1
|
Tang LF, Jihuo WL, Shi PD, Mei CX, Zhao ZK, Chen Y, Di YT, Hao XJ, Cao M, Zhao Y, Che YY. Cytotoxic glutarimide-containing polyketides isolated from Streptomyces sp. JCM 4793. J Antibiot (Tokyo) 2024; 77:627-633. [PMID: 38816449 DOI: 10.1038/s41429-024-00743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
Glutarimide-containing polyketides usually exhibit anti-fungi activity, which was well exampled by cycloheximide. In our work, three new polyketide structures, 12-amidestreptimidone (1), 12-carboxylstreptimidone (2) and 3-(5S,8R)-(2-amino-2-oxoethyl-2'-methoxy-2'-oxoethyl)-8,10-dimethyl-7-oxododeca-5-hydroxy-9E,11-diolefin (3) were isolated from Streptomyces sp. JCM 4793. 3 without the glutarimide moiety is not active against fungi as expected, while 1 bearing the amide moiety is much more active than its carboxylic form 2. Here we report the isolation, structural elucidation, antifungal activity, and proposed biosynthesis pathway of 1-3.
Collapse
Affiliation(s)
- Lin-Fang Tang
- Faculty of Pharmacy, Yunnan University of TCM, Kunming, Yunnan, 650500, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Wu-Lai Jihuo
- Faculty of Pharmacy, Yunnan University of TCM, Kunming, Yunnan, 650500, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Pei-Dong Shi
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Cui-Xuan Mei
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Zi-Kang Zhao
- Faculty of Pharmacy, Yunnan University of TCM, Kunming, Yunnan, 650500, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Yuan Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Ying-Tong Di
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Xiao-Jiang Hao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Mingming Cao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| | - Yi Zhao
- Faculty of Pharmacy, Yunnan University of TCM, Kunming, Yunnan, 650500, China.
| | - Yan-Yun Che
- Faculty of Pharmacy, Yunnan University of TCM, Kunming, Yunnan, 650500, China.
| |
Collapse
|
2
|
Chen H, Bai X, Sun T, Wang X, Zhang Y, Bian X, Zhou H. The Genomic-Driven Discovery of Glutarimide-Containing Derivatives from Burkholderia gladioli. Molecules 2023; 28:6937. [PMID: 37836780 PMCID: PMC10574677 DOI: 10.3390/molecules28196937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Glutarimide-containing polyketides exhibiting potent antitumor and antimicrobial activities were encoded via conserved module blocks in various strains that favor the genomic mining of these family compounds. The bioinformatic analysis of the genome of Burkholderia gladioli ATCC 10248 showed a silent trans-AT PKS biosynthetic gene cluster (BGC) on chromosome 2 (Chr2C8), which was predicted to produce new glutarimide-containing derivatives. Then, the silent polyketide synthase gene cluster was successfully activated via in situ promoter insertion and heterologous expression. As a result, seven glutarimide-containing analogs, including five new ones, gladiofungins D-H (3-7), and two known gladiofungin A/gladiostatin (1) and 2 (named gladiofungin C), were isolated from the fermentation of the activated mutant. Their structures were elucidated through the analysis of HR-ESI-MS and NMR spectroscopy. The structural diversities of gladiofungins may be due to the degradation of the butenolide group in gladiofungin A (1) during the fermentation and extraction process. Bioactivity screening showed that 2 and 4 had moderate anti-inflammatory activities. Thus, genome mining combined with promoter engineering and heterologous expression were proved to be effective strategies for the pathway-specific activation of the silent BGCs for the directional discovery of new natural products.
Collapse
Affiliation(s)
- Hanna Chen
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (H.C.); (X.B.); (T.S.); (X.W.)
- School of Medicine, Linyi University, Shuangling Road, Linyi 276000, China
| | - Xianping Bai
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (H.C.); (X.B.); (T.S.); (X.W.)
| | - Tao Sun
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (H.C.); (X.B.); (T.S.); (X.W.)
| | - Xingyan Wang
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (H.C.); (X.B.); (T.S.); (X.W.)
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (H.C.); (X.B.); (T.S.); (X.W.)
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (H.C.); (X.B.); (T.S.); (X.W.)
| | - Haibo Zhou
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (H.C.); (X.B.); (T.S.); (X.W.)
| |
Collapse
|
3
|
Li Y, Li Z, Zhang Z. Mechanism and regio- and stereoselectivity in NHC-catalyzed reaction of 2-bromoenals with β-ketoamides. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
4
|
Sesbanimide R, a Novel Cytotoxic Polyketide Produced by Magnetotactic Bacteria. mBio 2021; 12:mBio.00591-21. [PMID: 34006654 PMCID: PMC8262917 DOI: 10.1128/mbio.00591-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genomic information from various magnetotactic bacteria suggested that besides their common ability to form magnetosomes, they potentially also represent a source of bioactive natural products. By using targeted deletion and transcriptional activation, we connected a large biosynthetic gene cluster (BGC) of the trans-acyltransferase polyketide synthase (trans-AT PKS) type to the biosynthesis of a novel polyketide in the alphaproteobacterium Magnetospirillum gryphiswaldense Structure elucidation by mass spectrometry and nuclear magnetic resonance spectroscopy (NMR) revealed that this secondary metabolite resembles sesbanimides, which were very recently reported from other taxa. However, sesbanimide R exhibits an additional arginine moiety the presence of which reconciles inconsistencies in the previously proposed sesbanimide biosynthesis pathway observed when comparing the chemical structure and the potential biochemistry encoded in the BGC. In contrast to the case with sesbanimides D, E, and F, we were able to assign the stereocenter of the arginine moiety experimentally and two of the remaining three stereocenters by predictive biosynthetic tools. Sesbanimide R displayed strong cytotoxic activity against several carcinoma cell lines.IMPORTANCE The findings of this study contribute a new secondary metabolite member to the glutarimide-containing polyketides. The determined structure of sesbanimide R correlates with its cytotoxic bioactivity, characteristic for members of this family. Sesbanimide R represents the first natural product isolated from magnetotactic bacteria and identifies this highly diverse group as a so-far-untapped source for the future discovery of novel secondary metabolites.
Collapse
|
5
|
Kačar D, Cañedo LM, Rodríguez P, González EG, Galán B, Schleissner C, Leopold-Messer S, Piel J, Cuevas C, de la Calle F, García JL. Identification of trans-AT polyketide clusters in two marine bacteria reveals cryptic similarities between distinct symbiosis factors. Environ Microbiol 2021; 23:2509-2521. [PMID: 33734547 DOI: 10.1111/1462-2920.15470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/26/2021] [Accepted: 03/16/2021] [Indexed: 12/23/2022]
Abstract
Glutarimide-containing polyketides are known as potent antitumoral and antimetastatic agents. The associated gene clusters have only been identified in a few Streptomyces producers and Burkholderia gladioli symbiont. The new glutarimide-family polyketides, denominated sesbanimides D, E and F along with the previously known sesbanimide A and C, were isolated from two marine alphaproteobacteria Stappia indica PHM037 and Labrenzia aggregata PHM038. Structures of the isolated compounds were elucidated based on 1D and 2D homo and heteronuclear NMR analyses and ESI-MS spectrometry. All compounds exhibited strong antitumor activity in lung, breast and colorectal cancer cell lines. Subsequent whole genome sequencing and genome mining revealed the presence of the trans-AT PKS gene cluster responsible for the sesbanimide biosynthesis, described as sbn cluster. Strikingly, the modular architecture of downstream mixed type PKS/NRPS, SbnQ, revealed high similarity to PedH in pederin and Lab13 in labrenzin gene clusters, although those clusters are responsible for the production of structurally completely different molecules. The unexpected presence of SbnQ homologues in unrelated polyketide gene clusters across phylogenetically distant bacteria, raises intriguing questions about the evolutionary relationship between glutarimide-like and pederin-like pathways, as well as the functionality of their synthetic products.
Collapse
Affiliation(s)
- Dina Kačar
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Librada M Cañedo
- Research and Development Department, PharmaMar S.A., Madrid, Spain
| | - Pilar Rodríguez
- Research and Development Department, PharmaMar S.A., Madrid, Spain
| | - Elena G González
- Research and Development Department, PharmaMar S.A., Madrid, Spain
| | - Beatriz Galán
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | | | | | - Carmen Cuevas
- Research and Development Department, PharmaMar S.A., Madrid, Spain
| | | | - José L García
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
6
|
Niehs SP, Kumpfmüller J, Dose B, Little RF, Ishida K, Flórez LV, Kaltenpoth M, Hertweck C. Insect-Associated Bacteria Assemble the Antifungal Butenolide Gladiofungin by Non-Canonical Polyketide Chain Termination. Angew Chem Int Ed Engl 2020; 59:23122-23126. [PMID: 32588959 PMCID: PMC7756420 DOI: 10.1002/anie.202005711] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/10/2020] [Indexed: 12/17/2022]
Abstract
Genome mining of one of the protective symbionts (Burkholderia gladioli) of the invasive beetle Lagria villosa revealed a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore. Targeted gene inactivation, metabolic profiling, and bioassays led to the discovery of the gladiofungins as previously-overlooked components of the antimicrobial armory of the beetle symbiont, which are highly active against the entomopathogenic fungus Purpureocillium lilacinum. By mutational analyses, isotope labeling, and computational analyses of the modular polyketide synthase, we found that the rare butenolide moiety of gladiofungins derives from an unprecedented polyketide chain termination reaction involving a glycerol-derived C3 building block. The key role of an A-factor synthase (AfsA)-like offloading domain was corroborated by CRISPR-Cas-mediated gene editing, which facilitated precise excision within a PKS domain.
Collapse
Affiliation(s)
- Sarah P. Niehs
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
| | - Jana Kumpfmüller
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
| | - Benjamin Dose
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
| | - Rory F. Little
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
| | - Keishi Ishida
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
| | - Laura V. Flórez
- Department for Evolutionary EcologyInstitute of Organismic and Molecular EvolutionJohannes Gutenberg University MainzHanns-Dieter-Hüsch-Weg 1555128MainzGermany
| | - Martin Kaltenpoth
- Department for Evolutionary EcologyInstitute of Organismic and Molecular EvolutionJohannes Gutenberg University MainzHanns-Dieter-Hüsch-Weg 1555128MainzGermany
| | - Christian Hertweck
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
- Faculty of Biological SciencesFriedrich Schiller University Jena07743JenaGermany
| |
Collapse
|
7
|
Niehs SP, Kumpfmüller J, Dose B, Little RF, Ishida K, Flórez LV, Kaltenpoth M, Hertweck C. Insect‐Associated Bacteria Assemble the Antifungal Butenolide Gladiofungin by Non‐Canonical Polyketide Chain Termination. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sarah P. Niehs
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstr. 11a 07745 Jena Germany
| | - Jana Kumpfmüller
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstr. 11a 07745 Jena Germany
| | - Benjamin Dose
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstr. 11a 07745 Jena Germany
| | - Rory F. Little
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstr. 11a 07745 Jena Germany
| | - Keishi Ishida
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstr. 11a 07745 Jena Germany
| | - Laura V. Flórez
- Department for Evolutionary Ecology Institute of Organismic and Molecular Evolution Johannes Gutenberg University Mainz Hanns-Dieter-Hüsch-Weg 15 55128 Mainz Germany
| | - Martin Kaltenpoth
- Department for Evolutionary Ecology Institute of Organismic and Molecular Evolution Johannes Gutenberg University Mainz Hanns-Dieter-Hüsch-Weg 15 55128 Mainz Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstr. 11a 07745 Jena Germany
- Faculty of Biological Sciences Friedrich Schiller University Jena 07743 Jena Germany
| |
Collapse
|
8
|
Porey A, Santra S, Guin J. Highly Enantioselective Synthesis of Functionalized Glutarimide Using Oxidative N-Heterocyclic Carbene Catalysis: A Formal Synthesis of (-)-Paroxetine. J Org Chem 2019; 84:5313-5327. [PMID: 30880394 DOI: 10.1021/acs.joc.9b00320] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A simple yet highly effective approach toward enantioselective synthesis of trans-3,4-disubstituted glutarimides from readily available starting materials is developed using oxidative N-heterocyclic carbene catalysis. The catalytic reaction involves a formal [3 + 3] annulation between enals and substituted malonamides enabling the production of glutarimide derivatives in a single chemical operation via concomitant formation of C-C and C-N bonds. The reaction offers easy access to a broad range of functionalized glutarimides with excellent enantioselectivity and good yield. Synthetic application of the method is demonstrated via formal synthesis of (-)-paroxetine and other bioactive molecules.
Collapse
Affiliation(s)
- Arka Porey
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road , Jadavpur, Kolkata 700032 , India
| | - Surojit Santra
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road , Jadavpur, Kolkata 700032 , India
| | - Joyram Guin
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road , Jadavpur, Kolkata 700032 , India
| |
Collapse
|
9
|
Konstantinidou M, Kurpiewska K, Kalinowska-Tłuscik J, Dömling A. Glutarimide Alkaloids Through Multicomponent Reaction Chemistry. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Katarzyna Kurpiewska
- Faculty of Chemistry; Jagiellonian University; 3 Ingardena Street 30-060 Krakow Poland
| | | | - Alexander Dömling
- Drug Design; University of Groningen; A. Deusinglaan 1 9713 AV Groningen The Netherlands
| |
Collapse
|
10
|
Zhang B, Xu Z, Teng Q, Pan G, Ma M, Shen B. A Long-Range Acting Dehydratase Domain as the Missing Link for C17-Dehydration in Iso-Migrastatin Biosynthesis. Angew Chem Int Ed Engl 2017; 56:7247-7251. [PMID: 28464455 DOI: 10.1002/anie.201703588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Indexed: 11/05/2022]
Abstract
The dehydratase domains (DHs) of the iso-migrastatin (iso-MGS) polyketide synthase (PKS) were investigated by systematic inactivation of the DHs in module-6, -9, -10 of MgsF (i.e., DH6, DH9, DH10) and module-11 of MgsG (i.e., DH11) in vivo, followed by structural characterization of the metabolites accumulated by the mutants, and biochemical characterization of DH10 in vitro, using polyketide substrate mimics with varying chain lengths. These studies allowed us to assign the functions for all four DHs, identifying DH10 as the dedicated dehydratase that catalyzes the dehydration of the C17 hydroxy group during iso-MGS biosynthesis. In contrast to canonical DHs that catalyze dehydration of the β-hydroxy groups of the nascent polyketide intermediates, DH10 acts in a long-range manner that is unprecedented for type I PKSs, a novel dehydration mechanism that could be exploited for polyketide structural diversity by combinatorial biosynthesis and synthetic biology.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Zhengren Xu
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Qihui Teng
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Guohui Pan
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Ming Ma
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA.,Department of Molecular Medicine, Natural Products Library Initiative, The Scripps Research Institute, Jupiter, FL, 33458, USA
| |
Collapse
|
11
|
Zhang B, Xu Z, Teng Q, Pan G, Ma M, Shen B. A Long-Range Acting Dehydratase Domain as the Missing Link for C17-Dehydration in Iso-Migrastatin Biosynthesis. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703588] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bo Zhang
- Department of Chemistry; The Scripps Research Institute; Jupiter FL 33458 USA
| | - Zhengren Xu
- Department of Chemistry; The Scripps Research Institute; Jupiter FL 33458 USA
| | - Qihui Teng
- Department of Chemistry; The Scripps Research Institute; Jupiter FL 33458 USA
| | - Guohui Pan
- Department of Chemistry; The Scripps Research Institute; Jupiter FL 33458 USA
| | - Ming Ma
- Department of Chemistry; The Scripps Research Institute; Jupiter FL 33458 USA
| | - Ben Shen
- Department of Chemistry; The Scripps Research Institute; Jupiter FL 33458 USA
- Department of Molecular Medicine, Natural Products Library Initiative; The Scripps Research Institute; Jupiter FL 33458 USA
| |
Collapse
|
12
|
Larsen BJ, Sun Z, Lachacz E, Khomutnyk Y, Soellner MB, Nagorny P. Synthesis and Biological Evaluation of Lactimidomycin and Its Analogues. Chemistry 2015; 21:19159-67. [PMID: 26577990 DOI: 10.1002/chem.201503527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Indexed: 02/06/2023]
Abstract
The studies culminating in the total synthesis of the glutarimide-containing eukaryote translation elongation inhibitor lactimidomycin are described. The optimized synthetic route features a Zn(II)-mediated intramolecular Horner-Wadsworth-Emmons (HWE) reaction resulting in a highly stereoselective formation of the strained 12-membered macrolactone of lactimidomycin on a 423 mg scale. The presence of the E,Z-diene functionality was found to be key for effective macrocyclizations as a complete removal of these unsaturation units resulted in exclusive formation of the dimer rather than monocyclic enoate. The synthetic route features a late-stage installation of the glutarimide functionality via an asymmetric catalytic Mukaiyama aldol reaction, which allows for a quick generation of lactimidomycin homolog 55 containing two additional carbons in the glutarimide side chain. Similar to lactimidomycin, this analog was found to possess cytotoxicity against MDA-MB-231 breast cancer cells (GI50 =1-3 μM) using in vitro 2D and 3D assays. Although lactimidomycin was found to be the most potent compound in terms of anticancer activity, 55 as well as truncated analogues 50-52 lacking the glutarimide side-chain were found to be significantly less toxic against human mammary epithelial cells.
Collapse
Affiliation(s)
- Brian J Larsen
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055 (USA)
| | - Zhankui Sun
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055 (USA)
| | - Eric Lachacz
- Medicinal Chemistry Department, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109-1065 (USA)
| | - Yaroslav Khomutnyk
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055 (USA)
| | - Matthew B Soellner
- Medicinal Chemistry Department, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109-1065 (USA).
| | - Pavel Nagorny
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055 (USA).
| |
Collapse
|
13
|
Zhang B, Yang D, Yan Y, Pan G, Xiang W, Shen B. Overproduction of lactimidomycin by cross-overexpression of genes encoding Streptomyces antibiotic regulatory proteins. Appl Microbiol Biotechnol 2015; 100:2267-77. [PMID: 26552797 DOI: 10.1007/s00253-015-7119-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/19/2015] [Accepted: 10/22/2015] [Indexed: 12/21/2022]
Abstract
The glutarimide-containing polyketides represent a fascinating class of natural products that exhibit a multitude of biological activities. We have recently cloned and sequenced the biosynthetic gene clusters for three members of the glutarimide-containing polyketides-iso-migrastatin (iso-MGS) from Streptomyces platensis NRRL 18993, lactimidomycin (LTM) from Streptomyces amphibiosporus ATCC 53964, and cycloheximide (CHX) from Streptomyces sp. YIM56141. Comparative analysis of the three clusters identified mgsA and chxA, from the mgs and chx gene clusters, respectively, that were predicted to encode the PimR-like Streptomyces antibiotic regulatory proteins (SARPs) but failed to reveal any regulatory gene from the ltm gene cluster. Overexpression of mgsA or chxA in S. platensis NRRL 18993, Streptomyces sp. YIM56141 or SB11024, and a recombinant strain of Streptomyces coelicolor M145 carrying the intact mgs gene cluster has no significant effect on iso-MGS or CHX production, suggesting that MgsA or ChxA regulation may not be rate-limiting for iso-MGS and CHX production in these producers. In contrast, overexpression of mgsA or chxA in S. amphibiosporus ATCC 53964 resulted in a significant increase in LTM production, with LTM titer reaching 106 mg/L, which is five-fold higher than that of the wild-type strain. These results support MgsA and ChxA as members of the SARP family of positive regulators for the iso-MGS and CHX biosynthetic machinery and demonstrate the feasibility to improve glutarimide-containing polyketide production in Streptomyces strains by exploiting common regulators.
Collapse
Affiliation(s)
- Bo Zhang
- School of Life Sciences, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Dong Yang
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Yijun Yan
- School of Life Sciences, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Guohui Pan
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Wensheng Xiang
- School of Life Sciences, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA.
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL, 33458, USA.
- Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
14
|
Lo Re D, Zhou Y, Mucha J, Jones LF, Leahy L, Santocanale C, Krol M, Murphy PV. Synthesis of Migrastatin Analogues as Inhibitors of Tumour Cell Migration: Exploring Structural Change in and on the Macrocyclic Ring. Chemistry 2015; 21:18109-21. [DOI: 10.1002/chem.201502861] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Indexed: 11/10/2022]
|
15
|
Polyketide synthase chimeras reveal key role of ketosynthase domain in chain branching. Nat Chem Biol 2015; 11:949-51. [DOI: 10.1038/nchembio.1932] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/28/2015] [Indexed: 11/08/2022]
|
16
|
Seo JW, Ma M, Kwong T, Ju J, Lim SK, Jiang H, Lohman JR, Yang C, Cleveland J, Zazopoulos E, Farnet CM, Shen B. Comparative characterization of the lactimidomycin and iso-migrastatin biosynthetic machineries revealing unusual features for acyltransferase-less type I polyketide synthases and providing an opportunity to engineer new analogues. Biochemistry 2014; 53:7854-65. [PMID: 25405956 PMCID: PMC4270375 DOI: 10.1021/bi501396v] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lactimidomycin (LTM, 1) and iso-migrastatin (iso-MGS, 2) belong to the glutarimide-containing polyketide family of natural products. We previously cloned and characterized the mgs biosynthetic gene cluster from Streptomyces platensis NRRL 18993. The iso-MGS biosynthetic machinery featured an acyltransferase (AT)-less type I polyketide synthase (PKS) and three tailoring enzymes (MgsIJK). We now report cloning and characterization of the ltm biosynthetic gene cluster from Streptomyces amphibiosporus ATCC 53964, which consists of nine genes that encode an AT-less type I PKS (LtmBCDEFGHL) and one tailoring enzyme (LtmK). Inactivation of ltmE or ltmH afforded the mutant strain SB15001 or SB15002, respectively, that abolished the production of 1, as well as the three cometabolites 8,9-dihydro-LTM (14), 8,9-dihydro-8S-hydroxy-LTM (15), and 8,9-dihydro-9R-hydroxy-LTM (13). Inactivation of ltmK yielded the mutant strain SB15003 that abolished the production of 1, 13, and 15 but led to the accumulation of 14. Complementation of the ΔltmK mutation in SB15003 by expressing ltmK in trans restored the production of 1, as well as that of 13 and 15. These results support the model for 1 biosynthesis, featuring an AT-less type I PKS that synthesizes 14 as the nascent polyketide intermediate and a cytochrome P450 desaturase that converts 14 to 1, with 13 and 15 as minor cometabolites. Comparative analysis of the LTM and iso-MGS AT-less type I PKSs revealed several unusual features that deviate from those of the collinear type I PKS model. Exploitation of the tailoring enzymes for 1 and 2 biosynthesis afforded two analogues, 8,9-dihydro-8R-hydroxy-LTM (16) and 8,9-dihydro-8R-methoxy-LTM (17), that provided new insights into the structure-activity relationship of 1 and 2. While 12-membered macrolides, featuring a combination of a hydroxyl group at C-17 and a double bond at C-8 and C-9 as found in 1, exhibit the most potent activity, analogues with a single hydroxyl or methoxy group at C-8 or C-9 retain most of the activity whereas analogues with double substitutions at C-8 and C-9 lose significant activity.
Collapse
Affiliation(s)
- Jeong-Woo Seo
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Heine D, Bretschneider T, Sundaram S, Hertweck C. Enzymatic Polyketide Chain Branching To Give Substituted Lactone, Lactam, and Glutarimide Heterocycles. Angew Chem Int Ed Engl 2014; 53:11645-9. [DOI: 10.1002/anie.201407282] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Indexed: 01/01/2023]
|
18
|
Heine D, Bretschneider T, Sundaram S, Hertweck C. Enzymatische Polyketid-Kettenverzweigung zur Bildung substituierter Lacton-, Lactam- und Glutarimidheterocyclen. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407282] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Yin M, Yan Y, Lohman JR, Huang SX, Ma M, Zhao GR, Xu LH, Xiang W, Shen B. Cycloheximide and actiphenol production in Streptomyces sp. YIM56141 governed by single biosynthetic machinery featuring an acyltransferase-less type I polyketide synthase. Org Lett 2014; 16:3072-5. [PMID: 24815182 PMCID: PMC4051428 DOI: 10.1021/ol501179w] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
Cycloheximide (1) and
actiphenol (2)
have been isolated from numerous Streptomyces species.
Cloning, sequencing, and characterization of a gene cluster from Streptomyces sp. YIM65141 now establish that 1 and 2 production is governed by single biosynthetic
machinery. Biosynthesis of 1 features an acyltransferase-less
type I polyketide synthase to construct its carbon backbone but may
proceed via 2 as a key intermediate, invoking a provocative
reduction of a phenol to a cyclohexanone moiety in natural product
biosynthesis.
Collapse
Affiliation(s)
- Min Yin
- Department of Chemistry, ⊥Department of Molecular Therapeutics, and ¶Natural Products Library Initiative, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Vinylogous chain branching catalysed by a dedicated polyketide synthase module. Nature 2013; 502:124-8. [DOI: 10.1038/nature12588] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/19/2013] [Indexed: 11/08/2022]
|
21
|
Micoine K, Persich P, Llaveria J, Lam MH, Maderna A, Loganzo F, Fürstner A. Total Syntheses and Biological Reassessment of Lactimidomycin, Isomigrastatin and Congener Glutarimide Antibiotics. Chemistry 2013; 19:7370-83. [DOI: 10.1002/chem.201300393] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Indexed: 12/20/2022]
|
22
|
Ma M, Kwong T, Lim SK, Ju J, Lohman JR, Shen B. Post-polyketide synthase steps in iso-migrastatin biosynthesis, featuring tailoring enzymes with broad substrate specificity. J Am Chem Soc 2013; 135:2489-92. [PMID: 23394593 PMCID: PMC3582021 DOI: 10.1021/ja4002635] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The iso-migrastatin (iso-MGS) biosynthetic gene cluster from Streptomyces platensis NRRL 18993 consists of 11 genes, featuring an acyltransferase (AT)-less type I polyketide synthase (PKS) and three tailoring enzymes MgsIJK. Systematic inactivation of mgsIJK in S. platensis enabled us to (i) identify two nascent products of the iso-MGS AT-less type I PKS, establishing an unprecedented novel feature for AT-less type I PKSs, and (ii) account for the formation of all known post-PKS biosynthetic intermediates generated by the three tailoring enzymes MgsIJK, which possessed significant substrate promiscuities.
Collapse
Affiliation(s)
- Ming Ma
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | | | | | | | | | | |
Collapse
|