of emerging multi-drug-resistant strains of these species continues to increase. Therefore, the need to search for new molecules that target these pathogenic species in a different manner is now more urgent than ever. Nature is an almost endless source of interesting new molecules that could meet this need. Among these molecules, antimicrobial peptides, present in different sources in nature, possess some advantages over conventional antifungal agents, even with their own drawbacks, and are considered as a promising pharmacological option against a wide range of microbial infections. In this review, we describe 20 antimicrobial peptides from different origins that possess an activity against Candida.
Collapse
|
19
|
Ragonis-Bachar P, Rayan B, Barnea E, Engelberg Y, Upcher A, Landau M. Natural Antimicrobial Peptides Self-assemble as α/β Chameleon Amyloids. Biomacromolecules 2022; 23:3713-3727. [PMID: 35947777 DOI: 10.1021/acs.biomac.2c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amyloid protein fibrils and some antimicrobial peptides (AMPs) share biophysical and structural properties. This observation suggests that ordered self-assembly can act as an AMP-regulating mechanism, and, vice versa, that human amyloids play a role in host defense against pathogens, as opposed to their common association with neurodegenerative and systemic diseases. Based on previous structural information on toxic amyloid peptides, we developed a sequence-based bioinformatics platform and, led by its predictions, experimentally identified 14 fibril-forming AMPs (ffAMPs) from living organisms, which demonstrated cross-β and cross-α amyloid properties. The results support the amyloid-antimicrobial link. The high prevalence of ffAMPs produced by amphibians and marine creatures among other species suggests that they confer unique advantageous properties in distinctive environments, potentially providing stability and adherence properties. Most of the newly identified 14 ffAMPs showed lipid-induced and/or time-dependent secondary structure transitions in the fibril form, indicating structural and functional cross-α/β chameleons. Specifically, ffAMP cytotoxicity against human cells correlated with the inherent or lipid-induced α-helical fibril structure. The findings raise hypotheses about the role of fibril secondary structure switching in regulation of processes, such as the transition between a stable storage conformation and an active state with toxicity against specific cell types.
Collapse
Affiliation(s)
- Peleg Ragonis-Bachar
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Bader Rayan
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Eilon Barnea
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yizhaq Engelberg
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Alexander Upcher
- Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel.,European Molecular Biology Laboratory (EMBL) and Centre for Structural Systems Biology, Hamburg 22607, Germany
| |
Collapse
|
20
|
Saha S, Ratrey P, Mishra A. Association of Lasioglossin-III Antimicrobial Peptide with Model Lipid Bilayers. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
21
|
Ali W, Elsahn A, Ting DSJ, Dua HS, Mohammed I. Host Defence Peptides: A Potent Alternative to Combat Antimicrobial Resistance in the Era of the COVID-19 Pandemic. Antibiotics (Basel) 2022; 11:475. [PMID: 35453226 PMCID: PMC9032040 DOI: 10.3390/antibiotics11040475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/07/2022] Open
Abstract
One of the greatest challenges facing the medical community today is the ever-increasing trajectory of antimicrobial resistance (AMR), which is being compounded by the decrease in our antimicrobial armamentarium. From their initial discovery to the current day, antibiotics have seen an exponential increase in their usage, from medical to agricultural use. Benefits aside, this has led to an exponential increase in AMR, with the fear that over 10 million lives are predicted to be lost by 2050, according to the World Health Organisation (WHO). As such, medical researchers are turning their focus to discovering novel alternatives to antimicrobials, one being Host Defence Peptides (HDPs). These small cationic peptides have shown great efficacy in being used as an antimicrobial therapy for currently resistant microbial variants. With the sudden emergence of the SARS-CoV-2 variant and the subsequent global pandemic, the great versatility and potential use of HDPs as an alternative to conventional antibiotics in treating as well as preventing the spread of COVID-19 has been reviewed. Thus, to allow the reader to have a full understanding of the multifaceted therapeutic use of HDPs, this literature review shall cover the association between COVID-19 and AMR whilst discussing and evaluating the use of HDPs as an answer to antimicrobial resistance (AMR).
Collapse
Affiliation(s)
| | | | | | | | - Imran Mohammed
- Section of Ophthalmology, Larry A. Donoso Laboratory for Eye Research, Academic Unit of Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, Queens Medical Centre, Eye and ENT Building, Nottingham NG7 2UH, UK; (W.A.); (A.E.); (D.S.J.T.); (H.S.D.)
| |
Collapse
|
22
|
Luong HX, Bui HTP, Tung TT. Application of the All-Hydrocarbon Stapling Technique in the Design of Membrane-Active Peptides. J Med Chem 2022; 65:3026-3045. [PMID: 35112864 DOI: 10.1021/acs.jmedchem.1c01744] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The threats of drug resistance and new emerging pathogens have led to an urgent need to develop alternative treatment therapies. Recently, considerable research efforts have focused on membrane-active peptides (MAPs), a category of peptides in drug discovery with antimicrobial, anticancer, and cell penetration activities that have demonstrated their potential to be multifunctional agents. Nonetheless, natural MAPs have encountered various disadvantages, which mainly include poor bioavailability, the lack of a secondary structure in short peptides, and high production costs for long peptide sequences. Hence, an "all-hydrocarbon stapling system" has been applied to these peptides and proven to effectively stabilize the helical conformations, improving proteolytic resistance and increasing both the potency and the cell permeability. In this review, we summarized and categorized the advances made using this powerful technique in the development of stapled MAPs. Furthermore, outstanding issues and suggestions for future design within each subcategory were thoroughly discussed.
Collapse
Affiliation(s)
- Huy Xuan Luong
- Faculty of Pharmacy, PHENIKAA University, Hanoi 12116, Vietnam.,PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi 12116, Vietnam
| | | | - Truong Thanh Tung
- Faculty of Pharmacy, PHENIKAA University, Hanoi 12116, Vietnam.,PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi 12116, Vietnam
| |
Collapse
|
23
|
Luong HX, Ngan HD, Thi Phuong HB, Quoc TN, Tung TT. Multiple roles of ribosomal antimicrobial peptides in tackling global antimicrobial resistance. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211583. [PMID: 35116161 PMCID: PMC8790363 DOI: 10.1098/rsos.211583] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/20/2021] [Indexed: 05/03/2023]
Abstract
In the last century, conventional antibiotics have played a significant role in global healthcare. Antibiotics support the body in controlling bacterial infection and simultaneously increase the tendency of drug resistance. Consequently, there is a severe concern regarding the regression of the antibiotic era. Despite the use of antibiotics, host defence systems are vital in fighting infectious diseases. In fact, the expression of ribosomal antimicrobial peptides (AMPs) has been crucial in the evolution of innate host defences and has been irreplaceable to date. Therefore, this valuable source is considered to have great potential in tackling the antimicrobial resistance (AMR) crisis. Furthermore, the possibility of bacterial resistance to AMPs has been intensively investigated. Here, we summarize all aspects related to the multiple applications of ribosomal AMPs and their derivatives in combating AMR.
Collapse
Affiliation(s)
- Huy Xuan Luong
- Faculty of Pharmacy, PHENIKAA University, Hanoi 12116, Vietnam
- PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi 12116, Vietnam
| | | | | | - Thang Nguyen Quoc
- Nuclear Medicine Unit, Vinmec Healthcare System, Hanoi 10000, Vietnam
| | - Truong Thanh Tung
- Faculty of Pharmacy, PHENIKAA University, Hanoi 12116, Vietnam
- PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi 12116, Vietnam
| |
Collapse
|
24
|
Nunes LGP, Reichert T, Machini MT. His-Rich Peptides, Gly- and His-Rich Peptides: Functionally Versatile Compounds with Potential Multi-Purpose Applications. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10302-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
Juhász T, Quemé-Peña M, Kővágó B, Mihály J, Ricci M, Horváti K, Bősze S, Zsila F, Beke-Somfai T. Interplay between membrane active host defense peptides and heme modulates their assemblies and in vitro activity. Sci Rep 2021; 11:18328. [PMID: 34526616 PMCID: PMC8443738 DOI: 10.1038/s41598-021-97779-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/28/2021] [Indexed: 02/08/2023] Open
Abstract
In the emerging era of antimicrobial resistance, the susceptibility to co-infections of patients suffering from either acquired or inherited hemolytic disorders can lead to dramatic increase in mortality rates. Closely related, heme liberated during hemolysis is one of the major sources of iron, which is vital for both host and invading microorganisms. While recent intensive research in the field has demonstrated that heme exerts diverse local effects including impairment of immune cells functions, it is almost completely unknown how it may compromise key molecules of our innate immune system, such as antimicrobial host defense peptides (HDPs). Since HDPs hold great promise as natural therapeutic agents against antibiotic-resistant microbes, understanding the effects that may modulate their action in microbial infection is crucial. Here we explore how hemin can interact directly with selected HDPs and influence their structure and membrane activity. It is revealed that induced helical folding, large assembly formation, and altered membrane activity is promoted by hemin. However, these effects showed variations depending mainly on peptide selectivity toward charged lipids, and the affinity of the peptide and hemin to lipid bilayers. Hemin-peptide complexes are sought to form semi-folded co-assemblies, which are present even with model membranes resembling mammalian or bacterial lipid compositions. In vitro cell-based toxicity assays supported that toxic effects of HDPs could be attenuated due to their assembly formation. These results are in line with our previous findings on peptide-lipid-small molecule systems suggesting that small molecules present in the complex in vivo milieu can regulate HDP function. Inversely, diverse effects of endogenous compounds could also be manipulated by HDPs.
Collapse
Affiliation(s)
- Tünde Juhász
- grid.425578.90000 0004 0512 3755Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Mayra Quemé-Peña
- grid.425578.90000 0004 0512 3755Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary ,grid.5591.80000 0001 2294 6276Hevesy György PhD School of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Bence Kővágó
- grid.425578.90000 0004 0512 3755Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Judith Mihály
- grid.425578.90000 0004 0512 3755Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Maria Ricci
- grid.425578.90000 0004 0512 3755Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Kata Horváti
- grid.5591.80000 0001 2294 6276ELKH-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Budapest, Hungary ,grid.5591.80000 0001 2294 6276Department of Organic Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Szilvia Bősze
- grid.5591.80000 0001 2294 6276ELKH-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Ferenc Zsila
- grid.425578.90000 0004 0512 3755Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tamás Beke-Somfai
- grid.425578.90000 0004 0512 3755Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
26
|
Quemé-Peña M, Juhász T, Kohut G, Ricci M, Singh P, Szigyártó IC, Papp ZI, Fülöp L, Beke-Somfai T. Membrane Association Modes of Natural Anticancer Peptides: Mechanistic Details on Helicity, Orientation, and Surface Coverage. Int J Mol Sci 2021; 22:ijms22168613. [PMID: 34445319 PMCID: PMC8395313 DOI: 10.3390/ijms22168613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/19/2022] Open
Abstract
Anticancer peptides (ACPs) could potentially offer many advantages over other cancer therapies. ACPs often target cell membranes, where their surface mechanism is coupled to a conformational change into helical structures. However, details on their binding are still unclear, which would be crucial to reach progress in connecting structural aspects to ACP action and to therapeutic developments. Here we investigated natural helical ACPs, Lasioglossin LL-III, Macropin 1, Temporin-La, FK-16, and LL-37, on model liposomes, and also on extracellular vesicles (EVs), with an outer leaflet composition similar to cancer cells. The combined simulations and experiments identified three distinct binding modes to the membranes. Firstly, a highly helical structure, lying mainly on the membrane surface; secondly, a similar, yet only partially helical structure with disordered regions; and thirdly, a helical monomeric form with a non-inserted perpendicular orientation relative to the membrane surface. The latter allows large swings of the helix while the N-terminal is anchored to the headgroup region. These results indicate that subtle differences in sequence and charge can result in altered binding modes. The first two modes could be part of the well-known carpet model mechanism, whereas the newly identified third mode could be an intermediate state, existing prior to membrane insertion.
Collapse
Affiliation(s)
- Mayra Quemé-Peña
- Biomolecular Self-Assembly Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.Q.-P.); (G.K.); (M.R.); (P.S.); (I.C.S.)
- Hevesy György Ph.D. School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Tünde Juhász
- Biomolecular Self-Assembly Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.Q.-P.); (G.K.); (M.R.); (P.S.); (I.C.S.)
- Correspondence: (T.J.); (T.B.-S.)
| | - Gergely Kohut
- Biomolecular Self-Assembly Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.Q.-P.); (G.K.); (M.R.); (P.S.); (I.C.S.)
- Hevesy György Ph.D. School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Maria Ricci
- Biomolecular Self-Assembly Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.Q.-P.); (G.K.); (M.R.); (P.S.); (I.C.S.)
| | - Priyanka Singh
- Biomolecular Self-Assembly Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.Q.-P.); (G.K.); (M.R.); (P.S.); (I.C.S.)
- Hevesy György Ph.D. School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Imola Cs. Szigyártó
- Biomolecular Self-Assembly Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.Q.-P.); (G.K.); (M.R.); (P.S.); (I.C.S.)
| | - Zita I. Papp
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary; (Z.I.P.); (L.F.)
| | - Lívia Fülöp
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary; (Z.I.P.); (L.F.)
| | - Tamás Beke-Somfai
- Biomolecular Self-Assembly Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.Q.-P.); (G.K.); (M.R.); (P.S.); (I.C.S.)
- Correspondence: (T.J.); (T.B.-S.)
| |
Collapse
|
27
|
Aronson MR, Ali Akbari Ghavimi S, Gehret PM, Jacobs IN, Gottardi R. Drug-Eluting Endotracheal Tubes for Preventing Bacterial Inflammation in Subglottic Stenosis. Laryngoscope 2021; 132:1356-1363. [PMID: 34319583 DOI: 10.1002/lary.29769] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/10/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES/HYPOTHESIS Subglottic stenosis (SGS) results from dysregulated extracellular matrix deposition by laryngotracheal fibroblasts causing scar tissue formation following intubation. Recent work has highlighted a relationship between this inflammatory state and imbalances in the upper airway microbiome. Herein, we engineer novel drug-eluting endotracheal (ET) tubes to deliver a model antimicrobial peptide Lasioglossin-III (Lasio) for the local modulation of the microbiome during intubation. STUDY DESIGN Controlled in vitro study. METHODS ET tubes were coated with a water-in-oil (w/o) emulsion of Lasio in poly(d,l-lactide-co-glycolide) (PLGA) by dipping thrice. Peptide release was quantified over 2 weeks via fluorometric peptide assays. The antibacterial activity was tested against airway microbes (Staphylococcus epidermidis, Streptococcus pneumoniae, and pooled human microbiome samples) by placing Lasio/PLGA-coated tubes and appropriate controls in 48 well plates with diluted bacteria. Bacterial inhibition and tube adhesion were tested by measuring optical density and colony formation after tube culture, respectively. Biocompatibility was tested against laryngotracheal fibroblasts and lung epithelial cells. RESULTS We achieved a homogeneous coating of ET tubes with Lasio in a PLGA matrix that yields a prolonged, linear release over 1 week (typical timeframe before the ET tube is changed). We observed significant antibacterial activity against S. epidermidis, S. pneumoniae, and human microbiome samples, and prevention of bacterial adherence to the tube. Additionally, the released Lasio did not cause any cytotoxicity toward laryngotracheal fibroblasts or lung epithelial cells in vitro. CONCLUSION Overall, we demonstrate the design of an effective-eluting ET tube to modulate upper-airway bacterial infections during intubation which could be deployed to help prevent SGS. LEVEL OF EVIDENCE N/A Laryngoscope, 2021.
Collapse
Affiliation(s)
- Matthew R Aronson
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A.,Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, U.S.A
| | - Soheila Ali Akbari Ghavimi
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, U.S.A
| | - Paul M Gehret
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A.,Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, U.S.A
| | - Ian N Jacobs
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, U.S.A.,Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| | - Riccardo Gottardi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A.,Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, U.S.A.,Department of Pediatrics, Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, U.S.A.,Ri.MED Foundation, Palermo, Italy
| |
Collapse
|
28
|
Pérez C, Díaz-Roa A, Bernal Y, Arenas NE, Kalume DE, Côrtes LMDC, da PI, Varela Y, Patarroyo MA, Torres O, Bello FJ. Characterising four Sarconesiopsis magellanica (Diptera: Calliphoridae) larval fat body-derived antimicrobial peptides. Mem Inst Oswaldo Cruz 2021; 116:e200587. [PMID: 34287503 PMCID: PMC8291954 DOI: 10.1590/0074-02760200587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 06/07/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The inappropriate use of antibiotics has led to the accelerated growth of resistance to antibiotics. The search for new therapeutic strategies (i.e., antimicrobial peptides-AMPs) has thus become a pressing need. OBJECTIVE Characterising and evaluating Sarconesiopsis magellanica larval fat body-derived AMPs. METHODS Fat body extracts were analysed by reversed-phase high-performance liquid chromatography (RP-HPLC); mass spectrometry was used for characterising the primary structure of the AMPs so found. ProtParam (Expasy) was used for analysing the AMPs' physico-chemical properties. Synthetic AMPs' antibacterial activity was evaluated. FINDINGS Four new AMPs were obtained and called sarconesin III, IV, V and VI. Sarconesin III had an α-helix structure and sarconesins IV, V and VI had linear formations. Oligomer prediction highlighted peptide-peptide interactions, suggesting that sarconesins III, V and VI could form self-aggregations when in contact with the microbial membrane. AMPs synthesised from their native molecules' sequences had potent activity against Gram-positive bacteria and, to a lesser extent, against Gram-negative and drug-resistant bacteria. Sarconesin VI was the most efficient AMP. None of the four synthetic AMPs had a cytotoxic effect. MAIN CONCLUSIONS S. magellanica larval fat body-derived antimicrobial peptides are an important source of AMPs and could be used in different antimicrobial therapies and overcoming bacterial resistance.
Collapse
Affiliation(s)
- Cindy Pérez
- Universidad Antonio Nariño, Facultad de Medicina Veterinaria, Bogotá, Colombia
| | - Andrea Díaz-Roa
- Instituto Butantan, Laboratório de Toxinología Aplicada, São Paulo, SP, Brasil
- Universidad Nacional Abierta y a Distancia, Escuela de Ciencias Agrícolas, Pecuarias y de Medio Ambiente, Bogotá, Colombia
| | - Yuly Bernal
- Universidad Antonio Nariño, Facultad de Ciencias, Bogotá, Colombia
| | - Nelson E Arenas
- Universidad Antonio Nariño, Facultad de Ciencias, Bogotá, Colombia
| | - Dario Eluan Kalume
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório Interdisciplinar de Pesquisas Médicas, Rio de Janeiro, RJ, Brasil
| | - Luzia Monteiro de Castro Côrtes
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
| | - Pedro I da
- Instituto Butantan, Laboratório de Toxinología Aplicada, São Paulo, SP, Brasil
| | - Yahson Varela
- Fundación Instituto de Inmunología de Colombia, Molecular Biology and Immunology Department, Bogotá, Colombia
| | - Manuel A Patarroyo
- Fundación Instituto de Inmunología de Colombia, Molecular Biology and Immunology Department, Bogotá, Colombia
- Universidad Nacional de Colombia, Faculty of Medicine, Microbiology Department, Bogotá, Colombia
- Universidad Santo Tomás, Health Sciences Division, Bogotá, Colombia
| | - Orlando Torres
- Universidad Antonio Nariño, Facultad de Medicina Veterinaria, Bogotá, Colombia
| | - Felio J Bello
- Universidad de La Salle, Facultad de Ciencias Agropecuarias, Programa de Medicina Veterinaria, Bogotá, Colombia
| |
Collapse
|
29
|
Bare Iron Oxide Nanoparticles as Drug Delivery Carrier for the Short Cationic Peptide Lasioglossin. Pharmaceuticals (Basel) 2021; 14:ph14050405. [PMID: 33923229 PMCID: PMC8146918 DOI: 10.3390/ph14050405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/31/2022] Open
Abstract
New drug delivery systems are a potential solution for administering drugs to reduce common side effects of traditional methods, such as in cancer therapy. Iron oxide nanoparticles (IONs) can increase the drugs’ biological activity through high binding efficiency and magnetically targeted drug delivery. Understanding the adsorption and release process of a drug to the carrier material plays a significant role in research to generate an applicable and controlled drug delivery system. This contribution focuses on the binding patterns of the peptide lasioglossin III from bee venom on bare IONs. Lasioglossin has a high antimicrobial behavior and due to its cationic properties, it has high binding potential. Considering the influence of pH, the buffer type, the particle concentration, and time, the highest drug loading of 22.7% is achieved in phosphate-buffered saline. Analysis of the desorption conditions revealed temperature and salt concentration sensitivity. The nanoparticles and peptide-ION complexes are analyzed with dynamic light scattering, zeta potential, and infrared spectroscopy. Additionally, cytotoxicity experiments performed on Escherichia coli show higher antimicrobial activity of bound lasioglossin than of the free peptide. Therefore, bare IONs are an interesting platform material for the development of drug-delivery carriers for cationic peptides.
Collapse
|
30
|
Insights into the Action Mechanism of the Antimicrobial Peptide Lasioglossin III. Int J Mol Sci 2021; 22:ijms22062857. [PMID: 33799744 PMCID: PMC8001998 DOI: 10.3390/ijms22062857] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/17/2022] Open
Abstract
Lasioglossin III (LL-III) is a cationic antimicrobial peptide derived from the venom of the eusocial bee Lasioglossum laticeps. LL-III is extremely toxic to both Gram-positive and Gram-negative bacteria, and it exhibits antifungal as well as antitumor activity. Moreover, it shows low hemolytic activity, and it has almost no toxic effects on eukaryotic cells. However, the molecular basis of the LL-III mechanism of action is still unclear. In this study, we characterized by means of calorimetric (DSC) and spectroscopic (CD, fluorescence) techniques its interaction with liposomes composed of a mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-rac-phosphoglycerol (POPG) lipids as a model of the negatively charged membrane of pathogens. For comparison, the interaction of LL-III with the uncharged POPC liposomes was also studied. Our data showed that LL-III preferentially interacted with anionic lipids in the POPC/POPG liposomes and induces the formation of lipid domains. Furthermore, the leakage experiments showed that the peptide could permeabilize the membrane. Interestingly, our DSC results showed that the peptide-membrane interaction occurs in a non-disruptive manner, indicating an intracellular targeting mode of action for this peptide. Consistent with this hypothesis, our gel-retardation assay experiments showed that LL-III could interact with plasmid DNA, suggesting a possible intracellular target.
Collapse
|
31
|
Luong HX, Thanh TT, Tran TH. Antimicrobial peptides - Advances in development of therapeutic applications. Life Sci 2020; 260:118407. [PMID: 32931796 PMCID: PMC7486823 DOI: 10.1016/j.lfs.2020.118407] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
The severe infection is becoming a significant health problem which threaten the lives of patients and the safety and economy of society. In the way of finding new strategy, antimicrobial peptides (AMPs) - an important part of host defense family, emerged with tremendous potential. Up to date, huge numbers of AMPs has been investigated from both natural and synthetic sources showing not only the ability to kill microbial pathogens but also propose other benefits such as wound healing, anti-tumor, immune modulation. In this review, we describe the involvements of AMPs in biological systems and discuss the opportunity in developing AMPs for clinical applications. In the detail, their properties in antibacterial activity is followed by their application in some infection diseases and cancer. The key discussions are the approaches to improve biological activities of AMPs either by modifying chemical structure or incorporating into delivery systems. The new applications and perspectives for the future of AMPs would open the new era of their development.
Collapse
Affiliation(s)
- Huy Xuan Luong
- Faculty of Pharmacy, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi 12116, Viet Nam.
| | - Tung Truong Thanh
- Faculty of Pharmacy, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi 12116, Viet Nam.
| | - Tuan Hiep Tran
- Faculty of Pharmacy, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; PHENIKAA Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, No.167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi 11313, Viet Nam.
| |
Collapse
|
32
|
Cobb LH, McCabe EM, Priddy LB. Therapeutics and delivery vehicles for local treatment of osteomyelitis. J Orthop Res 2020; 38:2091-2103. [PMID: 32285973 PMCID: PMC8117475 DOI: 10.1002/jor.24689] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/07/2020] [Accepted: 04/11/2020] [Indexed: 02/04/2023]
Abstract
Osteomyelitis, or the infection of the bone, presents a major complication in orthopedics and may lead to prolonged hospital visits, implant failure, and in more extreme cases, amputation of affected limbs. Typical treatment for this disease involves surgical debridement followed by long-term, systemic antibiotic administration, which contributes to the development of antibiotic-resistant bacteria and has limited ability to eradicate challenging biofilm-forming pathogens including Staphylococcus aureus-the most common cause of osteomyelitis. Local delivery of high doses of antibiotics via traditional bone cement can reduce systemic side effects of an antibiotic. Nonetheless, growing concerns over burst release (then subtherapeutic dose) of antibiotics, along with microbial colonization of the nondegradable cement biomaterial, further exacerbate antibiotic resistance and highlight the need to engineer alternative antimicrobial therapeutics and local delivery vehicles with increased efficacy against, in particular, biofilm-forming, antibiotic-resistant bacteria. Furthermore, limited guidance exists regarding both standardized formulation protocols and validated assays to predict efficacy of a therapeutic against multiple strains of bacteria. Ideally, antimicrobial strategies would be highly specific while exhibiting a broad spectrum of bactericidal activity. With a focus on S. aureus infection, this review addresses the efficacy of novel therapeutics and local delivery vehicles, as alternatives to the traditional antibiotic regimens. The aim of this review is to discuss these components with regards to long bone osteomyelitis and to encourage positive directions for future research efforts.
Collapse
Affiliation(s)
- Leah H. Cobb
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS, USA
| | - Emily M. McCabe
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS, USA,Department of Mechanical Engineering, Mississippi State University, Mississippi State, MS, USA
| | - Lauren B. Priddy
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS, USA,corresponding author: Contact: , (662) 325-5988, Department of Agricultural and Biological Engineering, Mississippi State University, 130 Creelman Street, Mississippi State, MS, USA 39762
| |
Collapse
|
33
|
Lamiyan AK, Dalal R, Kumar NR. Venom peptides in association with standard drugs: a novel strategy for combating antibiotic resistance - an overview. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20200001. [PMID: 32843888 PMCID: PMC7416788 DOI: 10.1590/1678-9199-jvatitd-2020-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/08/2020] [Indexed: 01/03/2023] Open
Abstract
Development of antibiotic resistance that leads to resurgence of bacterial infections poses a threat to disease-free existence for humankind and is a challenge for the welfare of the society at large. Despite research efforts directed towards treatment of pathogens, antibiotics within new improved classes have not emerged for years, a fact largely attributable to the pharmacological necessities compelling drug development. Recent reversion to the use of natural products alone or in combination with standard drugs has opened up new vistas for alternative therapeutics. The success of this strategy is evident in the sudden interest in plant extracts as additives/synergists for treatment of maladies caused by drug-resistant bacterial strains. Animal venoms have long fascinated scientists as sources of pharmacologically active components that can be exploited for the treatment of specific ailments and should be promoted further to clinical trials. In the present review, we outline the scope and possible methods for the applications of animal venoms in combination with commercial antibiotics to offer a better treatment approach against antibiotic-resistant infections.
Collapse
Affiliation(s)
| | - Ramkesh Dalal
- Department of Zoology, Panjab University, Chandigarh, India
| | | |
Collapse
|
34
|
Sperandeo P, Bosco F, Clerici F, Polissi A, Gelmi ML, Romanelli A. Covalent Grafting of Antimicrobial Peptides onto Microcrystalline Cellulose. ACS APPLIED BIO MATERIALS 2020; 3:4895-4901. [DOI: 10.1021/acsabm.0c00412] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Paola Sperandeo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20133 Milan, Italy
| | - Fabrizio Bosco
- Department of Pharmaceutical Sciences, University of Milan, via Venezian 21, 20133 Milan, Italy
| | - Francesca Clerici
- Department of Pharmaceutical Sciences, University of Milan, via Venezian 21, 20133 Milan, Italy
| | - Alessandra Polissi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20133 Milan, Italy
| | - Maria Luisa Gelmi
- Department of Pharmaceutical Sciences, University of Milan, via Venezian 21, 20133 Milan, Italy
| | - Alessandra Romanelli
- Department of Pharmaceutical Sciences, University of Milan, via Venezian 21, 20133 Milan, Italy
| |
Collapse
|
35
|
Vaňková E, Kašparová P, Dulíčková N, Čeřovský V. Combined effect of lasioglossin LL-III derivative with azoles against Candida albicans virulence factors: biofilm formation, phospholipases, proteases and hemolytic activity. FEMS Yeast Res 2020; 20:5824167. [DOI: 10.1093/femsyr/foaa020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/21/2020] [Indexed: 12/18/2022] Open
Abstract
ABSTRACT
Candida albicans has several virulence factors at its disposal, including yeast–hyphal transition associated with biofilm formation, phospholipases, proteases and hemolytic activity, all of which contribute to its pathogenesis. We used synthetic derivative LL-III/43 of antimicrobial peptide lasioglossin LL-III to enhance effect of azoles on attenuation of C. albicans virulence factors. LL-III/43 was able to inhibit initial adhesion or biofilm formation of C. albicans strains at 50 µM. Azoles, however, were ineffective at this concentration. Using fluorescently labeled LL-III/43, we observed that peptide covered C. albicans cells, partially penetrated through their membranes and then accumulated inside cells. LL-III/43 (25 µM) in combination with clotrimazole prevented biofilm formation already at 3.1 µM clotrimazole. Neither LL-III/43 nor azoles were able to significantly inhibit phospholipases, proteases, or hemolytic activity of C. albicans. LL-III/43 (25 µM) and clotrimazole (50 µM) in combination decreased production of these virulence factors, and it completely attenuated its hemolytic activity. Scanning electron microscopy showed that LL-III/43 (50 µM) prevented C. albicans biofilm formation on Ti-6Al-4 V alloy used in orthopedic surgeries and combination of LL-III/43 (25 µM) with clotrimazole (3.1 µM) prevented biofilm formation on urinary catheters. Therefore, mixture of LL-III/43 and clotrimazole is suitable candidate for future pharmaceutical research.
Collapse
Affiliation(s)
- Eva Vaňková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 166 10, Prague, Czech Republic
- University of Chemistry and Technology Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Petra Kašparová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 166 10, Prague, Czech Republic
- University of Chemistry and Technology Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Nikola Dulíčková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 166 10, Prague, Czech Republic
- University of Chemistry and Technology Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Václav Čeřovský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 166 10, Prague, Czech Republic
| |
Collapse
|
36
|
Oshiro KGN, Rodrigues G, Monges BED, Cardoso MH, Franco OL. Bioactive Peptides Against Fungal Biofilms. Front Microbiol 2019; 10:2169. [PMID: 31681179 PMCID: PMC6797862 DOI: 10.3389/fmicb.2019.02169] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/04/2019] [Indexed: 12/20/2022] Open
Abstract
Infections caused by invasive fungal biofilms have been widely associated with high morbidity and mortality rates, mainly due to the advent of antibiotic resistance. Moreover, fungal biofilms impose an additional challenge, leading to multidrug resistance. This fact, along with the contamination of medical devices and the limited number of effective antifungal agents available on the market, demonstrates the importance of finding novel drug candidates targeting pathogenic fungal cells and biofilms. In this context, an alternative strategy is the use of antifungal peptides (AFPs) against fungal biofilms. AFPs are considered a group of bioactive molecules with broad-spectrum activities and multiple mechanisms of action that have been widely used as template molecules for drug design strategies aiming at greater specificity and biological efficacy. Among the AFP classes most studied in the context of fungal biofilms, defensins, cathelicidins and histatins have been described. AFPs can also act by preventing the formation of fungal biofilms and eradicating preformed biofilms through mechanisms associated with cell wall perturbation, inhibition of planktonic fungal cells’ adhesion onto surfaces, gene regulation and generation of reactive oxygen species (ROS). Thus, considering the critical scenario imposed by fungal biofilms and associated infections and the application of AFPs as a possible treatment, this review will focus on the most effective AFPs described to date, with a core focus on antibiofilm peptides, as well as their efficacy in vivo, application on surfaces and proposed mechanisms of action.
Collapse
Affiliation(s)
- Karen G N Oshiro
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Gisele Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Bruna Estéfani D Monges
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Marlon Henrique Cardoso
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Octávio Luiz Franco
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| |
Collapse
|
37
|
Kodedová M, Valachovič M, Csáky Z, Sychrová H. Variations in yeast plasma‐membrane lipid composition affect killing activity of three families of insect antifungal peptides. Cell Microbiol 2019; 21:e13093. [DOI: 10.1111/cmi.13093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Marie Kodedová
- Department of Membrane Transport, Division BIOCEVInstitute of Physiology of the Czech Academy of Sciences Prague Czech Republic
| | - Martin Valachovič
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and GeneticsCentre of Biosciences of the Slovak Academy of Sciences Bratislava Slovakia
| | - Zsófia Csáky
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and GeneticsCentre of Biosciences of the Slovak Academy of Sciences Bratislava Slovakia
| | - Hana Sychrová
- Department of Membrane Transport, Division BIOCEVInstitute of Physiology of the Czech Academy of Sciences Prague Czech Republic
| |
Collapse
|
38
|
Tanhaeian A, Habibi Najafi MB, Rahnama P, Azghandi M. Production of a Recombinant Peptide (Lasioglossin LL ΙΙΙ) and Assessment of Antibacterial and Antioxidant Activity. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09904-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Kočendová J, Vaňková E, Volejníková A, Nešuta O, Buděšínský M, Socha O, Hájek M, Hadravová R, Čeřovský V. Antifungal activity of analogues of antimicrobial peptides isolated from bee venoms against vulvovaginal Candida spp. FEMS Yeast Res 2019; 19:5315757. [DOI: 10.1093/femsyr/foz013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/08/2019] [Indexed: 12/31/2022] Open
Abstract
ABSTRACT
Candida albicans is the main causative agent of vulvovaginal candidiasis (VVC), a common mycosis in women, relapses of which are difficult to manage due to biofilm formation. This study aimed at developing novel non-toxic compounds active against Candida spp. biofilms. We synthesised analogues of natural antifungal peptides LL-III (LL-III/43) and HAL-2 (peptide VIII) originally isolated from bee venoms and elucidated their structures by nuclear magnetic resonance spectroscopy. The haemolytic, cytotoxic, antifungal and anti-biofilm activities of LL-III/43 and peptide VIII were then tested. LL-III/43 and VIII showed moderate cytotoxicity to HUVEC-2 cells and had comparable inhibitory activity against C. albicans and non-albicans spp. The lowest minimum inhibitory concentration (MIC90) of LL-III/43 was observed towards Candida tropicalis (0.8 µM). That was 8-fold lower than that of antimycotic amphotericin B. Both peptides can be used to inhibit Candida spp. bio film f ormation. Biofilm inhibitory concentrations (BIC50) ranged from 0.9 to 58.6 µM and biofilm eradication concentrations (BEC50) for almost all tested Candida spp. strains ranged from 12.8 to 200 µM. Als o pro ven were the peptides’ abilities to reduce the area colonised by biofilms , inhibit hyphae formation and permeabilise cell membranes in biofil ms . LL-III/43 and VIII are promising candidates for further development as therapeutics against VVC.
Collapse
Affiliation(s)
- Jitka Kočendová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
| | - Eva Vaňková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
- University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Andrea Volejníková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
| | - Ondřej Nešuta
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
| | - Ondřej Socha
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16, Prague 2, Czech Republic
| | - Miroslav Hájek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
| | - Romana Hadravová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
| | - Václav Čeřovský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
| |
Collapse
|
40
|
NMR model structure of the antimicrobial peptide maximin 3. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 48:203-212. [DOI: 10.1007/s00249-019-01346-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/20/2018] [Accepted: 01/02/2019] [Indexed: 12/17/2022]
|
41
|
Interaction of Halictine-Related Antimicrobial Peptides with Membrane Models. Int J Mol Sci 2019; 20:ijms20030631. [PMID: 30717183 PMCID: PMC6387077 DOI: 10.3390/ijms20030631] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 01/19/2023] Open
Abstract
We have investigated structural changes of peptides related to antimicrobial peptide Halictine-1 (HAL-1) induced by interaction with various membrane-mimicking models with the aim to identify a mechanism of the peptide mode of action and to find a correlation between changes of primary/secondary structure and biological activity. Modifications in the HAL-1 amino acid sequence at particular positions, causing an increase of amphipathicity (Arg/Lys exchange), restricted mobility (insertion of Pro) and consequent changes in antimicrobial and hemolytic activity, led to different behavior towards model membranes. Secondary structure changes induced by peptide-membrane interaction were studied by circular dichroism, infrared spectroscopy, and fluorescence spectroscopy. The experimental results were complemented by molecular dynamics calculations. An α-helical structure has been found to be necessary but not completely sufficient for the HAL-1 peptides antimicrobial action. The role of alternative conformations (such as β-sheet, PPII or 310-helix) also seems to be important. A mechanism of the peptide mode of action probably involves formation of peptide assemblies (possibly membrane pores), which disrupt bacterial membrane and, consequently, allow membrane penetration.
Collapse
|
42
|
Cardon S, Sachon E, Carlier L, Drujon T, Walrant A, Alemán-Navarro E, Martínez-Osorio V, Guianvarc'h D, Sagan S, Fleury Y, Marquant R, Piesse C, Rosenstein Y, Auvynet C, Lacombe C. Peptidoglycan potentiates the membrane disrupting effect of the carboxyamidated form of DMS-DA6, a Gram-positive selective antimicrobial peptide isolated from Pachymedusa dacnicolor skin. PLoS One 2018; 13:e0205727. [PMID: 30325956 PMCID: PMC6191125 DOI: 10.1371/journal.pone.0205727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/01/2018] [Indexed: 11/18/2022] Open
Abstract
The occurrence of nosocomial infections has been on the rise for the past twenty years. Notably, infections caused by the Gram-positive bacteria Staphylococcus aureus represent a major clinical problem, as an increase in antibiotic multi-resistant strains has accompanied this rise. There is thus a crucial need to find and characterize new antibiotics against Gram-positive bacteria, and against antibiotic-resistant strains in general. We identified a new dermaseptin, DMS-DA6, produced by the skin of the Mexican frog Pachymedusa dacnicolor, with specific antibacterial activity against Gram-positive bacteria. This peptide is particularly effective against two multiple drug-resistant strains Enterococcus faecium BM4147 and Staphylococcus aureus DAR5829, and has no hemolytic activity. DMS-DA6 is naturally produced with the C-terminal carboxyl group in either the free or amide forms. By using Gram-positive model membranes and different experimental approaches, we showed that both forms of the peptide adopt an α-helical fold and have the same ability to insert into, and to disorganize a membrane composed of anionic lipids. However, the bactericidal capacity of DMS-DA6-NH2 was consistently more potent than that of DMS-DA6-OH. Remarkably, rather than resulting from the interaction with the negatively charged lipids of the membrane, or from a more stable conformation towards proteolysis, the increased capacity to permeabilize the membrane of Gram-positive bacteria of the carboxyamidated form of DMS-DA6 was found to result from its enhanced ability to interact with peptidoglycan.
Collapse
Affiliation(s)
- Sébastien Cardon
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, Paris, France
| | - Emmanuelle Sachon
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, Paris, France
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Plate-forme Spectrométrie de Masse et Protéomique, Paris, France
| | - Ludovic Carlier
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, Paris, France
| | - Thierry Drujon
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, Paris, France
| | - Astrid Walrant
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, Paris, France
| | - Estefanía Alemán-Navarro
- Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Verónica Martínez-Osorio
- Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Dominique Guianvarc'h
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, Paris, France
| | - Sandrine Sagan
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, Paris, France
| | - Yannick Fleury
- Université de Bretagne Occidentale, LUBEM EA, IUT Quimper, Quimper, France
| | - Rodrigue Marquant
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, Paris, France
| | - Christophe Piesse
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Plate-forme de Synthèse Peptidique, Paris, France
| | - Yvonne Rosenstein
- Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Constance Auvynet
- Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- * E-mail: (CA); (CL)
| | - Claire Lacombe
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, Paris, France
- Faculté des Sciences et Technologie, Université Paris Est-Créteil Val de Marne, Créteil, France
- * E-mail: (CA); (CL)
| |
Collapse
|
43
|
Aronson MR, Simonson AW, Orchard LM, Llinás M, Medina SH. Lipopeptisomes: Anticancer peptide-assembled particles for fusolytic oncotherapy. Acta Biomater 2018; 80:269-277. [PMID: 30240951 DOI: 10.1016/j.actbio.2018.09.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/28/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022]
Abstract
Anticancer peptides (ACPs) are cationic amphiphiles that preferentially kill cancer cells through folding-dependent membrane disruption. Although ACPs represent attractive therapeutic candidates, particularly against drug-resistant cancers, their successful translation into clinical practice has gone unrealized due to their poor bioavailability, serum instability and, most importantly, severe hemolytic toxicity. Here, we exploit the membrane-specific interactions of ACPs to prepare a new class of peptide-lipid particle, we term a lipopeptisome (LP). This design sequesters loaded ACPs within a lipid lamellar corona to avoid contact with red blood cells and healthy tissues, while affording potent lytic destruction of cancer cells following LP-membrane fusion. Biophysical studies show ACPs rapidly fold at, and integrate into, liposomal membranes to form stable LPs with high loading efficiencies (>80%). Rational design of the particles to possess lipid combinations mimicking that of the aberrant cancer cell outer leaflet allows LPs to rapidly fuse with tumor cell membranes and afford localized assembly of loaded ACPs within the bilayer. This leads to preferential fusolytic killing of cancer cells with minimal collateral toxicity towards non-cancerous cells and erythrocytes, thereby imparting clinically relevant therapeutic indices to otherwise toxic ACPs. Thus, integration of ACPs into self-assembled LPs represents a new delivery strategy to improve the therapeutic utility of oncolytic agents, and suggests this technology may be added to targeted combinatorial approaches in precision medicine. STATEMENT OF SIGNIFICANCE: Despite their significant clinical potential, the therapeutic utility of many ACPs has been limited by their collateral hemolysis during administration. Leveraging the membrane-specific interactions of ACPs, here we prepare self-assembled peptide-lipid nanoparticles, or 'lipopeptisomes' (LPs), capable of preferentially fusing with and lysing cancer cell membranes. Key to this fusolytic action is the construction of LPs from lipids simulating the cancer cell outer leaflet. This design recruits the oncolytic peptide payload into the carrier lamella and allows for selective destruction of cancer cells without disrupting healthy cells. Consequently, LPs impart clinically relevant therapeutic indexes to previously toxic ACPs, and thus open new opportunities to improve the clinical translation of oncolytics challenged by narrow therapeutic windows.
Collapse
Affiliation(s)
- Matthew R Aronson
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew W Simonson
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lindsey M Orchard
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA; Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA
| | - Scott H Medina
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
44
|
Zaccaria S, van Gaal RC, Riool M, Zaat SAJ, Dankers PYW. Antimicrobial peptide modification of biomaterials using supramolecular additives. JOURNAL OF POLYMER SCIENCE. PART A, POLYMER CHEMISTRY 2018; 56:1926-1934. [PMID: 30344368 PMCID: PMC6175361 DOI: 10.1002/pola.29078] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/29/2018] [Indexed: 12/11/2022]
Abstract
Biomaterials based on non-active polymers functionalized with antimicrobial agents by covalent modification or mixing are currently regarded as high potential solutions to prevent biomaterial associated infections that are major causes of biomedical device failure. Herewith a strategy is proposed in which antimicrobial materials are prepared by simply mixing-and-matching of ureido-pyrimidinone (UPy) based supramolecular polymers with antimicrobial peptides (AMPs) modified with the same UPy-moiety. The N-terminus of the AMPs was coupled in solution to an UPy-carboxylic acid synthon resulting in formation of a new amidic bond. The UPy-functionalization of the AMPs did not affect their secondary structure, as proved by circular dichroism spectroscopy. The antimicrobial activity of the UPy-AMPs in solution was also retained. In addition, the incorporation of UPy-AMPs into an UPy-polymer was stable and the final material was biocompatible. The addition of 4 mol % of UPy-AMPs in the UPy-polymer material protected against colonization by Escherichia coli, and methicillin-sensitive and -resistant strains of Staphylococcus aureus. This modular approach enables a stable but dynamic incorporation of the antimicrobial agents, allowing at the same time for the possibility to change the nature of the polymer, as well as the use of AMPs with different activity spectra. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 1926-1934.
Collapse
Affiliation(s)
- Sabrina Zaccaria
- Laboratory for Chemical BiologyEindhoven University of Technology, P.O. Box 513, 5600 MBEindhovenThe Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MBEindhovenThe Netherlands
| | - Ronald C. van Gaal
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MBEindhovenThe Netherlands
- Laboratory for Cell and Tissue EngineeringEindhoven University of Technology, P.O. Box 513, 5600 MBEindhovenThe Netherlands
| | - Martijn Riool
- Department of Medical MicrobiologyAmsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, Meibergdreef 15Amsterdam 1105 AZThe Netherlands
| | - Sebastian A. J. Zaat
- Department of Medical MicrobiologyAmsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, Meibergdreef 15Amsterdam 1105 AZThe Netherlands
| | - Patricia Y. W. Dankers
- Laboratory for Chemical BiologyEindhoven University of Technology, P.O. Box 513, 5600 MBEindhovenThe Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MBEindhovenThe Netherlands
- Laboratory for Cell and Tissue EngineeringEindhoven University of Technology, P.O. Box 513, 5600 MBEindhovenThe Netherlands
| |
Collapse
|
45
|
Antimicrobial Peptides for Topical Treatment of Osteomyelitis and Implant-Related Infections: Study in the Spongy Bone. Pharmaceuticals (Basel) 2018; 11:ph11010020. [PMID: 29462909 PMCID: PMC5874716 DOI: 10.3390/ph11010020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 11/17/2022] Open
Abstract
We examined the benefits of short linear α-helical antimicrobial peptides (AMPs) invented in our laboratory for treating bone infection and preventing microbial biofilm formation on model implants due to causative microorganisms of osteomyelitis. For this purpose, we introduced a model of induced osteomyelitis that utilizes human femur heads obtained from the hospital after their replacement with artificial prostheses. We found that the focus of the infection set up in the spongy part of this bone treated with AMP-loaded calcium phosphate cement was eradicated much more effectively than was the focus treated with antibiotics such as vancomycin or gentamicin loaded into the same cement. This contradicts the minimum inhibitory concentrations (MIC) values of AMPs and antibiotics against some bacterial strains obtained in standard in vitro assays. The formation of microbial biofilm on implants made from poly(methylmethacrylate)-based bone cement loaded with AMP was evaluated after the implants’ removal from the infected bone sample. AMPs loaded in such model implants prevented microbial adhesion and subsequent formation of bacterial biofilm on their surface. Biofilms did form, on the other hand, on control implants made from the plain cement when these were implanted into the same infected bone sample. These results of the experiments performed in human bone tissue highlight the clinical potential of antimicrobial peptides for use in treating and preventing osteomyelitis caused by resistant pathogens.
Collapse
|
46
|
Vrablikova A, Czernekova L, Cahlikova R, Novy Z, Petrik M, Imran S, Novak Z, Krupka M, Cerovsky V, Turanek J, Raska M. Lasioglossins LLIII affect the morphogenesis of Candida albicans and reduces the duration of experimental vaginal candidiasis in mice. Microbiol Immunol 2017; 61:474-481. [PMID: 28892177 DOI: 10.1111/1348-0421.12538] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/22/2017] [Accepted: 09/07/2017] [Indexed: 11/30/2022]
Abstract
Lasioglossins are a group of peptides with identified antimicrobial activity. The inhibitory effects of two synthetic lasioglossin derivatives, LLIII and D-isomeric variant LLIII-D, on morphological changes in Candida albicans in vitro and the effect of local administration of LLIII during experimental murine candidiasis were investigated. C. albicans blastoconidia were grown in the presence of lasioglossin LLIII or LLIII-D at concentrations of 11.5 μM and 21 μM, respectively, for 1, 2 and 3 days and their viability determined by flow cytometry using eosin Y staining. Morphological changes were examined by light and fluorescent microscopy. The Candida-inhibitory effect of daily intravaginal administration of 0.7 or 1.4 μg of LLIII was assessed in mice with experimentally-induced vaginal candidiasis. LLIII and LLIII-D lasioglossins exhibited candidacidal activity in vitro (>76% after 24 hr and >84% after 48 hr of incubation). After 72 hr incubation of Candida with low concentration of lasioglossins, an increase in viability was detected, probably due to a Candida antimicrobial peptides evasion strategy. Furthermore, lasioglossins inhibited temperature-induced morphotype changes toward hyphae and pseudohyphae with sporadic occurrence of atypical cells with two or enlarged nuclei, suggesting interference with mitosis or cytokinesis. Local application of LLIII reduced the duration of experimental candidiasis with no evidence of adverse effects. Lasioglossin LLIII is a promising candidate for development as an antimicrobial drug for treating the vaginal candidiasis.
Collapse
Affiliation(s)
- Alena Vrablikova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 3, 772 00 Olomouc, Czech Republic
| | - Lydie Czernekova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 3, 772 00 Olomouc, Czech Republic
| | - Romana Cahlikova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 3, 772 00 Olomouc, Czech Republic
| | - Zbynek Novy
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 3, 772 00 Olomouc, Czech Republic
| | - Milos Petrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 3, 772 00 Olomouc, Czech Republic
| | - Saima Imran
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 3, 772 00 Olomouc, Czech Republic
| | - Zdenek Novak
- Department of Surgery, University of Alabama at Birmingham, BDB 503, 18th St. So., 35294, Birmingham, Alabama, USA
| | - Michal Krupka
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 3, 772 00 Olomouc, Czech Republic
| | - Vaclav Cerovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 542/2, 166 10 Praha, Czech Republic
| | - Jaroslav Turanek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Milan Raska
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 3, 772 00 Olomouc, Czech Republic.,Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 3, 772 00 Olomouc, Czech Republic.,Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| |
Collapse
|
47
|
Kawakami H, Goto SG, Murata K, Matsuda H, Shigeri Y, Imura T, Inagaki H, Shinada T. Isolation of biologically active peptides from the venom of Japanese carpenter bee, Xylocopa appendiculata. J Venom Anim Toxins Incl Trop Dis 2017; 23:29. [PMID: 28546807 PMCID: PMC5442655 DOI: 10.1186/s40409-017-0119-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/09/2017] [Indexed: 12/29/2022] Open
Abstract
Background Mass spectrometry-guided venom peptide profiling is a powerful tool to explore novel substances from venomous animals in a highly sensitive manner. In this study, this peptide profiling approach is successfully applied to explore the venom peptides of a Japanese solitary carpenter bee, Xylocopa appendiculata (Hymenoptera: Apoidea: Apidae: Anthophila: Xylocopinae: Xylocopini). Although interesting biological effects of the crude venom of carpenter bees have been reported, the structure and biological function of the venom peptides have not been elucidated yet. Methods The venom peptide profiling of the crude venom of X. appendiculata was performed by matrix-assisted laser desorption/ionization-time of flight mass spectroscopy. The venom was purified by a reverse-phase HPLC. The purified peptides were subjected to the Edman degradation, MS/MS analysis, and/or molecular cloning methods for peptide sequencing. Biological and functional characterization was performed by circular dichroism analysis, liposome leakage assay, and antimicrobial, histamine releasing and hemolytic activity tests. Results Three novel peptides with m/z 16508, 1939.3, and 1900.3 were isolated from the venom of X. appendiculata. The peptide with m/z 16508 was characterized as a secretory phospholipase A2 (PLA2) homolog in which the characteristic cysteine residues as well as the active site residues found in bee PLA2s are highly conserved. Two novel peptides with m/z 1939.3 and m/z 1900.3 were named as Xac-1 and Xac-2, respectively. These peptides are found to be amphiphilic and displayed antimicrobial and hemolytic activities. The potency was almost the same as that of mastoparan isolated from the wasp venom. Conclusion We found three novel biologically active peptides in the venom of X. appendiculata and analyzed their molecular functions, and compared their sequential homology to discuss their molecular diversity. Highly sensitive mass analysis plays an important role in this study. Electronic supplementary material The online version of this article (doi:10.1186/s40409-017-0119-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hiroko Kawakami
- Graduate School of Material Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585 Japan
| | - Shin G Goto
- Graduate School of Science, Department of Biology & Geosciences, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585 Japan
| | - Kazuya Murata
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502 Japan
| | - Hideaki Matsuda
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502 Japan
| | - Yasushi Shigeri
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Osaka, Japan
| | - Tomohiro Imura
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Hidetoshi Inagaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Tetsuro Shinada
- Graduate School of Material Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585 Japan
| |
Collapse
|
48
|
Kocourková L, Novotná P, Čujová S, Čeřovský V, Urbanová M, Setnička V. Conformational study of melectin and antapin antimicrobial peptides in model membrane environments. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 170:247-255. [PMID: 27450123 DOI: 10.1016/j.saa.2016.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
Antimicrobial peptides have long been considered as promising compounds against drug-resistant pathogens. In this work, we studied the secondary structure of antimicrobial peptides melectin and antapin using electronic (ECD) and vibrational circular dichroism (VCD) spectroscopies that are sensitive to peptide secondary structures. The results from quantitative ECD spectral evaluation by Dichroweb and CDNN program and from the qualitative evaluation of the VCD spectra were compared. The antimicrobial activity of the selected peptides depends on their ability to adopt an amphipathic α-helical conformation on the surface of the bacterial membrane. Hence, solutions of different zwitterionic and negatively charged liposomes and micelles were used to mimic the eukaryotic and bacterial biological membranes. The results show a significant content of α-helical conformation in the solutions of negatively charged liposomes mimicking the bacterial membrane, thus correlating with the antimicrobial activity of the studied peptides. On the other hand in the solutions of zwitterionic liposomes used as models of the eukaryotic membranes, the fraction of α-helical conformation was lower, which corresponds with their moderate hemolytic activity.
Collapse
Affiliation(s)
- Lucie Kocourková
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Pavlína Novotná
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Sabína Čujová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Václav Čeřovský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Marie Urbanová
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Vladimír Setnička
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
49
|
Kodedová M, Sychrová H. High-throughput fluorescence screening assay for the identification and comparison of antimicrobial peptides’ activity on various yeast species. J Biotechnol 2016; 233:26-33. [DOI: 10.1016/j.jbiotec.2016.06.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/06/2016] [Accepted: 06/28/2016] [Indexed: 11/29/2022]
|
50
|
Tonk M, Vilcinskas A, Rahnamaeian M. Insect antimicrobial peptides: potential tools for the prevention of skin cancer. Appl Microbiol Biotechnol 2016; 100:7397-405. [PMID: 27418360 PMCID: PMC4980408 DOI: 10.1007/s00253-016-7718-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 12/18/2022]
Abstract
Antimicrobial peptides/proteins (AMPs) are biologically active molecules with diverse structural properties that are produced by mammals, plants, insects, ticks, and microorganisms. They have a range of antibacterial, antifungal, antiviral, and even anticancer activities, and their biological properties could therefore be exploited for therapeutic and prophylactic applications. Cancer and cancer drug resistance are significant current health challenges, so the development of innovative cancer drugs with minimal toxicity toward normal cells and novel modes of action that can evade resistance may provide a new direction for anticancer therapy. The skin is the first line of defense against heat, sunlight, injury, and infection, and skin cancer is thus the most common type of cancer. The skin that has been exposed to sunlight is particularly susceptible, but lesions can occur anywhere on the body. Skin cancer awareness and self-efficacy are necessary to improve sun protection behavior, but more effective preventative approaches are also required. AMPs may offer a new prophylactic approach against skin cancer. In this mini review, we draw attention to the potential use of insect AMPs for the prevention and treatment of skin cancer.
Collapse
Affiliation(s)
- Miray Tonk
- LOEWE Center for Insect Biotechnology and Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse, 35394, Giessen, Germany
| | - Andreas Vilcinskas
- LOEWE Center for Insect Biotechnology and Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse, 35394, Giessen, Germany.,Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Mohammad Rahnamaeian
- LOEWE Center for Insect Biotechnology and Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse, 35394, Giessen, Germany.
| |
Collapse
|