1
|
Wu J, Wu J, Chen T, Cai J, Ren R. Protein aggregation and its affecting mechanisms in neurodegenerative diseases. Neurochem Int 2024; 180:105880. [PMID: 39396709 DOI: 10.1016/j.neuint.2024.105880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
Protein aggregation serves as a critical pathological marker in a spectrum of neurodegenerative diseases (NDs), including the formation of amyloid β (Aβ) and Tau neurofibrillary tangles in Alzheimer's disease, as well as α-Synuclein (α-Syn) aggregates in Parkinson's disease, Parkinson's disease-related dementia (PDD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). A significant proportion of patients with amyotrophic lateral sclerosis (ALS) exhibit TDP-43 aggregates. Moreover, a confluence of brain protein pathologies, such as Aβ, Tau, α-Syn, and TDP-43, has been identified in individual NDs cases, highlighting the intricate interplay among these proteins that is garnering heightened scrutiny. Importantly, protein aggregation is modulated by an array of factors, with burgeoning evidence suggesting that it frequently results from perturbations in protein homeostasis, influenced by the cellular membrane milieu, metal ion concentrations, post-translational modifications, and genetic mutations. This review delves into the pathological underpinnings of protein aggregation across various NDs and elucidates the intercommunication among disparate proteins within the same disease context. Additionally, we examine the pathogenic mechanisms by which diverse factors impinge upon protein aggregation, offering fresh perspectives for the future therapeutic intervention of NDs.
Collapse
Affiliation(s)
- Junyun Wu
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Jianan Wu
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Tao Chen
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Jing Cai
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.
| | - Reng Ren
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
2
|
Mishra R, Gerlach GJ, Sahoo B, Camacho CJ, Wetzel R. A Targetable Self-association Surface of the Huntingtin exon1 Helical Tetramer Required for Assembly of Amyloid Pre-nucleation Oligomers. J Mol Biol 2024; 436:168607. [PMID: 38734203 DOI: 10.1016/j.jmb.2024.168607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Polyglutamine (polyQ) sequences undergo repeat-length dependent formation of disease-associated, amyloid-like cross-β core structures with kinetics and aggregate morphologies often influenced by the flanking sequences. In Huntington's disease (HD), the httNT segment on the polyQ's N-terminal flank enhances aggregation rates by changing amyloid nucleation from a classical homogeneous mechanism to a two-step process requiring an ɑ-helix-rich oligomeric intermediate. A folded, helix-rich httNT tetrameric structure suggested to be this critical intermediate was recently reported. Here we employ single alanine replacements along the httNT sequence to assess this proposed structure and refine the mechanistic model. We find that Ala replacement of hydrophobic residues within simple httNT peptides greatly suppresses helicity, supporting the tetramer model. These same helix-disruptive replacements in the httNT segment of an exon-1 analog greatly reduce aggregation kinetics, suggesting that an ɑ-helix rich multimer - either the tetramer or a larger multimer - plays an on-pathway role in nucleation. Surprisingly, several other Ala replacements actually enhance helicity and/or amyloid aggregation. The spatial localization of these residues on the tetramer surface suggests a self-association interface responsible for formation of the octomers and higher-order multimers most likely required for polyQ amyloid nucleation. Multimer docking of the tetramer, using the protein-protein docking algorithm ClusPro, predicts this symmetric surface to be a viable tetramer dimerization interface. Intriguingly, octomer formation brings the emerging polyQ chains into closer proximity at this tetramer-tetramer interface. Further supporting the potential importance of tetramer super-assembly, computational docking with a known exon-1 aggregation inhibitor predicts ligand contacts with residues at this interface.
Collapse
Affiliation(s)
- Rakesh Mishra
- Department Structural Biology, University of Pittsburgh School of Medicine Pittsburgh, PA 15260, USA.
| | - Gabriella J Gerlach
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine Pittsburgh, PA 15260, USA
| | - Bankanidhi Sahoo
- Department Structural Biology, University of Pittsburgh School of Medicine Pittsburgh, PA 15260, USA.
| | - Carlos J Camacho
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine Pittsburgh, PA 15260, USA.
| | - Ronald Wetzel
- Department Structural Biology, University of Pittsburgh School of Medicine Pittsburgh, PA 15260, USA.
| |
Collapse
|
3
|
Nutini A. Amyloid oligomers and their membrane toxicity - A perspective study. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 187:9-20. [PMID: 38211711 DOI: 10.1016/j.pbiomolbio.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/21/2023] [Accepted: 01/07/2024] [Indexed: 01/13/2024]
Abstract
Amyloidosis is a condition involving a disparate group of pathologies characterized by the extracellular deposition of insoluble fibrils composed of broken-down proteins. These proteins can accumulate locally, causing peculiar symptoms, or in a widespread way, involving many organs and. causing severe systemic failure. The damage that is created is related not only to the accumulation of. amyloid fibrils but above all to the precursor oligomers of the fibrils that manage to enter the cell in a very particular way. This article analyzes the current state of research related to the entry of these oligomers into the cell membrane and the theories related to their toxicity. The paper proposed here not only aims to review the contents in the literature but also proposes a new vision of amyloid toxicity. that could occur in a multiphase process catalyzed by the cell membrane itself. In this process, the denaturation of the lipid bilayer is followed by the stabilization of a pore through energetically favorable self-assembly processes which are achieved through particular oligomeric structures.
Collapse
Affiliation(s)
- Alessandro Nutini
- Biology and Biomechanics Dept - Centro Studi Attività Motorie, Italy.
| |
Collapse
|
4
|
Schaefer A, Naser D, Siebeneichler B, Tarasca MV, Meiering EM. Methodological advances and strategies for high resolution structure determination of cellular protein aggregates. J Biol Chem 2022; 298:102197. [PMID: 35760099 PMCID: PMC9396402 DOI: 10.1016/j.jbc.2022.102197] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 01/14/2023] Open
Abstract
Aggregation of proteins is at the nexus of molecular processes crucial to aging, disease, and employing proteins for biotechnology and medical applications. There has been much recent progress in determining the structural features of protein aggregates that form in cells; yet, owing to prevalent heterogeneity in aggregation, many aspects remain obscure and often experimentally intractable to define. Here, we review recent results of structural studies for cell-derived aggregates of normally globular proteins, with a focus on high-resolution methods for their analysis and prediction. Complementary results obtained by solid-state NMR spectroscopy, FTIR spectroscopy and microspectroscopy, cryo-EM, and amide hydrogen/deuterium exchange measured by NMR and mass spectrometry, applied to bacterial inclusion bodies and disease inclusions, are uncovering novel information on in-cell aggregation patterns as well as great diversity in the structural features of useful and aberrant protein aggregates. Using these advances as a guide, this review aims to advise the reader on which combination of approaches may be the most appropriate to apply to their unique system.
Collapse
Affiliation(s)
- Anna Schaefer
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Dalia Naser
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | | | - Michael V Tarasca
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|
5
|
Coumarin derivatives against amyloid-beta 40 – 42 peptide and tau protein. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2022. [DOI: 10.2478/cipms-2022-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
In preclinical studies, simple coumarins (scoparone, limettin) and furanocoumarins (imperatorin, xanthotoxin, bergapten) have already found to demonstrate procognitive abilities. This suggests that they hold antioxidative, anti-inflammatory and inhibitory action towards acetylcholinesterase activities. However, little is known about their influence on the amyloidal structure formation, the leading cause of Alzheimer’s disease (AD). In vitro and in cellulo assays were applied to evaluate the effect of selected coumarins on the different stages of Aβ40/42 and tau protein aggregation. Kinetic analyses were performed to evaluate their inhibiting abilities in time. Limettin revealed the most potent inhibiting profile towards Aβ40 aggregation, however, all tested compounds presented low influence on Aβ42 and tau protein aggregation inhibition. Despite the preliminary stage of the project, the promising effects of coumarins on Aβ40 aggregation were shown. This suggests the coumarin scaffold can serve as a potential multitarget agent in AD treatment, but further studies are required to confirm this.
Collapse
|
6
|
Bello-Medina PC, Corona-Cervantes K, Zavala Torres NG, González A, Pérez-Morales M, González-Franco DA, Gómez A, García-Mena J, Díaz-Cintra S, Pacheco-López G. Chronic-Antibiotics Induced Gut Microbiota Dysbiosis Rescues Memory Impairment and Reduces β-Amyloid Aggregation in a Preclinical Alzheimer's Disease Model. Int J Mol Sci 2022; 23:8209. [PMID: 35897785 PMCID: PMC9331718 DOI: 10.3390/ijms23158209] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 02/03/2023] Open
Abstract
Alzheimer's disease (AD) is a multifactorial pathology characterized by β-amyloid (Aβ) deposits, Tau hyperphosphorylation, neuroinflammatory response, and cognitive deficit. Changes in the bacterial gut microbiota (BGM) have been reported as a possible etiological factor of AD. We assessed in offspring (F1) 3xTg, the effect of BGM dysbiosisdysbiosis in mothers (F0) at gestation and F1 from lactation up to the age of 5 months on Aβ and Tau levels in the hippocampus, as well as on spatial memory at the early symptomatic stage of AD. We found that BGM dysbiosisdysbiosis with antibiotics (Abx) treatment in F0 was vertically transferred to their F1 3xTg mice, as observed on postnatal day (PD) 30 and 150. On PD150, we observed a delay in spatial memory impairment and Aβ deposits, but not in Tau and pTau protein in the hippocampus at the early symptomatic stage of AD. These effects are correlated with relative abundance of bacteria and alpha diversity, and are specific to bacterial consortia. Our results suggest that this specific BGM could reduce neuroinflammatory responses related to cerebral amyloidosis and cognitive deficit and activate metabolic pathways associated with the biosynthesis of triggering or protective molecules for AD.
Collapse
Affiliation(s)
- Paola C. Bello-Medina
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico;
- Biological and Health Sciences Division, Campus Lerma, Metropolitan Autonomus University (UAM), Lerma 52005, Mexico; (A.G.); (M.P.-M.); (D.A.G.-F.); (A.G.); (G.P.-L.)
| | - Karina Corona-Cervantes
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Zacatenco, Mexico City 07360, Mexico; (K.C.-C.); (N.G.Z.T.)
| | - Norma Gabriela Zavala Torres
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Zacatenco, Mexico City 07360, Mexico; (K.C.-C.); (N.G.Z.T.)
| | - Antonio González
- Biological and Health Sciences Division, Campus Lerma, Metropolitan Autonomus University (UAM), Lerma 52005, Mexico; (A.G.); (M.P.-M.); (D.A.G.-F.); (A.G.); (G.P.-L.)
| | - Marcel Pérez-Morales
- Biological and Health Sciences Division, Campus Lerma, Metropolitan Autonomus University (UAM), Lerma 52005, Mexico; (A.G.); (M.P.-M.); (D.A.G.-F.); (A.G.); (G.P.-L.)
| | - Diego A. González-Franco
- Biological and Health Sciences Division, Campus Lerma, Metropolitan Autonomus University (UAM), Lerma 52005, Mexico; (A.G.); (M.P.-M.); (D.A.G.-F.); (A.G.); (G.P.-L.)
| | - Astrid Gómez
- Biological and Health Sciences Division, Campus Lerma, Metropolitan Autonomus University (UAM), Lerma 52005, Mexico; (A.G.); (M.P.-M.); (D.A.G.-F.); (A.G.); (G.P.-L.)
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Zacatenco, Mexico City 07360, Mexico; (K.C.-C.); (N.G.Z.T.)
| | - Sofía Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico;
| | - Gustavo Pacheco-López
- Biological and Health Sciences Division, Campus Lerma, Metropolitan Autonomus University (UAM), Lerma 52005, Mexico; (A.G.); (M.P.-M.); (D.A.G.-F.); (A.G.); (G.P.-L.)
| |
Collapse
|
7
|
Caballero AB, Gamez P, Sabate R, Espargaró A. Anti-Amyloid Drug Screening Methods Using Bacterial Inclusion Bodies. Methods Mol Biol 2022; 2538:165-188. [PMID: 35951300 DOI: 10.1007/978-1-0716-2529-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Amyloid aggregation is linked to a number of human disorders that range from non-neurological illnesses such as type 2 diabetes to neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. The formation of insoluble protein aggregates with amyloid conformation inside bacteria, namely, in bacterial inclusion bodies, offers the possibility to use bacteria as simple models to study amyloid aggregation processes and potential effects of both anti-amyloid drugs and/or pro-aggregative compounds. This chapter describes fast, simple, inexpensive, highly reproducible, and tunable in vitro and in cellulo methods that use bacterial inclusion bodies as preliminary screening tools for anti-amyloid drugs.
Collapse
Affiliation(s)
- Ana B Caballero
- NanoBIC, Department of Inorganic and Organic Chemistry, Faculty of Chemistry, University of Barcelona, Barcelona, Catalonia, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Catalonia, Spain
| | - Patrick Gamez
- NanoBIC, Department of Inorganic and Organic Chemistry, Faculty of Chemistry, University of Barcelona, Barcelona, Catalonia, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Catalonia, Spain
- Catalan Institution for Research and Advanced Studies, Passeig Lluís Companys 23, Barcelona, Catalonia, Spain
| | - Raimon Sabate
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Catalonia, Spain
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Catalonia, Spain
| | - Alba Espargaró
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Catalonia, Spain.
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
8
|
Gil-Garcia M, Ventura S. Coiled-Coil Based Inclusion Bodies and Their Potential Applications. Front Bioeng Biotechnol 2021; 9:734068. [PMID: 34485264 PMCID: PMC8415879 DOI: 10.3389/fbioe.2021.734068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/05/2021] [Indexed: 02/01/2023] Open
Abstract
The production of recombinant proteins using microbial cell factories is frequently associated with the formation of inclusion bodies (IBs). These proteinaceous entities can be sometimes a reservoir of stable and active protein, might display good biocompatibility, and are produced efficiently and cost-effectively. Thus, these submicrometric particles are increasingly exploited as functional biomaterials for biotechnological and biomedical purposes. The fusion of aggregation-prone sequences to the target protein is a successful strategy to sequester soluble recombinant polypeptides into IBs. Traditionally, the use of these IB-tags results in the formation of amyloid-like scaffolds where the protein of interest is trapped. This amyloid conformation might compromise the protein's activity and be potentially cytotoxic. One promising alternative to overcome these limitations exploits the coiled-coil fold, composed of two or more α-helices and widely used by nature to create supramolecular assemblies. In this review, we summarize the state-of-the-art of functional IBs technology, focusing on the coiled-coil-assembly strategy, describing its advantages and applications, delving into future developments and necessary improvements in the field.
Collapse
Affiliation(s)
- Marcos Gil-Garcia
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
9
|
Sahoo BR, Panda PK, Liang W, Tang WJ, Ahuja R, Ramamoorthy A. Degradation of Alzheimer's Amyloid-β by a Catalytically Inactive Insulin-Degrading Enzyme. J Mol Biol 2021; 433:166993. [PMID: 33865867 PMCID: PMC8169600 DOI: 10.1016/j.jmb.2021.166993] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/24/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023]
Abstract
It is known that insulin-degrading-enzyme (IDE) plays a crucial role in the clearance of Alzheimer's amyloid-β (Aβ). The cysteine-free IDE mutant (cf-E111Q-IDE) is catalytically inactive against insulin, but its effect on Aβ degradation is unknown that would help in the allosteric modulation of the enzyme activity. Herein, the degradation of Aβ(1-40) by cf-E111Q-IDE via a non-chaperone mechanism is demonstrated by NMR and LC-MS, and the aggregation of fragmented peptides is characterized using fluorescence and electron microscopy. cf-E111Q-IDE presented a reduced effect on the aggregation kinetics of Aβ(1-40) when compared with the wild-type IDE. Whereas LC-MS and diffusion ordered NMR spectroscopy revealed the generation of Aβ fragments by both wild-type and cf-E111Q-IDE. The aggregation propensities and the difference in the morphological phenotype of the full-length Aβ(1-40) and its fragments are explained using multi-microseconds molecular dynamics simulations. Notably, our results reveal that zinc binding to Aβ(1-40) inactivates cf-E111Q-IDE's catalytic function, whereas zinc removal restores its function as evidenced from high-speed AFM, electron microscopy, chromatography, and NMR results. These findings emphasize the catalytic role of cf-E111Q-IDE on Aβ degradation and urge the development of zinc chelators as an alternative therapeutic strategy that switches on/off IDE's function.
Collapse
Affiliation(s)
- Bikash R Sahoo
- Biophysics, Department of Chemistry, Macromolecular Engineering and Science, and Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden
| | - Wenguang Liang
- Ben-May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Wei-Jen Tang
- Ben-May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Rajeev Ahuja
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden; Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology (KTH) SE-10044 Stockholm, Sweden
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Macromolecular Engineering and Science, and Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
10
|
Pasieka A, Panek D, Szałaj N, Espargaró A, Więckowska A, Malawska B, Sabaté R, Bajda M. Dual Inhibitors of Amyloid-β and Tau Aggregation with Amyloid-β Disaggregating Properties: Extended In Cellulo, In Silico, and Kinetic Studies of Multifunctional Anti-Alzheimer's Agents. ACS Chem Neurosci 2021; 12:2057-2068. [PMID: 34019757 PMCID: PMC8291496 DOI: 10.1021/acschemneuro.1c00235] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
![]()
In Alzheimer’s
disease, neurons slowly degenerate due to
the accumulation of misfolded amyloid β and tau proteins. In
our research, we performed extended studies directed at amyloid β
and tau aggregation inhibition using in cellulo (Escherichia coli model of protein aggregation), in silico, and in vitro kinetic studies.
We tested our library of 1-benzylamino-2-hydroxyalkyl multifunctional
anti-Alzheimer’s agents and identified very potent dual aggregation
inhibitors. Among the tested derivatives, we selected compound 18, which exhibited a unique profile of biological activity.
This compound was the most potent and balanced dual aggregation inhibitor
(Aβ42 inhibition (inh.) 80.0%, tau inh. 68.3% in
10 μM), with previously reported in vitro inhibitory
activity against hBuChE, hBACE1,
and Aβ (hBuChE IC50 = 5.74 μM; hBACE1 IC50 = 41.6 μM; Aβ aggregation
(aggr.) inh. IC50 = 3.09 μM). In docking studies
for both proteins, we tried to explain the different structural requirements
for the inhibition of Aβ vs tau. Moreover, docking and kinetic
studies showed that compound 18 could inhibit the amyloid
aggregation process at several steps and also displayed disaggregating
properties. These results may help to design the next generations
of dual or selective aggregation inhibitors.
Collapse
Affiliation(s)
- Anna Pasieka
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Dawid Panek
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Natalia Szałaj
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Alba Espargaró
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII 27-31, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Av Joan XXIII, S/N, 08028 Barcelona, Spain
| | - Anna Więckowska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Raimon Sabaté
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII 27-31, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Av Joan XXIII, S/N, 08028 Barcelona, Spain
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| |
Collapse
|
11
|
Bello-Medina PC, Hernández-Quiroz F, Pérez-Morales M, González-Franco DA, Cruz-Pauseno G, García-Mena J, Díaz-Cintra S, Pacheco-López G. Spatial Memory and Gut Microbiota Alterations Are Already Present in Early Adulthood in a Pre-clinical Transgenic Model of Alzheimer's Disease. Front Neurosci 2021; 15:595583. [PMID: 33994914 PMCID: PMC8116633 DOI: 10.3389/fnins.2021.595583] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/19/2021] [Indexed: 12/14/2022] Open
Abstract
The irreversible and progressive neurodegenerative Alzheimer’s disease (AD) is characterized by cognitive decline, extracellular β-amyloid peptide accumulation, and tau neurofibrillary tangles in the cortex and hippocampus. The triple-transgenic (3xTg) mouse model of AD presents memory impairment in several behavioral paradigms and histopathological alterations from 6 to 16 months old. Additionally, it seems that dysbiotic gut microbiota is present in both mouse models and patients of AD at the cognitive symptomatic stage. The present study aimed to assess spatial learning, memory retention, and gut microbiota alterations in an early adult stage of the 3xTg-AD mice as well as to explore its sexual dimorphism. We evaluated motor activity, novel-object localization training, and retention test as well as collected fecal samples to characterize relative abundance, alpha- and beta-diversity, and linear discriminant analysis (LDA) effect size (LEfSe) analysis in gut microbiota in both female and male 3xTg-AD mice, and controls [non-transgenic mice (NoTg)], at 3 and 5 months old. We found spatial memory deficits in female and male 3xTg-AD but no alteration neither during training nor in motor activity. Importantly, already at 3 months old, we observed decreased relative abundances of Actinobacteria and TM7 in 3xTg-AD compared to NoTg mice, while the beta diversity of gut microbiota was different in female and male 3xTg-AD mice in comparison to NoTg. Our results suggest that gut microbiota modifications in 3xTg-AD mice anticipate and thus could be causally related to cognitive decline already at the early adult age of AD. We propose that microbiota alterations may be used as an early and non-invasive diagnostic biomarker of AD.
Collapse
Affiliation(s)
- Paola C Bello-Medina
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Unidad Lerma, Lerma, Mexico
| | - Fernando Hernández-Quiroz
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV) del Instituto Politécnico Nacional (IPN), Unidad Zacatenco, Ciudad de México, Mexico
| | - Marcel Pérez-Morales
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Unidad Lerma, Lerma, Mexico
| | - Diego A González-Franco
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Unidad Lerma, Lerma, Mexico
| | - Guadalupe Cruz-Pauseno
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Unidad Lerma, Lerma, Mexico
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV) del Instituto Politécnico Nacional (IPN), Unidad Zacatenco, Ciudad de México, Mexico
| | - Sofía Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Gustavo Pacheco-López
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Unidad Lerma, Lerma, Mexico
| |
Collapse
|
12
|
Skretas G, Ventura S. Editorial: Protein Aggregation and Solubility in Microorganisms (Archaea, Bacteria and Unicellular Eukaryotes): Implications and Applications. Front Microbiol 2020; 11:620239. [PMID: 33329506 PMCID: PMC7734127 DOI: 10.3389/fmicb.2020.620239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/12/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Georgios Skretas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Salvador Ventura
- Departament de Bioquimica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Sciacca MF, Lolicato F, Tempra C, Scollo F, Sahoo BR, Watson MD, García-Viñuales S, Milardi D, Raudino A, Lee JC, Ramamoorthy A, La Rosa C. Lipid-Chaperone Hypothesis: A Common Molecular Mechanism of Membrane Disruption by Intrinsically Disordered Proteins. ACS Chem Neurosci 2020; 11:4336-4350. [PMID: 33269918 DOI: 10.1021/acschemneuro.0c00588] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
An increasing number of human diseases has been shown to be linked to aggregation and amyloid formation by intrinsically disordered proteins (IDPs). Amylin, amyloid-β, and α-synuclein are, indeed, involved in type-II diabetes, Alzheimer's, and Parkinson's, respectively. Despite the correlation of the toxicity of these proteins at early aggregation stages with membrane damage, the molecular events underlying the process is quite complex to understand. In this study, we demonstrate the crucial role of free lipids in the formation of lipid-protein complex, which enables an easy membrane insertion for amylin, amyloid-β, and α-synuclein. Experimental results from a variety of biophysical methods and molecular dynamics results reveal that this common molecular pathway in membrane poration is shared by amyloidogenic (amylin, amyloid-β, and α-synuclein) and nonamyloidogenic (rat IAPP, β-synuclein) proteins. Based on these results, we propose a "lipid-chaperone" hypothesis as a unifying framework for protein-membrane poration.
Collapse
Affiliation(s)
| | - Fabio Lolicato
- Heidelberg University Biochemistry Center, Heidelberg 69120, Germany
- Department of Physics, University of Helsinki, P.O. Box 64, Helsinki FI-00014, Finland
| | - Carmelo Tempra
- Institute of Organic Chemistry and Biochemistry, Prague 160 00, Czech Republic
- Department of Chemical Sciences, University of Catania, Catania 95124, Italy
| | - Federica Scollo
- Department of Chemical Sciences, University of Catania, Catania 95124, Italy
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague 117 20, Czech Republic
| | - Bikash R. Sahoo
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Matthew D. Watson
- National Institutes of Health, Bethesda, Maryland 20892-0001, United States
| | | | | | - Antonio Raudino
- Department of Chemical Sciences, University of Catania, Catania 95124, Italy
| | - Jennifer C. Lee
- National Institutes of Health, Bethesda, Maryland 20892-0001, United States
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Carmelo La Rosa
- Department of Chemical Sciences, University of Catania, Catania 95124, Italy
| |
Collapse
|
14
|
Iwaya N, Goda N, Matsuzaki M, Narita A, Shigemitsu Y, Tenno T, Abe Y, Hoshi M, Hiroaki H. Principal component analysis of data from NMR titration experiment of uniformly 15N labeled amyloid beta (1-42) peptide with osmolytes and phenolic compounds. Arch Biochem Biophys 2020; 690:108446. [PMID: 32593678 DOI: 10.1016/j.abb.2020.108446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/11/2020] [Accepted: 06/01/2020] [Indexed: 10/24/2022]
Abstract
A simple NMR method to analyze the data obtained by NMR titration experiment of amyloid formation inhibitors against uniformly 15N-labeled amyloid-β 1-42 peptide (Aβ(1-42)) was described. By using solution nuclear magnetic resonance (NMR) measurement, the simplest method for monitoring the effects of Aβ fibrilization inhibitors is the NMR chemical shift perturbation (CSP) experiment using 15N-labeled Aβ(1-42). However, the flexible and dynamic nature of Aβ(1-42) monomer may hamper the interpretation of CSP data. Here we introduced principal component analysis (PCA) for visualizing and analyzing NMR data of Aβ(1-42) in the presence of amyloid inhibitors including high concentration osmolytes. We measured 1H-15N 2D spectra of Aβ(1-42) at various temperatures as well as of Aβ(1-42) with several inhibitors, and subjected all the data to PCA (PCA-HSQC). The PCA diagram succeeded in differentiating the various amyloid inhibitors, including epigallocatechin gallate (EGCg), rosmarinic acid (RA) and curcumin (CUR) from high concentration osmolytes. We hypothesized that the CSPs reflected the conformational equilibrium of intrinsically disordered Aβ(1-42) induced by weak inhibitor binding rather than the specific molecular interactions.
Collapse
Affiliation(s)
- Naoko Iwaya
- Research Fellowship for Young Scientists, Japan Society for the Promotion of Science, Japan; Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Natsuko Goda
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Mizuki Matsuzaki
- Structural Biology Research Center and Division of Biological Sciences, Graduate School of Science, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Akihiro Narita
- Structural Biology Research Center and Division of Biological Sciences, Graduate School of Science, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Yoshiki Shigemitsu
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuda, 4259, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan.
| | - Takeshi Tenno
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan; Structural Biology Research Center and Division of Biological Sciences, Graduate School of Science, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Yoshito Abe
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| | - Minako Hoshi
- Institute of Biomedical Research and Innovation, Kobe, 650-0047, Japan.
| | - Hidekazu Hiroaki
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan; Structural Biology Research Center and Division of Biological Sciences, Graduate School of Science, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
15
|
Chang Z, Deng J, Zhao W, Yang J. Amyloid-like aggregation and fibril core determination of TDP-43 C-terminal domain. Biochem Biophys Res Commun 2020; 532:655-661. [PMID: 32907712 DOI: 10.1016/j.bbrc.2020.08.096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022]
Abstract
Cytoplasmic inclusion of TAR DNA-binding protein 43 (TDP-43) is a hallmark of most ALS (amyotrophic lateral sclerosis) and FTLD (Frontotemporal dementia), yet the aggregation of TDP-43 remains unclear. In this study, we proved the existence of amyloid-like structures of C-terminal domain of TDP-43 (TDP-C) in bacterial inclusion bodies (IBs), and obtained a homogenous fibril sample by seeding from the components of aggregated TDP-C in Escherichiacoli IBs. The results from solid-state NMR spectroscopy suggest that the homogenous fibrils were seeded from a tiny amount of aggregated TDP-C compositions in IBs; the structure characteristics of the rigid fibril core are identified of β-rich structures, and show subtle relativity with the hydrophobicity of residues. Our study here provides a further understanding of TDP-43 protein aggregation and fibrillation.
Collapse
Affiliation(s)
- Ziwei Chang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Jing Deng
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Weijing Zhao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| |
Collapse
|
16
|
Niu Z, Sarkar R, Aichler M, Wester H, Yousefi BH, Reif B. Mapping the Binding Interface of PET Tracer Molecules and Alzheimer Disease Aβ Fibrils by Using MAS Solid-State NMR Spectroscopy. Chembiochem 2020; 21:2495-2502. [PMID: 32291951 PMCID: PMC7496087 DOI: 10.1002/cbic.202000143] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/10/2020] [Indexed: 12/13/2022]
Abstract
Positron emission tomography (PET) tracer molecules like thioflavin T specifically recognize amyloid deposition in brain tissue by selective binding to hydrophobic or aromatic surface grooves on the β-sheet surface along the fibril axis. The molecular basis of this interaction is, however, not well understood. We have employed magic angle spinning (MAS) solid-state NMR spectroscopy to characterize Aβ-PET tracer complexes at atomic resolution. We established a titration protocol by using bovine serum albumin as a carrier to transfer hydrophobic small molecules to Aβ(1-40) fibrillar aggregates. The same Aβ(1-40) amyloid fibril sample was employed in subsequent titrations to minimize systematic errors that potentially arise from sample preparation. In the experiments, the small molecules 13 C-methylated Pittsburgh compound B (PiB) as well as a novel Aβ tracer based on a diarylbithiazole (DABTA) scaffold were employed. Classical 13 C-detected as well as proton-detected spectra of protonated and perdeuterated samples with back-substituted protons, respectively, were acquired and analyzed. After titration of the tracers, chemical-shift perturbations were observed in the loop region involving residues Gly25-Lys28 and Ile32-Gly33, thus suggesting that the PET tracer molecules interact with the loop region connecting β-sheets β1 and β2 in Aβ fibrils. We found that titration of the PiB derivatives suppressed fibril polymorphism and stabilized the amyloid fibril structure.
Collapse
Affiliation(s)
- Zheng Niu
- Munich Center for Integrated Protein Science (CIPS−M) Department ChemieTechnische Universität MünchenLichtenbergstrasse 485747GarchingGermany
- Helmholtz-Zentrum MünchenInstitute of Structural Biology (STB)Ingolstädter Landstrasse 185764NeuherbergGermany
| | - Riddhiman Sarkar
- Munich Center for Integrated Protein Science (CIPS−M) Department ChemieTechnische Universität MünchenLichtenbergstrasse 485747GarchingGermany
- Helmholtz-Zentrum MünchenInstitute of Structural Biology (STB)Ingolstädter Landstrasse 185764NeuherbergGermany
| | - Michaela Aichler
- Helmholtz Zentrum MünchenResearch Unit Analytical Pathology (AAP)Ingolstädter Landstrasse 185764NeuherbergGermany
| | - Hans‐Jürgen Wester
- Technische Universität MünchenDepartment of Pharmaceutical RadiochemistryWalther-Meißner-Strasse 385748GarchingGermany
| | - Behrooz Hooshyar Yousefi
- Technische Universität MünchenDepartment of Pharmaceutical RadiochemistryWalther-Meißner-Strasse 385748GarchingGermany
- Philipps University of MarburgDepartment of Nuclear MedicineBaldingerstrasse. 135043MarburgGermany
| | - Bernd Reif
- Munich Center for Integrated Protein Science (CIPS−M) Department ChemieTechnische Universität MünchenLichtenbergstrasse 485747GarchingGermany
- Helmholtz-Zentrum MünchenInstitute of Structural Biology (STB)Ingolstädter Landstrasse 185764NeuherbergGermany
| |
Collapse
|
17
|
Gil-Garcia M, Navarro S, Ventura S. Coiled-coil inspired functional inclusion bodies. Microb Cell Fact 2020; 19:117. [PMID: 32487230 PMCID: PMC7268670 DOI: 10.1186/s12934-020-01375-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Recombinant protein expression in bacteria often leads to the formation of intracellular insoluble protein deposits, a major bottleneck for the production of soluble and active products. However, in recent years, these bacterial protein aggregates, commonly known as inclusion bodies (IBs), have been shown to be a source of stable and active protein for biotechnological and biomedical applications. The formation of these functional IBs is usually facilitated by the fusion of aggregation-prone peptides or proteins to the protein of interest, leading to the formation of amyloid-like nanostructures, where the functional protein is embedded. RESULTS In order to offer an alternative to the classical amyloid-like IBs, here we develop functional IBs exploiting the coiled-coil fold. An in silico analysis of coiled-coil and aggregation propensities, net charge, and hydropathicity of different potential tags identified the natural homo-dimeric and anti-parallel coiled-coil ZapB bacterial protein as an optimal candidate to form assemblies in which the native state of the fused protein is preserved. The protein itself forms supramolecular fibrillar networks exhibiting only α-helix secondary structure. This non-amyloid self-assembly propensity allows generating innocuous IBs in which the recombinant protein of interest remains folded and functional, as demonstrated using two different fluorescent proteins. CONCLUSIONS Here, we present a proof of concept for the use of a natural coiled-coil domain as a versatile tool for the production of functional IBs in bacteria. This α-helix-based strategy excludes any potential toxicity drawback that might arise from the amyloid nature of β-sheet-based IBs and renders highly active and homogeneous submicrometric particles.
Collapse
Affiliation(s)
- Marcos Gil-Garcia
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Susanna Navarro
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
18
|
Cox SJ, Lam B, Prasad A, Marietta HA, Stander NV, Joel JG, Sahoo BR, Guo F, Stoddard AK, Ivanova MI, Ramamoorthy A. High-Throughput Screening at the Membrane Interface Reveals Inhibitors of Amyloid-β. Biochemistry 2020; 59:2249-2258. [DOI: 10.1021/acs.biochem.0c00328] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sarah J. Cox
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brian Lam
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ajay Prasad
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hannah A. Marietta
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nicholas V. Stander
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joseph G. Joel
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bikash R. Sahoo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fucheng Guo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Andrea K. Stoddard
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Magdalena I. Ivanova
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
19
|
Wichur T, Więckowska A, Więckowski K, Godyń J, Jończyk J, Valdivieso ÁDR, Panek D, Pasieka A, Sabaté R, Knez D, Gobec S, Malawska B. 1-Benzylpyrrolidine-3-amine-based BuChE inhibitors with anti-aggregating, antioxidant and metal-chelating properties as multifunctional agents against Alzheimer's disease. Eur J Med Chem 2019; 187:111916. [PMID: 31812794 DOI: 10.1016/j.ejmech.2019.111916] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 01/07/2023]
Abstract
Complex pathomechanism of Alzheimer's disease (AD) prompts researchers to develop multifunctional molecules in order to find effective therapy against AD. We designed and synthesized novel multifunctional ligands for which we assessed their activities towards butyrylcholinesterase, beta secretase, amyloid beta (Aβ) and tau protein aggregation as well as antioxidant and metal-chelating properties. All compounds showed dual anti-aggregating properties towards Aβ and tau protein in the in cellulo assay in Escherichia coli. Of particular interest are compounds 24b and 25b, which efficiently inhibit aggregation of Aβ and tau protein at 10 μM (24b: 45% for Aβ, 53% for tau; 25b: 49% for Aβ, 54% for tau). They display free radical scavenging capacity and antioxidant activity in ABTS and FRAP assays, respectively, and selectively chelate copper ions. Compounds 24b and 25b are also the most potent inhibitors of BuChE with IC50 of 2.39 μM and 1.94 μM, respectively. Promising in vitro activities of the presented multifunctional ligands as well as their original scaffold are a very interesting starting point for further research towards effective anti-AD treatment.
Collapse
Affiliation(s)
- Tomasz Wichur
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Anna Więckowska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Krzysztof Więckowski
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Justyna Godyń
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Jakub Jończyk
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | | | - Dawid Panek
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Anna Pasieka
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Raimon Sabaté
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Av Joan XXIII 27-31, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Av Joan XXIII, S/N, 08028, Barcelona, Spain
| | - Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Barbara Malawska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland.
| |
Collapse
|
20
|
Asami S, Reif B. Accessing Methyl Groups in Proteins via 1H-detected MAS Solid-state NMR Spectroscopy Employing Random Protonation. Sci Rep 2019; 9:15903. [PMID: 31685894 PMCID: PMC6828780 DOI: 10.1038/s41598-019-52383-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/16/2019] [Indexed: 11/09/2022] Open
Abstract
We recently introduced RAP (reduced adjoining protonation) labelling as an easy to implement and cost-effective strategy to yield selectively methyl protonated protein samples. We show here that even though the amount of H2O employed in the bacterial growth medium is rather low, the intensities obtained in MAS solid-state NMR 1H,13C correlation spectra are comparable to spectra obtained for samples in which α-ketoisovalerate was employed as precursor. In addition to correlations for Leu and Val residues, RAP labelled samples yield also resonances for all methyl containing side chains. The labelling scheme has been employed to quantify order parameters, together with the respective asymmetry parameters. We obtain a very good correlation between the order parameters measured using a GlcRAP (glucose carbon source) and a α-ketoisovalerate labelled sample. The labelling scheme holds the potential to be very useful for the collection of long-range distance restraints among side chain atoms. Experiments are demonstrated using RAP and α-ketoisovalerate labelled samples of the α-spectrin SH3 domain, and are applied to fibrils formed from the Alzheimer's disease Aβ1-40 peptide.
Collapse
Affiliation(s)
- Sam Asami
- Munich Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM), Lichtenbergstr. 4, 85747, Garching, Germany.
| | - Bernd Reif
- Munich Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM), Lichtenbergstr. 4, 85747, Garching, Germany
- Helmholtz Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| |
Collapse
|
21
|
Kannaian B, Sharma B, Phillips M, Chowdhury A, Manimekalai MSS, Adav SS, Ng JTY, Kumar A, Lim S, Mu Y, Sze SK, Grüber G, Pervushin K. Abundant neuroprotective chaperone Lipocalin-type prostaglandin D synthase (L-PGDS) disassembles the Amyloid-β fibrils. Sci Rep 2019; 9:12579. [PMID: 31467325 PMCID: PMC6715741 DOI: 10.1038/s41598-019-48819-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/06/2019] [Indexed: 01/08/2023] Open
Abstract
Misfolding of Amyloid β (Aβ) peptides leads to the formation of extracellular amyloid plaques. Molecular chaperones can facilitate the refolding or degradation of such misfolded proteins. Here, for the first time, we report the unique ability of Lipocalin-type Prostaglandin D synthase (L-PGDS) protein to act as a disaggregase on the pre-formed fibrils of Aβ(1-40), abbreviated as Aβ40, and Aβ(25-35) peptides, in addition to inhibiting the aggregation of Aβ monomers. Furthermore, our proteomics results indicate that L-PGDS can facilitate extraction of several other proteins from the insoluble aggregates extracted from the brain of an Alzheimer's disease patient. In this study, we have established the mode of binding of L-PGDS with monomeric and fibrillar Aβ using Nuclear Magnetic Resonance (NMR) Spectroscopy, Small Angle X-ray Scattering (SAXS), and Transmission Electron Microscopy (TEM). Our results confirm a direct interaction between L-PGDS and monomeric Aβ40 and Aβ(25-35), thereby inhibiting their spontaneous aggregation. The monomeric unstructured Aβ40 binds to L-PGDS via its C-terminus, while the N-terminus remains free which is observed as a new domain in the L-PGDS-Aβ40 complex model.
Collapse
Affiliation(s)
- Bhuvaneswari Kannaian
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Bhargy Sharma
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Margaret Phillips
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Anup Chowdhury
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Malathy S S Manimekalai
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Sunil S Adav
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Justin T Y Ng
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Ambrish Kumar
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Siu K Sze
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Konstantin Pervushin
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
22
|
Siddiqi MK, Malik S, Majid N, Alam P, Khan RH. Cytotoxic species in amyloid-associated diseases: Oligomers or mature fibrils. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 118:333-369. [PMID: 31928731 DOI: 10.1016/bs.apcsb.2019.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyloid diseases especially, Alzheimer's disease (AD), is characterized by an imbalance between the production and clearance of amyloid-β (Aβ) species. Amyloidogenic proteins or peptides can transform structurally from monomers into β-stranded fibrils via multiple oligomeric states. Among various amyloid species, structured oligomers are proposed to be more toxic than fibrils; however, the identification of amyloid oligomers has been challenging due to their heterogeneous and metastable nature. Multiple techniques have recently helped in better understanding of oligomer's assembly details and structural properties. Moreover, some progress on elucidating the mechanisms of oligomer-triggered toxicity has been made. Based on the collection of current findings, there is growing consensus that control of toxic amyloid oligomers could be a valid approach to regulate amyloid-associated toxicity, which could advance development of new diagnostics and therapeutics for amyloid-related diseases. In this review, we have described the recent scenario of amyloid diseases with a great deal of information about the recent understanding of oligomers' assembly, structural properties, and toxicity. Also comprehensive details have been provided to differentiate the degree of toxicity associated with prefibrillar aggregates.
Collapse
Affiliation(s)
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Parvez Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
23
|
Caballero AB, Espargaró A, Pont C, Busquets MA, Estelrich J, Muñoz-Torrero D, Gamez P, Sabate R. Bacterial Inclusion Bodies for Anti-Amyloid Drug Discovery: Current and Future Screening Methods. Curr Protein Pept Sci 2019; 20:563-576. [PMID: 30924417 DOI: 10.2174/1389203720666190329120007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 11/22/2022]
Abstract
Amyloid aggregation is linked to an increasing number of human disorders from nonneurological pathologies such as type-2 diabetes to neurodegenerative ones such as Alzheimer or Parkinson's diseases. Thirty-six human proteins have shown the capacity to aggregate into pathological amyloid structures. To date, it is widely accepted that amyloid folding/aggregation is a universal process present in eukaryotic and prokaryotic cells. In the last decade, several studies have unequivocally demonstrated that bacterial inclusion bodies - insoluble protein aggregates usually formed during heterologous protein overexpression in bacteria - are mainly composed of overexpressed proteins in amyloid conformation. This fact shows that amyloid-prone proteins display a similar aggregation propensity in humans and bacteria, opening the possibility to use bacteria as simple models to study amyloid aggregation process and the potential effect of both anti-amyloid drugs and pro-aggregative compounds. Under these considerations, several in vitro and in cellulo methods, which exploit the amyloid properties of bacterial inclusion bodies, have been proposed in the last few years. Since these new methods are fast, simple, inexpensive, highly reproducible, and tunable, they have aroused great interest as preliminary screening tools in the search for anti-amyloid (beta-blocker) drugs for conformational diseases. The aim of this mini-review is to compile recently developed methods aimed at tracking amyloid aggregation in bacteria, discussing their advantages and limitations, and the future potential applications of inclusion bodies in anti-amyloid drug discovery.
Collapse
Affiliation(s)
- Ana B Caballero
- Department of Inorganic and Organic Chemistry, Faculty of Chemistry, University of Barcelona, E-08028 Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, E-08028 Barcelona, Spain
| | - Alba Espargaró
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, E-08028 Barcelona, Spain.,Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, E-08028 Barcelona, Spain
| | - Caterina Pont
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, University of Barcelona, E-08028 Barcelona, Spain.,Institute of Biomedicine (IBUB), University of Barcelona, E-08028 Barcelona, Spain
| | - Maria Antònia Busquets
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, E-08028 Barcelona, Spain.,Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, E-08028 Barcelona, Spain
| | - Joan Estelrich
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, E-08028 Barcelona, Spain.,Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, E-08028 Barcelona, Spain
| | - Diego Muñoz-Torrero
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, University of Barcelona, E-08028 Barcelona, Spain.,Institute of Biomedicine (IBUB), University of Barcelona, E-08028 Barcelona, Spain
| | - Patrick Gamez
- Department of Inorganic and Organic Chemistry, Faculty of Chemistry, University of Barcelona, E-08028 Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, E-08028 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Raimon Sabate
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, E-08028 Barcelona, Spain.,Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, E-08028 Barcelona, Spain
| |
Collapse
|
24
|
Sahoo BR, Genjo T, Nakayama TW, Stoddard AK, Ando T, Yasuhara K, Fierke CA, Ramamoorthy A. A cationic polymethacrylate-copolymer acts as an agonist for β-amyloid and an antagonist for amylin fibrillation. Chem Sci 2019; 10:3976-3986. [PMID: 31015938 PMCID: PMC6457205 DOI: 10.1039/c8sc05771k] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/25/2019] [Indexed: 12/24/2022] Open
Abstract
In humans, β-amyloid and islet amyloid polypeptide (IAPP, also known as amylin) aggregations are linked to Alzheimer's disease and type-2 diabetes, respectively. There is significant interest in better understanding the aggregation process by using chemical tools. Here, we show the ability of a cationic polymethacrylate-copolymer (PMAQA) to quickly induce a β-hairpin structure and accelerate the formation of amorphous aggregates of β-amyloid-1-40, whereas it constrains the conformational plasticity of amylin for several days and slows down its aggregation at substoichiometric polymer concentrations. NMR experiments and microsecond scale atomistic molecular dynamics simulations reveal that PMAQA interacts with β-amyloid-1-40 residues spanning regions K16-V24 and A30-V40 followed by β-sheet induction. For amylin, it binds strongly close to the amyloid core domain (NFGAIL) and restrains its structural rearrangement. High-speed atomic force microscopy and transmission electron microscopy experiments show that PMAQA blocks the nucleation and fibrillation of amylin, whereas it induces the formation of amorphous aggregates of β-amyloid-1-40. Thus, the reported study provides a valuable approach to develop polymer-based amyloid inhibitors to suppress the formation of toxic intermediates of β-amyloid-1-40 and amylin.
Collapse
Affiliation(s)
- Bikash R Sahoo
- Biophysics and Department of Chemistry , University of Michigan , Ann Arbor , MI 48109-1055 , USA .
| | - Takuya Genjo
- Biophysics and Department of Chemistry , University of Michigan , Ann Arbor , MI 48109-1055 , USA .
| | - Takahiro W Nakayama
- Bio-AFM Frontier Research Center , Kanazawa University , Kanazawa 920-1192 , Japan
| | - Andrea K Stoddard
- Biophysics and Department of Chemistry , University of Michigan , Ann Arbor , MI 48109-1055 , USA .
| | - Toshio Ando
- Bio-AFM Frontier Research Center , Kanazawa University , Kanazawa 920-1192 , Japan
| | - Kazuma Yasuhara
- Graduate School of Materials Science , Nara Institute of Science and Technology , Ikoma , Nara 6300192 , Japan
| | - Carol A Fierke
- Biophysics and Department of Chemistry , University of Michigan , Ann Arbor , MI 48109-1055 , USA .
- Department of Chemistry , Texas A&M University , College Station , TX 77843 , USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry , University of Michigan , Ann Arbor , MI 48109-1055 , USA .
| |
Collapse
|
25
|
Formation of Cross-Beta Supersecondary Structure by Soft-Amyloid Cores: Strategies for Their Prediction and Characterization. Methods Mol Biol 2019. [PMID: 30945222 DOI: 10.1007/978-1-4939-9161-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Proteins with prion-like behavior are attracting an increasing interest, since accumulating evidences indicate that they play relevant roles both in health and disease. The self-assembly of these proteins into insoluble aggregates is associated with severe neuropathological processes such as amyotrophic lateral sclerosis (ALS). However, in normal conditions, they are known to accomplish a wide range of functional roles. The conformational duality of prion-like proteins is often encoded in specific protein regions, named prion-like domains (PrLDs). PrLDs are usually long and disordered regions of low complexity. We have shown that PrLDs might contain soft-amyloid cores that contribute significantly to trigger their aggregation, as well as to support their propagation. Further exploration of the role of these sequences in the conformational conversion of prion-like proteins might provide novel insights into the mechanism of action and regulation of these polypeptides, enabling the future development of therapeutic strategies. Here, we describe a set of methodologies aimed to identify and characterize these short amyloid stretches in a protein or proteome of interest, ranging from in silico detection to in vitro and in vivo evaluation and validation.
Collapse
|
26
|
|
27
|
Abstract
Amyloid diseases are of major concern all over the world due to a number of factors including: (i) aging population, (ii) increasing life span and (iii) lack of effective pharmacotherapy options. The past decade has seen intense research in discovering disease-modifying multi-targeting small molecules as therapeutic options. In recent years, targeting the amyloid cascade has emerged as an attractive strategy to discover novel neurotherapeutics. Formation of amyloid species, with different degrees of solubility and neurotoxicity is associated with the gradual decline in cognition leading to dementia/cell dysfunction. Here, in this chapter, we have described the recent scenario of amyloid diseases with a great deal of information about the structural features of oligomers, protofibrils and fibrils. Also, comprehensive details have been provided to differentiate the degree of toxicity associated with prefibrillar aggregates. Moreover, a review of the technologies that aid characterisation of oligomer, protofibrils and fibrils as well as various inhibition strategies to overcome protein fibrillation are also discussed.
Collapse
Affiliation(s)
| | - Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, U.P., India
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, U.P., India
| | - Parvez Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, U.P., India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, U.P., India.
| |
Collapse
|
28
|
Sahoo BR, Genjo T, Cox SJ, Stoddard AK, Anantharamaiah GM, Fierke C, Ramamoorthy A. Nanodisc-Forming Scaffold Protein Promoted Retardation of Amyloid-Beta Aggregation. J Mol Biol 2018; 430:4230-4244. [PMID: 30170005 DOI: 10.1016/j.jmb.2018.08.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/23/2018] [Accepted: 08/16/2018] [Indexed: 10/28/2022]
Abstract
Peptidic nanodiscs are useful membrane mimetic tools for structural and functional studies of membrane proteins, and membrane interacting peptides including amyloids. Here, we demonstrate anti-amyloidogenic activities of a nanodisc-forming 18-residue peptide (denoted as 4F), both in lipid-bound and lipid-free states by using Alzheimer's amyloid-beta (Aβ40) peptide as an example. Fluorescence-based amyloid fibrillation kinetic assays showed a significant delay in Aβ40 amyloid aggregation by the 4F peptide. In addition, 4F-encased lipid nanodiscs, at an optimal concentration of 4F (>20 μM) and nanodisc size (<10 nm), significantly affect amyloid fibrillation. A comparison of experimental results obtained from nanodiscs with that obtained from liposomes revealed a substantial inhibitory efficacy of 4F-lipid nanodiscs against Aβ40 aggregation and were also found to be suitable to trap Aβ40 intermediates. A combination of atomistic molecular dynamics simulations with NMR and circular dichroism experimental results exhibited a substantial change in Aβ40 conformation upon 4F binding through electrostatic and π-π interactions. Specifically, the 4F peptide was found to interfere with the central β-sheet-forming residues of Aβ40 through substantial hydrogen, π-π, and π-alkyl interactions. Fluorescence experiments and coarse-grained molecular dynamics simulations showed the formation of a ternary complex, where Aβ40 binds to the proximity of peptidic belt and membrane surface that deaccelerate amyloid fibrillation. Electron microscopy images revealed short and thick amyloid fibers of Aβ40 formed in the presence of 4F or 4F-lipid nanodsics. These findings could aid in the development of amyloid inhibitors as well as in stabilizing Aβ40 intermediates for high-resolution structural and neurobiological studies.
Collapse
Affiliation(s)
- Bikash Ranjan Sahoo
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Biophysics Program, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Takuya Genjo
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Biophysics Program, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Sarah J Cox
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Andrea K Stoddard
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | | - Carol Fierke
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Department of Chemistry, University of Texas A&M, College Station, TX 77843-3255, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Biophysics Program, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
29
|
Calcines-Cruz C, Olvera A, Castro-Acosta RM, Zavala G, Alagón A, Trujillo-Roldán MA, Valdez-Cruz NA. Recombinant-phospholipase A2 production and architecture of inclusion bodies are affected by pH in Escherichia coli. Int J Biol Macromol 2018; 108:826-836. [DOI: 10.1016/j.ijbiomac.2017.10.178] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022]
|
30
|
Cao Y, Jiang X, Han W. Self-Assembly Pathways of β-Sheet-Rich Amyloid-β(1-40) Dimers: Markov State Model Analysis on Millisecond Hybrid-Resolution Simulations. J Chem Theory Comput 2017; 13:5731-5744. [PMID: 29019683 DOI: 10.1021/acs.jctc.7b00803] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Early oligomerization during amyloid-β (Aβ) aggregation is essential for Aβ neurotoxicity. Understanding how unstructured Aβs assemble into oligomers, especially those rich in β-sheets, is essential but remains challenging as the assembly process is too transient for experimental characterization and too slow for molecular dynamics simulations. So far, atomic simulations are limited only to studies of either oligomer structures or assembly pathways for short Aβ segments. To overcome the computational challenge, we combine in this study a hybrid-resolution model and adaptive sampling techniques to perform over 2.7 ms of simulations of formation of full-length Aβ40 dimers that are the earliest toxic oligomeric species. The Markov state model is further employed to characterize the transition pathways and associated kinetics. Our results show that for two major forms of β-sheet-rich structures reported experimentally, the corresponding assembly mechanisms are markedly different. Hairpin-containing structures are formed by direct binding of soluble Aβ in β-hairpin-like conformations. Formation of parallel, in-register structures resembling fibrils occurs ∼100-fold more slowly and involves a rapid encounter of Aβ in arbitrary conformations followed by a slow structural conversion. The structural conversion proceeds via diverse pathways but always requires transient unfolding of encounter complexes. We find that the transition kinetics could be affected differently by intra-/intermolecular interactions involving individual residues in a conformation-dependent manner. In particular, the interactions involving Aβ's N-terminal part promote the assembly into hairpin-containing structures but delay the formation of fibril-like structures, thus explaining puzzling observations reported previously regarding the roles of this region in the early assembly process.
Collapse
Affiliation(s)
- Yang Cao
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School , Shenzhen, 518055, China
| | - Xuehan Jiang
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School , Shenzhen, 518055, China
| | - Wei Han
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School , Shenzhen, 518055, China
| |
Collapse
|
31
|
Spahn C, Wermann M, Eichentopf R, Hause G, Schlenzig D, Schilling S. Purification of recombinant Aβ(1-42) and pGlu-Aβ(3-42) using preparative SDS-PAGE. Electrophoresis 2017; 38:2042-2049. [PMID: 28510356 DOI: 10.1002/elps.201700154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 11/10/2022]
Abstract
Recombinant expression and purification of amyloid peptides represents a common basis for investigating the molecular mechanisms of amyloid formation and toxicity. However, the isolation of the recombinant peptides is hampered by inefficient separation from contaminants such as the fusion protein required for efficient expression in E. coli. Here, we present a new approach for the isolation of highly purified Aβ(1-42) and pGlu-Aβ(3-42), which is based on a separation using preparative SDS-PAGE. The method relies on the purification of the Aβ fusion protein by affinity chromatography followed by preparative SDS-PAGE under reducing conditions and subsequent removal of detergents by precipitation. The application of preparative SDS-PAGE represents the key step to isolate highly pure recombinant Aβ, which has been applied for characterization of aggregation and toxicity. Thereby, the yield of the purification strategy was >60%. To the best of our knowledge, this is the first description of an electrophoresis-based method for purification of a recombinant Aβ peptide. Therefore, the method might be of interest for isolation of other amyloid peptides, which are critical for conventional purification strategies due to their aggregation propensity.
Collapse
Affiliation(s)
- Claudia Spahn
- Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation (IZI-MWT), Halle, Germany
| | - Michael Wermann
- Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation (IZI-MWT), Halle, Germany
| | - Rico Eichentopf
- Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation (IZI-MWT), Halle, Germany
| | - Gerd Hause
- Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Dagmar Schlenzig
- Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation (IZI-MWT), Halle, Germany
| | - Stephan Schilling
- Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation (IZI-MWT), Halle, Germany
| |
Collapse
|
32
|
Very rapid amyloid fibril formation by a bacterial lipase in the absence of a detectable lag phase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:652-663. [DOI: 10.1016/j.bbapap.2017.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/03/2017] [Accepted: 03/14/2017] [Indexed: 02/01/2023]
|
33
|
Grohe K, Movellan KT, Vasa SK, Giller K, Becker S, Linser R. Non-equilibrium hydrogen exchange for determination of H-bond strength and water accessibility in solid proteins. JOURNAL OF BIOMOLECULAR NMR 2017; 68:7-17. [PMID: 28393279 DOI: 10.1007/s10858-017-0110-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/02/2017] [Indexed: 06/07/2023]
Abstract
We demonstrate measurement of non-equilibrium backbone amide hydrogen-deuterium exchange rates (HDX) for solid proteins. The target of this study are the slowly exchanging residues in solid samples, which are associated with stable secondary-structural elements of proteins. These hydrogen exchange processes escape methods measuring equilibrium exchange rates of faster processes. The method was applied to a micro-crystalline preparation of the SH3 domain of chicken α-spectrin. Therefore, from a 100% back-exchanged micro-crystalline protein preparation, the supernatant buffer was exchanged by a partially deuterated buffer to reach a final protonation level of approximately 20% before packing the sample in a 1.3 mm rotor. Tracking of the HN peak intensities for 2 weeks reports on site-specific hydrogen bond strength and also likely reflects water accessibility in a qualitative manner. H/D exchange can be directly determined for hydrogen-bonded amides using 1H detection under fast magic angle spinning. This approach complements existing methods and provides the means to elucidate interesting site-specific characteristics for protein functionality in the solid state.
Collapse
Affiliation(s)
- Kristof Grohe
- Department Chemie und Pharmazie, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Kumar Tekwani Movellan
- Department Chemie und Pharmazie, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Suresh Kumar Vasa
- Department Chemie und Pharmazie, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Karin Giller
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Stefan Becker
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Rasmus Linser
- Department Chemie und Pharmazie, Ludwig-Maximilians-Universität München, 81377, Munich, Germany.
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.
| |
Collapse
|
34
|
Proteins behaving badly. Substoichiometric molecular control and amplification of the initiation and nature of amyloid fibril formation: lessons from and for blood clotting. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 123:16-41. [DOI: 10.1016/j.pbiomolbio.2016.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/14/2016] [Accepted: 08/19/2016] [Indexed: 02/08/2023]
|
35
|
Rapid α-oligomer formation mediated by the Aβ C terminus initiates an amyloid assembly pathway. Nat Commun 2016; 7:12419. [PMID: 27546208 PMCID: PMC4996947 DOI: 10.1038/ncomms12419] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 06/30/2016] [Indexed: 11/09/2022] Open
Abstract
Since early oligomeric intermediates in amyloid assembly are often transient and difficult to distinguish, characterize and quantify, the mechanistic basis of the initiation of spontaneous amyloid growth is often opaque. We describe here an approach to the analysis of the Aβ aggregation mechanism that uses Aβ-polyglutamine hybrid peptides designed to retard amyloid maturation and an adjusted thioflavin intensity scale that reveals structural features of aggregation intermediates. The results support an aggregation initiation mechanism for Aβ-polyQ hybrids, and by extension for full-length Aβ peptides, in which a modular Aβ C-terminal segment mediates rapid, non-nucleated formation of α-helical oligomers. The resulting high local concentration of tethered amyloidogenic segments within these α-oligomers facilitates transition to a β-oligomer population that, via further remodelling and/or elongation steps, ultimately generates mature amyloid. Consistent with this mechanism, an engineered Aβ C-terminal fragment delays aggregation onset by Aβ-polyglutamine peptides and redirects assembly of Aβ42 fibrils. The elucidation of amyloid nucleation mechanisms remains challenging as early oligomeric intermediates are transient and difficult to distinguish. Here the authors use Aβ- polyglutamine hybrid peptides designed to slow and limit amyloid maturation to provide insights into the structures of Aβ self-assembly intermediates.
Collapse
|
36
|
Colvin MT, Silvers R, Ni QZ, Can TV, Sergeyev I, Rosay M, Donovan KJ, Michael B, Wall J, Linse S, Griffin RG. Atomic Resolution Structure of Monomorphic Aβ42 Amyloid Fibrils. J Am Chem Soc 2016; 138:9663-74. [PMID: 27355699 PMCID: PMC5389415 DOI: 10.1021/jacs.6b05129] [Citation(s) in RCA: 629] [Impact Index Per Article: 78.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Amyloid-β (Aβ) is a 39-42 residue protein produced by the cleavage of the amyloid precursor protein (APP), which subsequently aggregates to form cross-β amyloid fibrils that are a hallmark of Alzheimer's disease (AD). The most prominent forms of Aβ are Aβ1-40 and Aβ1-42, which differ by two amino acids (I and A) at the C-terminus. However, Aβ42 is more neurotoxic and essential to the etiology of AD. Here, we present an atomic resolution structure of a monomorphic form of AβM01-42 amyloid fibrils derived from over 500 (13)C-(13)C, (13)C-(15)N distance and backbone angle structural constraints obtained from high field magic angle spinning NMR spectra. The structure (PDB ID: 5KK3 ) shows that the fibril core consists of a dimer of Aβ42 molecules, each containing four β-strands in a S-shaped amyloid fold, and arranged in a manner that generates two hydrophobic cores that are capped at the end of the chain by a salt bridge. The outer surface of the monomers presents hydrophilic side chains to the solvent. The interface between the monomers of the dimer shows clear contacts between M35 of one molecule and L17 and Q15 of the second. Intermolecular (13)C-(15)N constraints demonstrate that the amyloid fibrils are parallel in register. The RMSD of the backbone structure (Q15-A42) is 0.71 ± 0.12 Å and of all heavy atoms is 1.07 ± 0.08 Å. The structure provides a point of departure for the design of drugs that bind to the fibril surface and therefore interfere with secondary nucleation and for other therapeutic approaches to mitigate Aβ42 aggregation.
Collapse
Affiliation(s)
- Michael T. Colvin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert Silvers
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Qing Zhe Ni
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Thach V. Can
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ivan Sergeyev
- Bruker BioSpin, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - Melanie Rosay
- Bruker BioSpin, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - Kevin J. Donovan
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Brian Michael
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Joseph Wall
- Brookhaven National Laboratory, 50 Bell Avenue, Building 463, Upton, New York 11973-5000, United States
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Lund University, SE22100 Lund, Sweden
| | - Robert G. Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
37
|
Caballero AB, Terol-Ordaz L, Espargaró A, Vázquez G, Nicolás E, Sabaté R, Gamez P. Histidine-Rich Oligopeptides To Lessen Copper-Mediated Amyloid-β Toxicity. Chemistry 2016; 22:7268-80. [DOI: 10.1002/chem.201600286] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Ana B. Caballero
- Department of Inorganic and Organic Chemistry; University of Barcelona; Martí i Franquès 1-11 08028 Barcelona Spain
| | - Laia Terol-Ordaz
- Department of Inorganic and Organic Chemistry; University of Barcelona; Martí i Franquès 1-11 08028 Barcelona Spain
| | - Alba Espargaró
- Department of Physical Chemistry; Faculty of Pharmacy and; Institute of Nanoscience and Nanotechnology (IN2UB); University of Barcelona; Avda. Joan XXIII 27-31 08028 Barcelona Spain
| | - Guillem Vázquez
- Department of Inorganic and Organic Chemistry; University of Barcelona; Martí i Franquès 1-11 08028 Barcelona Spain
| | - Ernesto Nicolás
- Department of Inorganic and Organic Chemistry; University of Barcelona; Martí i Franquès 1-11 08028 Barcelona Spain
| | - Raimon Sabaté
- Department of Physical Chemistry; Faculty of Pharmacy and; Institute of Nanoscience and Nanotechnology (IN2UB); University of Barcelona; Avda. Joan XXIII 27-31 08028 Barcelona Spain
| | - Patrick Gamez
- Department of Inorganic and Organic Chemistry; University of Barcelona; Martí i Franquès 1-11 08028 Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA); Passeig Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
38
|
Ultra rapid in vivo screening for anti-Alzheimer anti-amyloid drugs. Sci Rep 2016; 6:23349. [PMID: 27000658 PMCID: PMC4802339 DOI: 10.1038/srep23349] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/02/2016] [Indexed: 12/20/2022] Open
Abstract
More than 46 million people worldwide suffer from Alzheimer’s disease. A
large number of potential treatments have been proposed; among these, the inhibition
of the aggregation of amyloid β-peptide (Aβ), considered one
of the main culprits in Alzheimer’s disease. Limitations in monitoring
the aggregation of Aβ in cells and tissues restrict the screening of
anti-amyloid drugs to in vitro studies in most cases. We have developed a
simple but powerful method to track Aβ aggregation in vivo in
real-time, using bacteria as in vivo amyloid reservoir. We use the specific
amyloid dye Thioflavin-S (Th-S) to stain bacterial inclusion bodies (IBs), in this
case mainly formed of Aβ in amyloid conformation. Th-S binding to
amyloids leads to an increment of fluorescence that can be monitored. The
quantification of the Th-S fluorescence along the time allows tracking
Aβ aggregation and the effect of potential anti-aggregating agents.
Collapse
|
39
|
Prade E, Barucker C, Sarkar R, Althoff-Ospelt G, Lopez del Amo JM, Hossain S, Zhong Y, Multhaup G, Reif B. Sulindac Sulfide Induces the Formation of Large Oligomeric Aggregates of the Alzheimer's Disease Amyloid-β Peptide Which Exhibit Reduced Neurotoxicity. Biochemistry 2016; 55:1839-49. [PMID: 26900939 DOI: 10.1021/acs.biochem.5b01272] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease is characterized by deposition of the amyloid β-peptide (Aβ) in brain tissue of affected individuals. In recent years, many potential lead structures have been suggested that can potentially be used for diagnosis and therapy. However, the mode of action of these compounds is so far not understood. Among these small molecules, the nonsteroidal anti-inflammatory drug (NSAID) sulindac sulfide received a lot of attention. In this manuscript, we characterize the interaction between the monomeric Aβ peptide and the NSAID sulindac sulfide. We find that sulindac sulfide efficiently depletes the pool of toxic oligomers by enhancing the rate of fibril formation. In vitro, sulindac sulfide forms colloidal particles which catalyze the formation of fibrils. Aggregation is immediate, presumably by perturbing the supersaturated Aβ solution. We find that sulindac sulfide induced Aβ aggregates are structurally homogeneous. The C-terminal part of the peptide adopts a β-sheet structure, whereas the N-terminus is disordered. The salt bridge between D23 and K28 is present, similar as in wild type fibril structures. (13)C-(19)F transferred echo double resonance experiments suggest that sulindac sulfide colocalizes with the Aβ peptide in the aggregate.
Collapse
Affiliation(s)
- Elke Prade
- Munich Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM) , Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Christian Barucker
- Department of Pharmacology & Therapeutics, McGill University , 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Riddhiman Sarkar
- Munich Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM) , Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | - Juan Miguel Lopez del Amo
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Shireen Hossain
- Department of Pharmacology & Therapeutics, McGill University , 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Yifei Zhong
- Department of Pharmacology & Therapeutics, McGill University , 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Gerd Multhaup
- Department of Pharmacology & Therapeutics, McGill University , 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Bernd Reif
- Munich Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM) , Lichtenbergstrasse 4, 85747 Garching, Germany.,Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| |
Collapse
|
40
|
Aguilera P, Marcoleta A, Lobos-Ruiz P, Arranz R, Valpuesta JM, Monasterio O, Lagos R. Identification of Key Amino Acid Residues Modulating Intracellular and In vitro Microcin E492 Amyloid Formation. Front Microbiol 2016; 7:35. [PMID: 26858708 PMCID: PMC4729943 DOI: 10.3389/fmicb.2016.00035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/11/2016] [Indexed: 12/30/2022] Open
Abstract
Microcin E492 (MccE492) is a pore-forming bacteriocin produced and exported by Klebsiella pneumoniae RYC492. Besides its antibacterial activity, excreted MccE492 can form amyloid fibrils in vivo as well as in vitro. It has been proposed that bacterial amyloids can be functional playing a biological role, and in the particular case of MccE492 it would control the antibacterial activity. MccE492 amyloid fibril's morphology and formation kinetics in vitro have been well-characterized, however, it is not known which amino acid residues determine its amyloidogenic propensity, nor if it forms intracellular amyloid inclusions as has been reported for other bacterial amyloids. In this work we found the conditions in which MccE492 forms intracellular amyloids in Escherichia coli cells, that were visualized as round-shaped inclusion bodies recognized by two amyloidophilic probes, 2-4'-methylaminophenyl benzothiazole and thioflavin-S. We used this property to perform a flow cytometry-based assay to evaluate the aggregation propensity of MccE492 mutants, that were designed using an in silico prediction of putative aggregation hotspots. We established that the predicted amino acid residues 54-63, effectively act as a pro-amyloidogenic stretch. As in the case of other amyloidogenic proteins, this region presented two gatekeeper residues (P57 and P59), which disfavor both intracellular and in vitro MccE492 amyloid formation, preventing an uncontrolled aggregation. Mutants in each of these gatekeeper residues showed faster in vitro aggregation and bactericidal inactivation kinetics, and the two mutants were accumulated as dense amyloid inclusions in more than 80% of E. coli cells expressing these variants. In contrast, the MccE492 mutant lacking residues 54-63 showed a significantly lower intracellular aggregation propensity and slower in vitro polymerization kinetics. Electron microscopy analysis of the amyloids formed in vitro by these mutants revealed that, although with different efficiency, all formed fibrils morphologically similar to wild-type MccE492. The physiological implication of MccE492 intracellular amyloid formation is probably similar to the inactivation process observed for extracellular amyloids, and could be used as a mean of sequestering potentially toxic species inside the cell when this bacteriocin is produced in large amounts.
Collapse
Affiliation(s)
- Paulina Aguilera
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile
| | - Andrés Marcoleta
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile
| | - Pablo Lobos-Ruiz
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile
| | - Rocío Arranz
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - José M Valpuesta
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Octavio Monasterio
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile
| | - Rosalba Lagos
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile
| |
Collapse
|
41
|
Nuclear magnetic resonance evidence for the dimer formation of beta amyloid peptide 1-42 in 1,1,1,3,3,3-hexafluoro-2-propanol. Anal Biochem 2016; 498:59-67. [PMID: 26772162 DOI: 10.1016/j.ab.2015.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/04/2015] [Accepted: 12/29/2015] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease involves accumulation of senile plaques in which filamentous aggregates of amyloid beta (Aβ) peptides are deposited. Recent studies demonstrate that oligomerization pathways of Aβ peptides may be complicated. To understand the mechanisms of Aβ(1-42) oligomer formation in more detail, we have established a method to produce (15)N-labeled Aβ(1-42) suited for nuclear magnetic resonance (NMR) studies. For physicochemical studies, the starting protein material should be solely monomeric and all Aβ aggregates must be removed. Here, we succeeded in fractionating a "precipitation-resistant" fraction of Aβ(1-42) from an "aggregation-prone" fraction by high-performance liquid chromatography (HPLC), even from bacterially overexpressed Aβ(1-42). However, both Aβ(1-42) fractions after 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) treatment formed amyloid fibrils. This indicates that the "aggregation seed" was not completely monomerized during HFIP treatment. In addition, Aβ(1-42) dissolved in HFIP was found to display a monomer-dimer equilibrium, as shown by two-dimensional (1)H-(15)N NMR. We demonstrated that the initial concentration of Aβ during the HFIP pretreatment altered the kinetic profiles of Aβ fibril formation in a thioflavin T fluorescence assay. The findings described here should ensure reproducible results when studying the Aβ(1-42) peptide.
Collapse
|
42
|
Villar-Piqué A, Espargaró A, Ventura S, Sabate R. In vivo amyloid aggregation kinetics tracked by time-lapse confocal microscopy in real-time. Biotechnol J 2016; 11:172-7. [PMID: 26580000 DOI: 10.1002/biot.201500252] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/29/2015] [Accepted: 10/15/2015] [Indexed: 11/05/2022]
Abstract
Amyloid polymerization underlies an increasing number of human diseases. Despite this process having been studied extensively in vitro, aggregation is a difficult process to track in vivo due to methodological limitations and the slow kinetics of aggregation reactions in cells and tissues. Herein we exploit the amyloid properties of the inclusions bodies (IBs) formed by amyloidogenic proteins in bacteria to address the kinetics of in vivo amyloid aggregation. To this aim we used time-lapse confocal microscopy and a fusion of the amyloid-beta peptide (A β42) with a fluorescent reporter. This strategy allowed us to follow the intracellular kinetics of amyloid-like aggregation in real-time and to discriminate between variants exhibiting different in vivo aggregation propensity. Overall, the approach opens the possibility to assess the impact of point mutations as well as potential anti-aggregation drugs in the process of amyloid formation in living cells.
Collapse
Affiliation(s)
- Anna Villar-Piqué
- Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona, Bellatera, Spain
| | - Alba Espargaró
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain.,Institut de Nanociència i Nanotecnologia (IN²UB), Spain
| | - Salvador Ventura
- Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain. .,Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona, Bellatera, Spain.
| | - Raimon Sabate
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain. .,Institut de Nanociència i Nanotecnologia (IN²UB), Spain.
| |
Collapse
|
43
|
Prade E, Bittner HJ, Sarkar R, Lopez Del Amo JM, Althoff-Ospelt G, Multhaup G, Hildebrand PW, Reif B. Structural Mechanism of the Interaction of Alzheimer Disease Aβ Fibrils with the Non-steroidal Anti-inflammatory Drug (NSAID) Sulindac Sulfide. J Biol Chem 2015; 290:28737-45. [PMID: 26416887 PMCID: PMC4661391 DOI: 10.1074/jbc.m115.675215] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 09/14/2015] [Indexed: 01/12/2023] Open
Abstract
Alzheimer disease is the most severe neurodegenerative disease worldwide. In the past years, a plethora of small molecules interfering with amyloid-β (Aβ) aggregation has been reported. However, their mode of interaction with amyloid fibers is not understood. Non-steroidal anti-inflammatory drugs (NSAIDs) are known γ-secretase modulators; they influence Aβ populations. It has been suggested that NSAIDs are pleiotrophic and can interact with more than one pathomechanism. Here we present a magic angle spinning solid-state NMR study demonstrating that the NSAID sulindac sulfide interacts specifically with Alzheimer disease Aβ fibrils. We find that sulindac sulfide does not induce drastic architectural changes in the fibrillar structure but intercalates between the two β-strands of the amyloid fibril and binds to hydrophobic cavities, which are found consistently in all analyzed structures. The characteristic Asp(23)-Lys(28) salt bridge is not affected upon interacting with sulindac sulfide. The primary binding site is located in the vicinity of residue Gly(33), a residue involved in Met(35) oxidation. The results presented here will assist the search for pharmacologically active molecules that can potentially be employed as lead structures to guide the design of small molecules for the treatment of Alzheimer disease.
Collapse
Affiliation(s)
- Elke Prade
- From the Munich Center for Integrated Protein Science at Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Heiko J Bittner
- Molecular Modeling, Institute of Medical Physics and Biophysics, Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Riddhiman Sarkar
- From the Munich Center for Integrated Protein Science at Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | | | | | - Gerd Multhaup
- the Department of Pharmacology and Therapeutics, McGill University, Montreal Quebec H3G 1Y6, Canada, and
| | - Peter W Hildebrand
- Molecular Modeling, Institute of Medical Physics and Biophysics, Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Bernd Reif
- From the Munich Center for Integrated Protein Science at Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany, the Helmholtz-Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landtstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
44
|
Mammalian prion protein (PrP) forms conformationally different amyloid intracellular aggregates in bacteria. Microb Cell Fact 2015; 14:174. [PMID: 26536866 PMCID: PMC4634817 DOI: 10.1186/s12934-015-0361-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/17/2015] [Indexed: 01/21/2023] Open
Abstract
Background An increasing number of proteins are being shown to assemble into amyloid structures that lead to pathological states. Among them, mammalian prions outstand due to their ability to transmit the pathogenic conformation, becoming thus infectious. The structural conversion of the cellular prion protein (PrPC), into its misfolded pathogenic form (PrPSc) is the central event of prion-driven pathologies. The study of the structural properties of intracellular amyloid aggregates in general and of prion-like ones in particular is a challenging task. In this context, the evidence that the inclusion bodies formed by amyloid proteins in bacteria display amyloid-like structural and functional properties make them a privileged system to model intracellular amyloid aggregation. Results Here we provide the first demonstration that recombinant murine PrP and its C-terminal domain (90–231) attain amyloid conformations inside bacteria. Moreover, the inclusions formed by these two PrP proteins display conformational diversity, since they differ in fibril morphology, binding affinity to amyloid dyes, stability, resistance to proteinase K digestion and neurotoxicity. Conclusions Overall, our results suggest that modelling PrP amyloid formation in microbial cell factories might open an avenue for a better understanding of the structural features modulating the pathogenic impact of this intriguing protein. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0361-y) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Navarro S, Carija A, Muñoz-Torrero D, Ventura S. A fast and specific method to screen for intracellular amyloid inhibitors using bacterial model systems. Eur J Med Chem 2015; 121:785-792. [PMID: 26608003 DOI: 10.1016/j.ejmech.2015.10.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 11/25/2022]
Abstract
The aggregation of a large variety of amyloidogenic proteins is linked to the onset of devastating human disorders. Therefore, there is an urgent need for effective molecules able to modulate the aggregative properties of these polypeptides in their natural environment, in order to prevent, delay or halt the progression of such diseases. On the one hand, the complexity and cost of animal models make them inefficient at early stages of drug discovery, where large chemical libraries are usually screened. On the other hand, in vitro aggregation assays in aqueous solutions hardly reproduce (patho)physiological conditions. In this context, because the formation of insoluble aggregates in bacteria shares mechanistic and functional properties with amyloid self-assembly in higher organisms, they have emerged as a promising system to model aggregation in the cell. Here we show that bacteria provide a powerful and cost-effective system to screen for amyloid inhibitors using fluorescence spectroscopy and flow cytometry, thanks to the ability of the novel red fluorescent ProteoStat dye to detect specifically intracellular amyloid-like aggregates. We validated the approach using the Alzheimer's linked Aβ40 and Aβ42 peptides and tacrine- and huprine-based aggregation inhibitors. Overall, the present method bears the potential to replace classical in vitro anti-aggregation assays.
Collapse
Affiliation(s)
- Susanna Navarro
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - Anita Carija
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Diego Muñoz-Torrero
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
46
|
The chaperone αB-crystallin uses different interfaces to capture an amorphous and an amyloid client. Nat Struct Mol Biol 2015; 22:898-905. [PMID: 26458046 DOI: 10.1038/nsmb.3108] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 09/11/2015] [Indexed: 12/20/2022]
Abstract
Small heat-shock proteins, including αB-crystallin (αB), play an important part in protein homeostasis, because their ATP-independent chaperone activity inhibits uncontrolled protein aggregation. Mechanistic details of human αB, particularly in its client-bound state, have been elusive so far, owing to the high molecular weight and the heterogeneity of these complexes. Here we provide structural insights into this highly dynamic assembly and show, by using state-of-the-art NMR spectroscopy, that the αB complex is assembled from asymmetric building blocks. Interaction studies demonstrated that the fibril-forming Alzheimer's disease Aβ1-40 peptide preferentially binds to a hydrophobic edge of the central β-sandwich of αB. In contrast, the amorphously aggregating client lysozyme is captured by the partially disordered N-terminal domain of αB. We suggest that αB uses its inherent structural plasticity to expose distinct binding interfaces and thus interact with a wide range of structurally variable clients.
Collapse
|
47
|
Navarro S, Marinelli P, Diaz-Caballero M, Ventura S. The prion-like RNA-processing protein HNRPDL forms inherently toxic amyloid-like inclusion bodies in bacteria. Microb Cell Fact 2015; 14:102. [PMID: 26160665 PMCID: PMC4498515 DOI: 10.1186/s12934-015-0284-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/16/2015] [Indexed: 01/09/2023] Open
Abstract
Background The formation of protein inclusions is connected to the onset of many human diseases. Human RNA binding proteins containing intrinsically disordered regions with an amino acid composition resembling those of yeast prion domains, like TDP-43 or FUS, are being found to aggregate in different neurodegenerative disorders. The structure of the intracellular inclusions formed by these proteins is still unclear and whether these deposits have an amyloid nature or not is a matter of debate. Recently, the aggregation of TDP-43 has been modelled in bacteria, showing that TDP-43 inclusion bodies (IBs) are amorphous but intrinsically neurotoxic. This observation raises the question of whether it is indeed the lack of an ordered structure in these human prion-like protein aggregates the underlying cause of their toxicity in different pathological states. Results Here we characterize the IBs formed by the human prion-like RNA-processing protein HNRPDL. HNRPDL is linked to the development of limb-girdle muscular dystrophy 1G and shares domain architecture with TDP-43. We show that HNRPDL IBs display characteristic amyloid hallmarks, since these aggregates bind to amyloid dyes in vitro and inside the cell, they are enriched in intermolecular β-sheet conformation and contain inner amyloid-like fibrillar structure. In addition, despite their ordered structure, HNRPDL IBs are highly neurotoxic. Conclusions Our results suggest that at least some of the disorders caused by the aggregation of human prion-like proteins would rely on the formation of classical amyloid assemblies rather than being caused by amorphous aggregates. They also illustrate the power of microbial cell factories to model amyloid aggregation. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0284-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susanna Navarro
- Institut de Biotecnologia i Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.
| | - Patrizia Marinelli
- Institut de Biotecnologia i Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.
| | - Marta Diaz-Caballero
- Institut de Biotecnologia i Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.
| |
Collapse
|
48
|
Zhao Y, Lukiw WJ. Microbiome-generated amyloid and potential impact on amyloidogenesis in Alzheimer's disease (AD). JOURNAL OF NATURE AND SCIENCE 2015; 1:e138. [PMID: 26097896 PMCID: PMC4469284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
According to the 'amyloid cascade hypothesis of Alzheimer's disease' first proposed about 16 years ago, the accumulation of Aβ peptides in the human central nervous system (CNS) is the primary influence driving Alzheimer's disease (AD) pathogenesis, and Aβ peptide accretion is the result of an imbalance between Aβ peptide production and clearance. In the last 18 months multiple laboratories have reported two particularly important observations: (i) that because the microbes of the human microbiome naturally secrete large amounts of amyloid, lipopolysaccharides (LPS) and other related pro-inflammatory pathogenic signals, these may contribute to both the systemic and CNS amyloid burden in aging humans; and (ii) that the clearance of Aβ peptides appears to be intrinsically impaired by deficits in the microglial plasma-membrane enriched triggering receptor expressed in microglial/myeloid-2 cells (TREM2). This brief general commentary-perspective paper: (i) will highlight some of these very recent findings on microbiome-secreted amyloids and LPS and the potential contribution of these microbial-derived pro-inflammatory and neurotoxic exudates to age-related inflammatory and AD-type neurodegeneration in the host; and (ii) will discuss the contribution of a defective microglial-based TREM2 transmembrane sensor-receptor system to amyloidogenesis in AD that is in contrast to the normal, homeostatic clearance of Aβ peptides from the human CNS.
Collapse
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA 70112, USA
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA 70112, USA
| | - Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA 70112, USA
- Department of Ophthalmology, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA 70112, USA
- Department of Neurology, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA 70112, USA
| |
Collapse
|
49
|
Roque A, Sortino R, Ventura S, Ponte I, Suau P. Histone H1 Favors Folding and Parallel Fibrillar Aggregation of the 1-42 Amyloid-β Peptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:6782-6790. [PMID: 26023729 DOI: 10.1021/la504089g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases of the central nervous system. The aggregation of the amyloid-β peptide, Aβ(1-42), is believed to play an important role in the pathogenesis of AD. Histone H1 is found in the cytoplasm of neurons in AD, and it has been shown to interact with aggregated amyloid-β peptides and with amyloid fibrils. We have used Thioflavin T (ThT) fluorescence enhancement, circular dichroism spectroscopy (CD), coprecipitation, and transmission electron microscopy (TEM) to study the interaction of histone H1 with Aβ(1-42). Both freshly prepared (monomeric) Aβ(1-42) and histone H1 solutions showed negative CD bands typical of the random coil. Mixing Aβ(1-42) and histone H1 led to the loss of the random coil, which was replaced mostly by β-structure. Therefore, both Aβ(1-42) and histone H1 behave as intrinsically disordered proteins with coupled binding and folding. Mutual structure induction demonstrates the interaction of Aβ(1-42) and histone H1. The interaction was confirmed by coprecipitation followed by SDS-PAGE. Mutual structure induction was also observed with the H1 terminal domains. Incubation of Aβ(1-42) for 1 week in the presence of histone H1 led to the formation of laminar aggregates and thick bundles, characterized by the parallel association of large numbers of fibrils. The aggregates were particularly large and ordered with the H1 subtype H1.2. Further aging of the complexes led to tight compaction of fibril bundles and to fiber growth. Stabilization of fibril-fibril interactions appeared to be determined by the C-terminal domain of histone H1. In summary, these observations indicate that histone H1 has at least two effects: it helps the folding of Aβ monomers and stabilizes the parallel association of fibrils.
Collapse
Affiliation(s)
- Alicia Roque
- †Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias and ‡Instituto de Biotecnología y de Biomedicina. Universidad Autónoma de Barcelona, 08193 Cerdanyola, Barcelona, Spain
| | - Rosalba Sortino
- †Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias and ‡Instituto de Biotecnología y de Biomedicina. Universidad Autónoma de Barcelona, 08193 Cerdanyola, Barcelona, Spain
| | - Salvador Ventura
- †Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias and ‡Instituto de Biotecnología y de Biomedicina. Universidad Autónoma de Barcelona, 08193 Cerdanyola, Barcelona, Spain
| | - Inma Ponte
- †Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias and ‡Instituto de Biotecnología y de Biomedicina. Universidad Autónoma de Barcelona, 08193 Cerdanyola, Barcelona, Spain
| | - Pedro Suau
- †Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias and ‡Instituto de Biotecnología y de Biomedicina. Universidad Autónoma de Barcelona, 08193 Cerdanyola, Barcelona, Spain
| |
Collapse
|
50
|
Fan J, Huang L, Sun J, Qiu Y, Zhou J, Shen Y. Strategy for linker selection to enhance refolding and bioactivity of VAS-TRAIL fusion protein based on inclusion body conformation and activity. J Biotechnol 2015; 209:16-22. [PMID: 26072465 DOI: 10.1016/j.jbiotec.2015.06.383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 06/06/2015] [Indexed: 11/25/2022]
Abstract
A bifunctional fusion protein, VAS-TRAIL, was designed for superior therapeutic efficacy by combining anti-angiogenesis activity with tumor-selective apoptosis activity. The protein was expressed as inclusion body (IB) in Escherichia coli. To enhance refolding yield and bioactivity, four fusions were constructed with different linkers (no linker, flexible linker, rigid linker, and helix-forming linker). A novel linker selection strategy based on IB conformational quality and activity was applied to predict the suitable linker. The conformational quality and activity of VAS-TRAIL IBs were analyzed by ATR-FTIR and cytotoxicity assay, respectively. Results demonstrated that aggregated VRT (fusion with rigid linker) contained the highest native-like β structure content and retained part of the expected activity, namely, cytotoxicity activity on tumor cells. This finding suggested that the rigid linker was the most suitable candidate. Further results of in vitro refolding and subsequent circular dichroism and activity assay of four refolded fusions were significantly correlated with the predictions. Refolding of VRT yielded more soluble proteins containing the expected secondary structure and the highest bioactivity compared with that of other fusions. Our research may offer an efficient method for the high-throughput design of aggregated-prone therapeutic fusion protein.
Collapse
Affiliation(s)
- Jiying Fan
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Liying Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Jing Sun
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Qiu
- Shanghai Gebaide Biotechnical Co., Ltd., Shanghai 201403, China
| | - Jinsong Zhou
- Shanghai Gebaide Biotechnical Co., Ltd., Shanghai 201403, China
| | - Yaling Shen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|