1
|
Beriashvili D, Zhou J, Liu Y, Folkers GE, Baldus M. Cellular Applications of DNP Solid-State NMR - State of the Art and a Look to the Future. Chemistry 2024; 30:e202400323. [PMID: 38451060 DOI: 10.1002/chem.202400323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
Sensitivity enhanced dynamic nuclear polarization solid-state NMR is emerging as a powerful technique for probing the structural properties of conformationally homogenous and heterogenous biomolecular species irrespective of size at atomic resolution within their native environments. Herein we detail advancements that have made acquiring such data, specifically within the confines of intact bacterial and eukaryotic cell a reality and further discuss the type of structural information that can presently be garnered by the technique's exploitation. Subsequently, we discuss bottlenecks that have thus far curbed cellular DNP-ssNMR's broader adoption namely due a lack of sensitivity and spectral resolution. We also explore possible solutions ranging from utilization of new pulse sequences, design of better performing polarizing agents, and application of additional biochemical/ cell biological methodologies.
Collapse
Affiliation(s)
- David Beriashvili
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padaulaan 8, 3584 CH, Utrecht, The Netherlands
| | - Jiaxin Zhou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics, Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics, Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Gert E Folkers
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padaulaan 8, 3584 CH, Utrecht, The Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padaulaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
2
|
Zhang Z, Zhao Q, Gong Z, Du R, Liu M, Zhang Y, Zhang L, Li C. Progress, Challenges and Opportunities of NMR and XL-MS for Cellular Structural Biology. JACS AU 2024; 4:369-383. [PMID: 38425916 PMCID: PMC10900494 DOI: 10.1021/jacsau.3c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 03/02/2024]
Abstract
The validity of protein structures and interactions, whether determined under ideal laboratory conditions or predicted by AI tools such as Alphafold2, to precisely reflect those found in living cells remains to be examined. Moreover, understanding the changes in protein structures and interactions in response to stimuli within living cells, under both normal and disease conditions, is key to grasping proteins' functionality and cellular processes. Nevertheless, achieving high-resolution identification of these protein structures and interactions within living cells presents a technical challenge. In this Perspective, we summarize the recent advancements in in-cell nuclear magnetic resonance (NMR) and in vivo cross-linking mass spectrometry (XL-MS) for studying protein structures and interactions within a cellular context. Additionally, we discuss the challenges, opportunities, and potential benefits of integrating in-cell NMR and in vivo XL-MS in future research to offer an exhaustive approach to studying proteins in their natural habitat.
Collapse
Affiliation(s)
- Zeting Zhang
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qun Zhao
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, National
Chromatographic R. & A. Center, State Key Laboratory of Medical
Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Zhou Gong
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ruichen Du
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 10049, China
| | - Maili Liu
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yukui Zhang
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, National
Chromatographic R. & A. Center, State Key Laboratory of Medical
Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Lihua Zhang
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, National
Chromatographic R. & A. Center, State Key Laboratory of Medical
Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Conggang Li
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
3
|
Bai Y, Zhang S, Dong H, Liu Y, Liu C, Zhang X. Advanced Techniques for Detecting Protein Misfolding and Aggregation in Cellular Environments. Chem Rev 2023; 123:12254-12311. [PMID: 37874548 DOI: 10.1021/acs.chemrev.3c00494] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Protein misfolding and aggregation, a key contributor to the progression of numerous neurodegenerative diseases, results in functional deficiencies and the creation of harmful intermediates. Detailed visualization of this misfolding process is of paramount importance for improving our understanding of disease mechanisms and for the development of potential therapeutic strategies. While in vitro studies using purified proteins have been instrumental in delivering significant insights into protein misfolding, the behavior of these proteins in the complex milieu of living cells often diverges significantly from such simplified environments. Biomedical imaging performed in cell provides cellular-level information with high physiological and pathological relevance, often surpassing the depth of information attainable through in vitro methods. This review highlights a variety of methodologies used to scrutinize protein misfolding within biological systems. This includes optical-based methods, strategies leaning on mass spectrometry, in-cell nuclear magnetic resonance, and cryo-electron microscopy. Recent advancements in these techniques have notably deepened our understanding of protein misfolding processes and the features of the resulting misfolded species within living cells. The progression in these fields promises to catalyze further breakthroughs in our comprehension of neurodegenerative disease mechanisms and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yulong Bai
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hui Dong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Xin Zhang
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
4
|
Xie H, Zhao Y, Zhao W, Chen Y, Liu M, Yang J. Solid-state NMR structure determination of a membrane protein in E. coli cellular inner membrane. SCIENCE ADVANCES 2023; 9:eadh4168. [PMID: 37910616 PMCID: PMC10619923 DOI: 10.1126/sciadv.adh4168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023]
Abstract
Structure determination of membrane proteins in native cellular membranes is critical to precisely reveal their structures in physiological conditions. However, it remains challenging for solid-state nuclear magnetic resonance (ssNMR) due to the low sensitivity and high complexity of ssNMR spectra of cellular membranes. Here, we present the structure determination of aquaporin Z (AqpZ) by ssNMR in Escherichia coli inner membranes. To enhance the signal sensitivity of AqpZ, we optimized protein overexpression and removed outer membrane components. To suppress the interference of background proteins, we used a "dual-media" expression approach and antibiotic treatment. Using 1017 distance restraints obtained from two-dimensional 13C-13C spectra based on the complete chemical shift assignments, the 1.7-Å ssNMR structure of AqpZ is determined in E. coli inner membranes. This cellular ssNMR structure determination paves the way for analyzing the atomic structural details for membrane proteins in native cellular membranes.
Collapse
Affiliation(s)
- Huayong Xie
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yongxiang Zhao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Weijing Zhao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yanke Chen
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Maili Liu
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| |
Collapse
|
5
|
Beriashvili D, Yao R, D'Amico F, Krafčíková M, Gurinov A, Safeer A, Cai X, Mulder MPC, Liu Y, Folkers GE, Baldus M. A high-field cellular DNP-supported solid-state NMR approach to study proteins with sub-cellular specificity. Chem Sci 2023; 14:9892-9899. [PMID: 37736634 PMCID: PMC10510770 DOI: 10.1039/d3sc02117c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/24/2023] [Indexed: 09/23/2023] Open
Abstract
Studying the structural aspects of proteins within sub-cellular compartments is of growing interest. Dynamic nuclear polarization supported solid-state NMR (DNP-ssNMR) is uniquely suited to provide such information, but critically lacks the desired sensitivity and resolution. Here we utilize SNAPol-1, a novel biradical, to conduct DNP-ssNMR at high-magnetic fields (800 MHz/527 GHz) inside HeLa cells and isolated cell nuclei electroporated with [13C,15N] labeled ubiquitin. We report that SNAPol-1 passively diffuses and homogenously distributes within whole cells and cell nuclei providing ubiquitin spectra of high sensitivity and remarkably improved spectral resolution. For cell nuclei, physical enrichment facilitates a further 4-fold decrease in measurement time and provides an exclusive structural view of the nuclear ubiquitin pool. Taken together, these advancements enable atomic interrogation of protein conformational plasticity at atomic resolution and with sub-cellular specificity.
Collapse
Affiliation(s)
- David Beriashvili
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Ru Yao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University Tianjin 300070 P. R. China
| | - Francesca D'Amico
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC) Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Michaela Krafčíková
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Andrei Gurinov
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Adil Safeer
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Xinyi Cai
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University Tianjin 300070 P. R. China
| | - Monique P C Mulder
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC) Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University Tianjin 300070 P. R. China
| | - Gert E Folkers
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| |
Collapse
|
6
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
7
|
Schaefer A, Naser D, Siebeneichler B, Tarasca MV, Meiering EM. Methodological advances and strategies for high resolution structure determination of cellular protein aggregates. J Biol Chem 2022; 298:102197. [PMID: 35760099 PMCID: PMC9396402 DOI: 10.1016/j.jbc.2022.102197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 01/14/2023] Open
Abstract
Aggregation of proteins is at the nexus of molecular processes crucial to aging, disease, and employing proteins for biotechnology and medical applications. There has been much recent progress in determining the structural features of protein aggregates that form in cells; yet, owing to prevalent heterogeneity in aggregation, many aspects remain obscure and often experimentally intractable to define. Here, we review recent results of structural studies for cell-derived aggregates of normally globular proteins, with a focus on high-resolution methods for their analysis and prediction. Complementary results obtained by solid-state NMR spectroscopy, FTIR spectroscopy and microspectroscopy, cryo-EM, and amide hydrogen/deuterium exchange measured by NMR and mass spectrometry, applied to bacterial inclusion bodies and disease inclusions, are uncovering novel information on in-cell aggregation patterns as well as great diversity in the structural features of useful and aberrant protein aggregates. Using these advances as a guide, this review aims to advise the reader on which combination of approaches may be the most appropriate to apply to their unique system.
Collapse
Affiliation(s)
- Anna Schaefer
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Dalia Naser
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | | | - Michael V Tarasca
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|
8
|
Luchinat E, Cremonini M, Banci L. Radio Signals from Live Cells: The Coming of Age of In-Cell Solution NMR. Chem Rev 2022; 122:9267-9306. [PMID: 35061391 PMCID: PMC9136931 DOI: 10.1021/acs.chemrev.1c00790] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 12/12/2022]
Abstract
A detailed knowledge of the complex processes that make cells and organisms alive is fundamental in order to understand diseases and to develop novel drugs and therapeutic treatments. To this aim, biological macromolecules should ideally be characterized at atomic resolution directly within the cellular environment. Among the existing structural techniques, solution NMR stands out as the only one able to investigate at high resolution the structure and dynamic behavior of macromolecules directly in living cells. With the advent of more sensitive NMR hardware and new biotechnological tools, modern in-cell NMR approaches have been established since the early 2000s. At the coming of age of in-cell NMR, we provide a detailed overview of its developments and applications in the 20 years that followed its inception. We review the existing approaches for cell sample preparation and isotopic labeling, the application of in-cell NMR to important biological questions, and the development of NMR bioreactor devices, which greatly increase the lifetime of the cells allowing real-time monitoring of intracellular metabolites and proteins. Finally, we share our thoughts on the future perspectives of the in-cell NMR methodology.
Collapse
Affiliation(s)
- Enrico Luchinat
- Dipartimento
di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum−Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
- Magnetic
Resonance Center, Università degli
Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Matteo Cremonini
- Magnetic
Resonance Center, Università degli
Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Lucia Banci
- Magnetic
Resonance Center, Università degli
Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Dipartimento
di Chimica, Università degli Studi
di Firenze, Via della
Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
9
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
10
|
Ghosh R, Dumarieh R, Xiao Y, Frederick KK. Stability of the nitroxide biradical AMUPol in intact and lysed mammalian cells. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 336:107150. [PMID: 35151975 PMCID: PMC8961433 DOI: 10.1016/j.jmr.2022.107150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Dynamic Nuclear Polarization (DNP) enhanced solid state NMR increases experimental sensitivity, potentially enabling detection of biomolecules at their physiological concentrations. The sensitivity of DNP experiments is due to the transfer of polarization from electron spins of free radicals to the nuclear spins of interest. Here, we investigate the reduction of AMUPol in both lysed and intact HEK293 cells. We find that nitroxide radicals are reduced with first order reduction kinetics by cell lysates at a rate of ∼ 12% of the added nitroxide radical concentration per hour. We also found that electroporation delivered a consistent amount of AMUPol to intact cells and that nitroxide radicals are reduced just slightly more rapidly (∼15% per hour) by intact cells than by cell lysates. The two nitroxide radicals of AMUPol are reduced independently and this leads to considerable accumulation of the DNP-silent monoradical form of AMUPol, particularly in preparations of intact cells where nearly half of the AMUPol is already reduced to the DNP silent monoradical form at the earliest experimental time points. This confirms that the loss of the DNP-active biradical form of AMUPol is faster than the nitroxide reduction rate. Finally, we investigate the effect of adding N-ethyl maleimide, a well-known inhibitor of thiol (-SH) group-based reduction of nitroxide biradicals in cells, on AMUPol reduction, cellular viability, and DNP performance. Although pre-treatment of cells with NEM effectively inhibited the reduction of AMUPol, exposure to NEM compromised cellular viability and, surprisingly, did not improve DNP performance. Collectively, these results indicate that, currently, the most effective strategy to obtain high DNP enhancements for DNP-assisted in-cell NMR is to minimize room temperature contact times with cellular constituents and suggest that the development of bio-resistant polarization agents for DNP could considerably increase the sensitivity of DNP-assisted in-cell NMR experiments.
Collapse
Affiliation(s)
- Rupam Ghosh
- Department of Biophysics, UT Southwestern Medical Center, Dallas, 75390-8816, United States
| | - Rania Dumarieh
- Department of Biophysics, UT Southwestern Medical Center, Dallas, 75390-8816, United States
| | - Yiling Xiao
- Department of Biophysics, UT Southwestern Medical Center, Dallas, 75390-8816, United States
| | - Kendra K Frederick
- Department of Biophysics, UT Southwestern Medical Center, Dallas, 75390-8816, United States; Center for Neurodegenerative and Alzheimer's Disease, UT Southwestern Medical Center, Dallas 75390, United States.
| |
Collapse
|
11
|
Poulhazan A, Dickwella Widanage MC, Muszyński A, Arnold AA, Warschawski DE, Azadi P, Marcotte I, Wang T. Identification and Quantification of Glycans in Whole Cells: Architecture of Microalgal Polysaccharides Described by Solid-State Nuclear Magnetic Resonance. J Am Chem Soc 2021; 143:19374-19388. [PMID: 34735142 PMCID: PMC8630702 DOI: 10.1021/jacs.1c07429] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 12/15/2022]
Abstract
Microalgae are photosynthetic organisms widely distributed in nature and serve as a sustainable source of bioproducts. Their carbohydrate components are also promising candidates for bioenergy production and bioremediation, but the structural characterization of these heterogeneous polymers in cells remains a formidable problem. Here we present a widely applicable protocol for identifying and quantifying the glycan content using magic-angle-spinning (MAS) solid-state NMR (ssNMR) spectroscopy, with validation from glycosyl linkage and composition analysis deduced from mass-spectrometry (MS). Two-dimensional 13C-13C correlation ssNMR spectra of a uniformly 13C-labeled green microalga Parachlorella beijerinckii reveal that starch is the most abundant polysaccharide in a naturally cellulose-deficient strain, and this polymer adopts a well-organized and highly rigid structure in the cell. Some xyloses are present in both the mobile and rigid domains of the cell wall, with their chemical shifts partially aligned with the flat-ribbon 2-fold xylan identified in plants. Surprisingly, most other carbohydrates are largely mobile, regardless of their distribution in glycolipids or cell walls. These structural insights correlate with the high digestibility of this cellulose-deficient strain, and the in-cell ssNMR methods will facilitate the investigations of other economically important algae species.
Collapse
Affiliation(s)
- Alexandre Poulhazan
- Department
of Chemistry, University of Quebec at Montreal, Montreal H2X 2J6, Canada
| | | | - Artur Muszyński
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
| | - Alexandre A. Arnold
- Department
of Chemistry, University of Quebec at Montreal, Montreal H2X 2J6, Canada
| | - Dror E. Warschawski
- Laboratoire
des Biomolécules, LBM, CNRS UMR 7203,
Sorbonne Université, École Normale Supérieure,
PSL University, 75005 Paris, France
| | - Parastoo Azadi
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
| | - Isabelle Marcotte
- Department
of Chemistry, University of Quebec at Montreal, Montreal H2X 2J6, Canada
| | - Tuo Wang
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
12
|
Zhu S, Kachooei E, Harmer JR, Brown LJ, Separovic F, Sani MA. TOAC spin-labeled peptides tailored for DNP-NMR studies in lipid membrane environments. Biophys J 2021; 120:4501-4511. [PMID: 34480924 DOI: 10.1016/j.bpj.2021.08.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 07/08/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
The benefit of combining in-cell solid-state dynamic nuclear polarization (DNP) NMR and cryogenic temperatures is providing sufficient signal/noise and preservation of bacterial integrity via cryoprotection to enable in situ biophysical studies of antimicrobial peptides. The radical source required for DNP was delivered into cells by adding a nitroxide-tagged peptide based on the antimicrobial peptide maculatin 1.1 (Mac1). In this study, the structure, localization, and signal enhancement properties of a single (T-MacW) and double (T-T-MacW) TOAC (2,2,6,6-tetramethylpiperidine-N-oxyl-4-amino-4-carboxylic acid) spin-labeled Mac1 analogs were determined within micelles or lipid vesicles. The solution NMR and circular dichroism results showed that the spin-labeled peptides adopted helical structures in contact with micelles. The peptides behaved as an isolated radical source in the presence of multilamellar vesicles, and the electron paramagnetic resonance (EPR) electron-electron distance for the doubly spin-labeled peptide was ∼1 nm. The strongest paramagnetic relaxation enhancement (PRE) was observed for the lipid NMR signals near the glycerol-carbonyl backbone and was stronger for the doubly spin-labeled peptide. Molecular dynamics simulation of the T-T-MacW radical source in phospholipid bilayers supported the EPR and PRE observations while providing further structural insights. Overall, the T-T-MacW peptide achieved better 13C and 15N signal NMR enhancements and 1H spin-lattice T1 relaxation than T-MacW.
Collapse
Affiliation(s)
- Shiying Zhu
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Ehsan Kachooei
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - Louise J Brown
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Marc-Antoine Sani
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
13
|
Gauto D, Dakhlaoui O, Marin-Montesinos I, Hediger S, De Paëpe G. Targeted DNP for biomolecular solid-state NMR. Chem Sci 2021; 12:6223-6237. [PMID: 34084422 PMCID: PMC8115112 DOI: 10.1039/d0sc06959k] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/18/2021] [Indexed: 12/23/2022] Open
Abstract
High-field dynamic nuclear polarization is revolutionizing the scope of solid-state NMR with new applications in surface chemistry, materials science and structural biology. In this perspective article, we focus on a specific DNP approach, called targeted DNP, in which the paramagnets introduced to polarize are not uniformly distributed in the sample but site-specifically located on the biomolecular system. After reviewing the various targeting strategies reported to date, including a bio-orthogonal chemistry-based approach, we discuss the potential of targeted DNP to improve the overall NMR sensitivity while avoiding the use of glass-forming DNP matrix. This is especially relevant to the study of diluted biomolecular systems such as, for instance, membrane proteins within their lipidic environment. We also discuss routes towards extracting structural information from paramagnetic relaxation enhancement (PRE) induced by targeted DNP at cryogenic temperature, and the possibility to recover site-specific information in the vicinity of the paramagnetic moieties using high-resolution selective DNP spectra. Finally, we review the potential of targeted DNP for in-cell NMR studies and how it can be used to extract a given protein NMR signal from a complex cellular background.
Collapse
Affiliation(s)
- Diego Gauto
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-MEM Grenoble France
| | - Ons Dakhlaoui
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-MEM Grenoble France
- Univ. Grenoble Alpes, CNRS, CERMAV Grenoble France
| | - Ildefonso Marin-Montesinos
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-MEM Grenoble France
- University of Aveiro, CICECO Chem. Dept. Aveiro Portugal
| | - Sabine Hediger
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-MEM Grenoble France
| | - Gaël De Paëpe
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-MEM Grenoble France
| |
Collapse
|
14
|
Narasimhan S, Pinto C, Lucini Paioni A, van der Zwan J, Folkers GE, Baldus M. Characterizing proteins in a native bacterial environment using solid-state NMR spectroscopy. Nat Protoc 2021; 16:893-918. [PMID: 33442051 DOI: 10.1038/s41596-020-00439-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/09/2020] [Indexed: 01/29/2023]
Abstract
For a long time, solid-state nuclear magnetic resonance (ssNMR) has been employed to study complex biomolecular systems at the detailed chemical, structural, or dynamic level. Recent progress in high-resolution and high-sensitivity ssNMR, in combination with innovative sample preparation and labeling schemes, offers novel opportunities to study proteins in their native setting irrespective of the molecular tumbling rate. This protocol describes biochemical preparation schemes to obtain cellular samples of both soluble as well as insoluble or membrane-associated proteins in bacteria. To this end, the protocol is suitable for studying a protein of interest in both whole cells and in cell envelope or isolated membrane preparations. In the first stage of the procedure, an appropriate strain of Escherichia coli (DE3) is transformed with a plasmid of interest harboring the protein of interest under the control of an inducible T7 promoter. Next, the cells are adapted to grow in minimal (M9) medium. Before the growth enters stationary phase, protein expression is induced, and shortly thereafter, the native E. coli RNA polymerase is inhibited using rifampicin for targeted labeling of the protein of interest. The cells are harvested after expression and prepared for ssNMR rotor filling. In addition to conventional 13C/15N-detected ssNMR, we also outline how these preparations can be readily subjected to multidimensional ssNMR experiments using dynamic nuclear polarization (DNP) or proton (1H) detection schemes. We estimate that the entire preparative procedure until NMR experiments can be started takes 3-5 days.
Collapse
Affiliation(s)
- Siddarth Narasimhan
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands.,Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Cecilia Pinto
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands.,Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Alessandra Lucini Paioni
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Johan van der Zwan
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Gert E Folkers
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
15
|
Damman R, Lucini Paioni A, Xenaki KT, Beltrán Hernández I, van Bergen En Henegouwen PMP, Baldus M. Development of in vitro-grown spheroids as a 3D tumor model system for solid-state NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2020; 74:401-412. [PMID: 32562030 PMCID: PMC7508937 DOI: 10.1007/s10858-020-00328-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/09/2020] [Indexed: 05/11/2023]
Abstract
Recent advances in the field of in-cell NMR spectroscopy have made it possible to study proteins in the context of bacterial or mammalian cell extracts or even entire cells. As most mammalian cells are part of a multi-cellular complex, there is a need to develop novel NMR approaches enabling the study of proteins within the complexity of a 3D cellular environment. Here we investigate the use of the hanging drop method to grow spheroids which are homogenous in size and shape as a model system to study solid tumors using solid-state NMR (ssNMR) spectroscopy. We find that these spheroids are stable under magic-angle-spinning conditions and show a clear change in metabolic profile as compared to single cell preparations. Finally, we utilize dynamic nuclear polarization (DNP)-supported ssNMR measurements to show that low concentrations of labelled nanobodies targeting EGFR (7D12) can be detected inside the spheroids. These findings suggest that solid-state NMR can be used to directly examine proteins or other biomolecules in a 3D cellular microenvironment with potential applications in pharmacological research.
Collapse
Affiliation(s)
- Reinier Damman
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Alessandra Lucini Paioni
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Katerina T Xenaki
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Irati Beltrán Hernández
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
- Pharmaceutics, Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Paul M P van Bergen En Henegouwen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands.
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
16
|
Narasimhan S, Folkers GE, Baldus M. When Small becomes Too Big: Expanding the Use of In‐Cell Solid‐State NMR Spectroscopy. Chempluschem 2020; 85:760-768. [DOI: 10.1002/cplu.202000167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/31/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Siddarth Narasimhan
- NMR Spectroscopy Research Group Bijvoet Center for Biomolecular ResearchUtrecht University Padualaan 8 3584 CH Utrecht (The Netherlands
| | - Gert E. Folkers
- NMR Spectroscopy Research Group Bijvoet Center for Biomolecular ResearchUtrecht University Padualaan 8 3584 CH Utrecht (The Netherlands
| | - Marc Baldus
- NMR Spectroscopy Research Group Bijvoet Center for Biomolecular ResearchUtrecht University Padualaan 8 3584 CH Utrecht (The Netherlands
| |
Collapse
|
17
|
Schlagnitweit J, Friebe Sandoz S, Jaworski A, Guzzetti I, Aussenac F, Carbajo RJ, Chiarparin E, Pell AJ, Petzold K. Observing an Antisense Drug Complex in Intact Human Cells by in-Cell NMR Spectroscopy. Chembiochem 2019; 20:2474-2478. [PMID: 31206961 DOI: 10.1002/cbic.201900297] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Indexed: 12/12/2022]
Abstract
Gaining insight into the uptake, trafficking and target engagement of drugs in cells can enhance understanding of a drug's function and efficiency. However, there are currently no reliable methods for studying untagged biomolecules in macromolecular complexes in intact human cells. Here we have studied an antisense oligonucleotide (ASO) drug in HEK 293T and HeLa cells by NMR spectroscopy. Using a combination of transfection, cryoprotection and dynamic nuclear polarization (DNP), we were able to detect the drug directly in intact frozen cells. Activity of the drug was confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR). By applying DNP NMR to frozen cells, we overcame limitations both of solution-state in-cell NMR spectroscopy (e.g., size, stability and sensitivity) and of visualization techniques, in which (e.g., fluorescent) tagging of the ASO decreases its activity. The capability to detect an untagged, active drug, interacting in its natural environment, represents a first step towards studying molecular mechanisms in intact cells.
Collapse
Affiliation(s)
- Judith Schlagnitweit
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solnavägen 9, 17165, Solna, Sweden
| | - Sarah Friebe Sandoz
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solnavägen 9, 17165, Solna, Sweden
| | - Aleksander Jaworski
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16 C, 106 91, Stockholm, Sweden
| | - Ileana Guzzetti
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solnavägen 9, 17165, Solna, Sweden
| | - Fabien Aussenac
- Bruker BioSpin, 34 Rue de l'Industrie, 67160, Wissembourg, France
| | - Rodrigo J Carbajo
- Analytical and Structural Chemistry Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, CB4 0WG, UK
| | - Elisabetta Chiarparin
- Analytical and Structural Chemistry Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, CB4 0WG, UK
| | - Andrew J Pell
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16 C, 106 91, Stockholm, Sweden
| | - Katja Petzold
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solnavägen 9, 17165, Solna, Sweden
| |
Collapse
|
18
|
Narasimhan S, Scherpe S, Lucini Paioni A, van der Zwan J, Folkers GE, Ovaa H, Baldus M. DNP-Supported Solid-State NMR Spectroscopy of Proteins Inside Mammalian Cells. Angew Chem Int Ed Engl 2019; 58:12969-12973. [PMID: 31233270 PMCID: PMC6772113 DOI: 10.1002/anie.201903246] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 11/25/2022]
Abstract
Elucidating at atomic level how proteins interact and are chemically modified in cells represents a leading frontier in structural biology. We have developed a tailored solid-state NMR spectroscopic approach that allows studying protein structure inside human cells at atomic level under high-sensitivity dynamic nuclear polarization (DNP) conditions. We demonstrate the method using ubiquitin (Ub), which is critically involved in cellular functioning. Our results pave the way for structural studies of larger proteins or protein complexes inside human cells, which have remained elusive to in-cell solution-state NMR spectroscopy due to molecular size limitations.
Collapse
Affiliation(s)
- Siddarth Narasimhan
- NMR Spectroscopy groupBijvoet Center for Biomolecular ResearchUtrecht UniversityPadualaan 8, 3584CHUtrechtThe Netherlands
| | - Stephan Scherpe
- Oncode Institute and Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333 ZCLeidenThe Netherlands
| | - Alessandra Lucini Paioni
- NMR Spectroscopy groupBijvoet Center for Biomolecular ResearchUtrecht UniversityPadualaan 8, 3584CHUtrechtThe Netherlands
| | - Johan van der Zwan
- NMR Spectroscopy groupBijvoet Center for Biomolecular ResearchUtrecht UniversityPadualaan 8, 3584CHUtrechtThe Netherlands
| | - Gert E. Folkers
- NMR Spectroscopy groupBijvoet Center for Biomolecular ResearchUtrecht UniversityPadualaan 8, 3584CHUtrechtThe Netherlands
| | - Huib Ovaa
- Oncode Institute and Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333 ZCLeidenThe Netherlands
| | - Marc Baldus
- NMR Spectroscopy groupBijvoet Center for Biomolecular ResearchUtrecht UniversityPadualaan 8, 3584CHUtrechtThe Netherlands
| |
Collapse
|
19
|
Siegal G, Selenko P. Cells, drugs and NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:202-212. [PMID: 31358370 DOI: 10.1016/j.jmr.2019.07.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/08/2019] [Accepted: 07/08/2019] [Indexed: 05/18/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a versatile tool for investigating cellular structures and their compositions. While in vivo and whole-cell NMR have a long tradition in cell-based approaches, high-resolution in-cell NMR spectroscopy is a new addition to these methods. In recent years, technological advancements in multiple areas provided converging benefits for cellular MR applications, especially in terms of robustness, reproducibility and physiological relevance. Here, we review the use of cellular NMR methods for drug discovery purposes in academia and industry. Specifically, we discuss how developments in NMR technologies such as miniaturized bioreactors and flow-probe perfusion systems have helped to consolidate NMR's role in cell-based drug discovery efforts.
Collapse
Affiliation(s)
- Gregg Siegal
- ZoBio B.V., BioPartner 2 Building, J.H. Oortweg 19, 2333 Leiden, the Netherlands
| | - Philipp Selenko
- Department of Biological Regulation, Weizmann Institute of Science, 234 Herzl Street, 761000 Rehovot, Israel.
| |
Collapse
|
20
|
Narasimhan S, Scherpe S, Lucini Paioni A, van der Zwan J, Folkers GE, Ovaa H, Baldus M. DNP‐Supported Solid‐State NMR Spectroscopy of Proteins Inside Mammalian Cells. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903246] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Siddarth Narasimhan
- NMR Spectroscopy group Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
| | - Stephan Scherpe
- Oncode Institute and Department of Cell and Chemical Biology Leiden University Medical Center (LUMC) Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Alessandra Lucini Paioni
- NMR Spectroscopy group Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
| | - Johan van der Zwan
- NMR Spectroscopy group Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
| | - Gert E. Folkers
- NMR Spectroscopy group Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
| | - Huib Ovaa
- Oncode Institute and Department of Cell and Chemical Biology Leiden University Medical Center (LUMC) Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Marc Baldus
- NMR Spectroscopy group Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
| |
Collapse
|
21
|
Janssen GJ, Bielytskyi P, Artiukhin DG, Neugebauer J, de Groot HJM, Matysik J, Alia A. Photochemically induced dynamic nuclear polarization NMR on photosystem II: donor cofactor observed in entire plant. Sci Rep 2018; 8:17853. [PMID: 30552342 PMCID: PMC6294776 DOI: 10.1038/s41598-018-36074-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/13/2018] [Indexed: 12/18/2022] Open
Abstract
The solid-state photo-CIDNP (photochemically induced dynamic nuclear polarization) effect allows for increase of signal and sensitivity in magic-angle spinning (MAS) NMR experiments. The effect occurs in photosynthetic reaction centers (RC) proteins upon illumination and induction of cyclic electron transfer. Here we show that the strength of the effect allows for observation of the cofactors forming the spin-correlated radical pair (SCRP) in isolated proteins, in natural photosynthetic membranes as well as in entire plants. To this end, we measured entire selectively 13C isotope enriched duckweed plants (Spirodela oligorrhiza) directly in the MAS rotor. Comparison of 13C photo-CIDNP MAS NMR spectra of photosystem II (PS2) obtained from different levels of RC isolation, from entire plant to isolated RC complex, demonstrates the intactness of the photochemical machinery upon isolation. The SCRP in PS2 is structurally and functionally very similar in duckweed and spinach (Spinacia oleracea). The analysis of the photo-CIDNP MAS NMR spectra reveals a monomeric Chl a donor. There is an experimental evidence for matrix involvement, most likely due to the axial donor histidine, in the formation of the SCRP. Data do not suggest a chemical modification of C-131 carbonyl position of the donor cofactor.
Collapse
Affiliation(s)
- Geertje J Janssen
- University of Leiden, Leiden Institute of Chemistry, Einsteinweg 55, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Pavlo Bielytskyi
- Universität Leipzig, Institute of Analytical Chemistry, Johannisallee 29, D-04103, Leipzig, Germany
| | - Denis G Artiukhin
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Corrensstraße 40, D-48149, Münster, Germany
| | - Johannes Neugebauer
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Corrensstraße 40, D-48149, Münster, Germany
| | - Huub J M de Groot
- University of Leiden, Leiden Institute of Chemistry, Einsteinweg 55, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Jörg Matysik
- Universität Leipzig, Institute of Analytical Chemistry, Johannisallee 29, D-04103, Leipzig, Germany.
| | - A Alia
- University of Leiden, Leiden Institute of Chemistry, Einsteinweg 55, P.O. Box 9502, 2300 RA, Leiden, The Netherlands.
- Universität Leipzig, Institute of Medical Physics and Biophysics, Härtelstr. 16-18, D-04107, Leipzig, Germany.
| |
Collapse
|
22
|
Matlahov I, van der Wel PCA. Hidden motions and motion-induced invisibility: Dynamics-based spectral editing in solid-state NMR. Methods 2018; 148:123-135. [PMID: 29702226 DOI: 10.1016/j.ymeth.2018.04.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/05/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022] Open
Abstract
Solid-state nuclear magnetic resonance (ssNMR) spectroscopy enables the structural characterization of a diverse array of biological assemblies that include amyloid fibrils, non-amyloid aggregates, membrane-associated proteins and viral capsids. Such biological samples feature functionally relevant molecular dynamics, which often affect different parts of the sample in different ways. Solid-state NMR experiments' sensitivity to dynamics represents a double-edged sword. On the one hand, it offers a chance to measure dynamics in great detail. On the other hand, certain types of motion lead to signal loss and experimental inefficiencies that at first glance interfere with the application of ssNMR to overly dynamic proteins. Dynamics-based spectral editing (DYSE) ssNMR methods leverage motion-dependent signal losses to simplify spectra and enable the study of sub-structures with particular motional properties.
Collapse
Affiliation(s)
- Irina Matlahov
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15213, USA
| | - Patrick C A van der Wel
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15213, USA; Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
23
|
New structural and functional insights from in-cell NMR. Emerg Top Life Sci 2018; 2:29-38. [PMID: 33525780 DOI: 10.1042/etls20170136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 11/17/2022]
Abstract
In recent years, it has become evident that structural characterization would gain significantly in terms of biological relevance if framed within a cellular context, while still maintaining the atomic resolution. Therefore, major efforts have been devoted to developing Cellular Structural Biology approaches. In this respect, in-cell NMR can provide and has provided relevant contributions to the field, not only to investigate the structural and dynamical properties of macromolecules in solution but, even more relevant, to understand functional processes directly in living cells and the factors that modulate them, such as exogenous molecules, partner proteins, and oxidative stress. In this commentary, we review and discuss some of the main contributions to the understanding of protein structural and functional properties achieved by in-cell NMR.
Collapse
|
24
|
Lippens G, Cahoreau E, Millard P, Charlier C, Lopez J, Hanoulle X, Portais JC. In-cell NMR: from metabolites to macromolecules. Analyst 2018; 143:620-629. [PMID: 29333554 DOI: 10.1039/c7an01635b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In-cell NMR of macromolecules has gained momentum over the last ten years as an approach that might bridge the branches of cell biology and structural biology. In this review, we put it in the context of earlier efforts that aimed to characterize by NMR the cellular environment of live cells and their intracellular metabolites. Although technical aspects distinguish these earlier in vivo NMR studies and the more recent in cell NMR efforts to characterize macromolecules in a cellular environment, we believe that both share major concerns ranging from sensitivity and line broadening to cell viability. Approaches to overcome the limitations in one subfield thereby can serve the other one and vice versa. The relevance in biomedical sciences might stretch from the direct following of drug metabolism in the cell to the observation of target binding, and thereby encompasses in-cell NMR both of metabolites and macromolecules. We underline the efforts of the field to move to novel biological insights by some selected examples.
Collapse
Affiliation(s)
- G Lippens
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
| | - E Cahoreau
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
| | - P Millard
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
| | - C Charlier
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | - J Lopez
- CERMN, Seccion Quimica, Departemento de Ciencias, Pontificia Universidad Catolica del Peru, Lima 32, Peru
| | - X Hanoulle
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), University of Lille, CNRS UMR8576, Lille, France
| | - J C Portais
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
| |
Collapse
|
25
|
Rogawski R, McDermott AE. New NMR tools for protein structure and function: Spin tags for dynamic nuclear polarization solid state NMR. Arch Biochem Biophys 2017; 628:102-113. [PMID: 28623034 PMCID: PMC5815514 DOI: 10.1016/j.abb.2017.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/05/2017] [Accepted: 06/12/2017] [Indexed: 12/13/2022]
Abstract
Magic angle spinning solid state NMR studies of biological macromolecules [1-3] have enabled exciting studies of membrane proteins [4,5], amyloid fibrils [6], viruses, and large macromolecular assemblies [7]. Dynamic nuclear polarization (DNP) provides a means to enhance detection sensitivity for NMR, particularly for solid state NMR, with many recent biological applications and considerable contemporary efforts towards elaboration and optimization of the DNP experiment. This review explores precedents and innovations in biological DNP experiments, especially highlighting novel chemical biology approaches to introduce the radicals that serve as a source of polarization in DNP experiments.
Collapse
Affiliation(s)
- Rivkah Rogawski
- Department of Chemistry, Columbia University, NY, NY 10027, United States
| | - Ann E McDermott
- Department of Chemistry, Columbia University, NY, NY 10027, United States.
| |
Collapse
|
26
|
Li C, Zhao J, Cheng K, Ge Y, Wu Q, Ye Y, Xu G, Zhang Z, Zheng W, Zhang X, Zhou X, Pielak G, Liu M. Magnetic Resonance Spectroscopy as a Tool for Assessing Macromolecular Structure and Function in Living Cells. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:157-182. [PMID: 28301750 DOI: 10.1146/annurev-anchem-061516-045237] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Investigating the structure, modification, interaction, and function of biomolecules in their native cellular environment leads to physiologically relevant knowledge about their mechanisms, which will benefit drug discovery and design. In recent years, nuclear and electron magnetic resonance (NMR) spectroscopy has emerged as a useful tool for elucidating the structure and function of biomacromolecules, including proteins, nucleic acids, and carbohydrates in living cells at atomic resolution. In this review, we summarize the progress and future of in-cell NMR as it is applied to proteins, nucleic acids, and carbohydrates.
Collapse
Affiliation(s)
- Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; ,
| | - Jiajing Zhao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; ,
| | - Kai Cheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; ,
| | - Yuwei Ge
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; ,
| | - Qiong Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; ,
| | - Yansheng Ye
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; ,
| | - Guohua Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; ,
| | - Zeting Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; ,
| | - Wenwen Zheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; ,
| | - Xu Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; ,
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; ,
| | - Gary Pielak
- Department of Chemistry, Department of Biochemistry and Biophysics, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; ,
| |
Collapse
|
27
|
Luchinat E, Banci L. In-cell NMR: a topical review. IUCRJ 2017; 4:108-118. [PMID: 28250949 PMCID: PMC5330521 DOI: 10.1107/s2052252516020625] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/29/2016] [Indexed: 05/18/2023]
Abstract
Classical structural biology approaches allow structural characterization of biological macromolecules in vitro, far from their physiological context. Nowadays, thanks to the wealth of structural data available and to technological and methodological advances, the interest of the research community is gradually shifting from pure structural determination towards the study of functional aspects of biomolecules. Therefore, a cellular structural approach is ideally needed to characterize biological molecules, such as proteins, in their native cellular environment and the functional processes that they are involved in. In-cell NMR is a new application of high-resolution nuclear magnetic resonance spectroscopy that allows structural and dynamical features of proteins and other macromolecules to be analyzed directly in living cells. Owing to its challenging nature, this methodology has shown slow, but steady, development over the past 15 years. To date, several in-cell NMR approaches have been successfully applied to both bacterial and eukaryotic cells, including several human cell lines, and important structural and functional aspects have been elucidated. In this topical review, the major advances of in-cell NMR are summarized, with a special focus on recent developments in eukaryotic and mammalian cells.
Collapse
Affiliation(s)
- Enrico Luchinat
- Magnetic Resonance Center – CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
- Department of Biomedical, Clinical and Experimental Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Lucia Banci
- Magnetic Resonance Center – CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
28
|
Towards understanding cellular structure biology: In-cell NMR. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:547-557. [PMID: 28257994 DOI: 10.1016/j.bbapap.2017.02.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 12/20/2022]
Abstract
To watch biological macromolecules perform their functions inside the living cells is the dream of any biologists. In-cell nuclear magnetic resonance is a branch of biomolecular NMR spectroscopy that can be used to observe the structures, interactions and dynamics of these molecules in the living cells at atomic level. In principle, in-cell NMR can be applied to different cellular systems to achieve biologically relevant structural and functional information. In this review, we summarize the existing approaches in this field and discuss its applications in protein interactions, folding, stability and post-translational modifications. We hope this review will emphasize the effectiveness of in-cell NMR for studies of intricate biological processes and for structural analysis in cellular environments.
Collapse
|
29
|
In-Cell Solid-State NMR: An Emerging Technique for the Study of Biological Membranes. Biophys J 2016; 109:2461-2466. [PMID: 26682804 DOI: 10.1016/j.bpj.2015.10.041] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/20/2015] [Accepted: 10/30/2015] [Indexed: 11/22/2022] Open
Abstract
Biological molecular processes are often studied in model systems, which simplifies their inherent complexity but may cause investigators to lose sight of the effects of the molecular environment. Information obtained in this way must therefore be validated by experiments in the cell. NMR has been used to study biological cells since the early days of its development. The first NMR structural studies of a protein inside a cell (by solution-state NMR) and of a membrane protein (by solid-state NMR) were published in 2001 and 2011, respectively. More recently, dynamic nuclear polarization, which has been used to enhance the signal in solid-state NMR, has also been applied to the study of frozen cells. Much progress has been made in the past 5 years, and in this review we take stock of this new technique, which is particularly appropriate for the study of biological membranes.
Collapse
|
30
|
Sequential protein expression and selective labeling for in-cell NMR in human cells. Biochim Biophys Acta Gen Subj 2016; 1860:527-33. [DOI: 10.1016/j.bbagen.2015.12.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 11/23/2022]
|
31
|
Abstract
Conventional structural and chemical biology approaches are applied to macromolecules extrapolated from their native context. When this is done, important structural and functional features of macromolecules, which depend on their native network of interactions within the cell, may be lost. In-cell nuclear magnetic resonance is a branch of biomolecular NMR spectroscopy that allows macromolecules to be analyzed in living cells, at the atomic level. In-cell NMR can be applied to several cellular systems to obtain biologically relevant structural and functional information. Here we summarize the existing approaches and focus on the applications to protein folding, interactions, and post-translational modifications.
Collapse
Affiliation(s)
- Enrico Luchinat
- From the Magnetic Resonance Center (CERM), the Department of Biomedical, Clinical and Experimental Sciences, and
| | - Lucia Banci
- From the Magnetic Resonance Center (CERM), the Department of Chemistry, University of Florence, Florence 50121, Italy
| |
Collapse
|
32
|
Frederick KK, Michaelis VK, Corzilius B, Ong TC, Jacavone AC, Griffin RG, Lindquist S. Sensitivity-enhanced NMR reveals alterations in protein structure by cellular milieus. Cell 2015; 163:620-8. [PMID: 26456111 PMCID: PMC4621972 DOI: 10.1016/j.cell.2015.09.024] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/03/2015] [Accepted: 08/26/2015] [Indexed: 12/11/2022]
Abstract
Biological processes occur in complex environments containing a myriad of potential interactors. Unfortunately, limitations on the sensitivity of biophysical techniques normally restrict structural investigations to purified systems, at concentrations that are orders of magnitude above endogenous levels. Dynamic nuclear polarization (DNP) can dramatically enhance the sensitivity of nuclear magnetic resonance (NMR) spectroscopy and enable structural studies in biologically complex environments. Here, we applied DNP NMR to investigate the structure of a protein containing both an environmentally sensitive folding pathway and an intrinsically disordered region, the yeast prion protein Sup35. We added an exogenously prepared isotopically labeled protein to deuterated lysates, rendering the biological environment "invisible" and enabling highly efficient polarization transfer for DNP. In this environment, structural changes occurred in a region known to influence biological activity but intrinsically disordered in purified samples. Thus, DNP makes structural studies of proteins at endogenous levels in biological contexts possible, and such contexts can influence protein structure.
Collapse
Affiliation(s)
| | - Vladimir K Michaelis
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Björn Corzilius
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ta-Chung Ong
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Angela C Jacavone
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
33
|
Majumder S, Xue J, DeMott CM, Reverdatto S, Burz DS, Shekhtman A. Probing protein quinary interactions by in-cell nuclear magnetic resonance spectroscopy. Biochemistry 2015; 54:2727-38. [PMID: 25894651 DOI: 10.1021/acs.biochem.5b00036] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Historically introduced by McConkey to explain the slow mutation rate of highly abundant proteins, weak protein (quinary) interactions are an emergent property of living cells. The protein complexes that result from quinary interactions are transient and thus difficult to study biochemically in vitro. Cross-correlated relaxation-induced polarization transfer-based in-cell nuclear magnetic resonance allows the characterization of protein quinary interactions with atomic resolution inside live prokaryotic and eukaryotic cells. We show that RNAs are an important component of protein quinary interactions. Protein quinary interactions are unique to the target protein and may affect physicochemical properties, protein activity, and interactions with drugs.
Collapse
Affiliation(s)
- Subhabrata Majumder
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Jing Xue
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Christopher M DeMott
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Sergey Reverdatto
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - David S Burz
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|
34
|
Smith AE, Zhang Z, Pielak GJ, Li C. NMR studies of protein folding and binding in cells and cell-like environments. Curr Opin Struct Biol 2014; 30:7-16. [PMID: 25479354 DOI: 10.1016/j.sbi.2014.10.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 10/20/2014] [Accepted: 10/24/2014] [Indexed: 11/18/2022]
Abstract
Proteins function in cells where the concentration of macromolecules can exceed 300g/L. The ways in which this crowded environment affects the physical properties of proteins remain poorly understood. We summarize recent NMR-based studies of protein folding and binding conducted in cells and in vitro under crowded conditions. Many of the observations can be understood in terms of interactions between proteins and the rest of the intracellular environment (i.e. quinary interactions). Nevertheless, NMR studies of folding and binding in cells and cell-like environments remain in their infancy. The frontier involves investigations of larger proteins and further efforts in higher eukaryotic cells.
Collapse
Affiliation(s)
- Austin E Smith
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Zeting Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Gary J Pielak
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599-3290, USA; Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599-3290, USA.
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, PR China.
| |
Collapse
|
35
|
Abstract
Ever since scientists realized that cells are the basic building blocks of all life, they have been developing tools to look inside them to reveal the architectures and mechanisms that define their biological functions. Whereas "looking into cells" is typically said in reference to optical microscopy, high-resolution in-cell and on-cell nuclear magnetic resonance (NMR) spectroscopy is a powerful method that offers exciting new possibilities for structural and functional studies in and on live cells. In contrast to conventional imaging techniques, in- and on-cell NMR methods do not provide spatial information on cellular biomolecules. Instead, they enable atomic-resolution insights into the native cell states of proteins, nucleic acids, glycans, and lipids. Here we review recent advances and developments in both fields and discuss emerging concepts that have been delineated with these methods.
Collapse
Affiliation(s)
- Darón I Freedberg
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Rockville, Maryland 20852-1448;
| | | |
Collapse
|
36
|
Lerche MH, Jensen PR, Karlsson M, Meier S. NMR insights into the inner workings of living cells. Anal Chem 2014; 87:119-32. [PMID: 25084065 DOI: 10.1021/ac501467x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Mathilde H Lerche
- Albeda Research , Gamle Carlsberg Vej 10, 1799 Copenhagen V, Denmark
| | | | | | | |
Collapse
|
37
|
Hänsel R, Luh LM, Corbeski I, Trantirek L, Dötsch V. Intrazelluläre NMR- und EPR-Spektroskopie von biologischen Makromolekülen. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201311320] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
38
|
Hänsel R, Luh LM, Corbeski I, Trantirek L, Dötsch V. In-cell NMR and EPR spectroscopy of biomacromolecules. Angew Chem Int Ed Engl 2014; 53:10300-14. [PMID: 25070284 DOI: 10.1002/anie.201311320] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Indexed: 12/21/2022]
Abstract
The dream of cell biologists is to be able to watch biological macromolecules perform their duties in the intracellular environment of live cells. Ideally, the observation of both the location and the conformation of these macromolecules with biophysical techniques is desired. The development of many fluorescence techniques, including superresolution fluorescence microscopy, has significantly enhanced our ability to spot proteins and other molecules in the crowded cellular environment. However, the observation of their structure and conformational changes while they attend their business is still very challenging. In principle, NMR and EPR spectroscopy can be used to investigate the conformation and dynamics of biological macromolecules in living cells. The development of in-cell magnetic resonance techniques has demonstrated the feasibility of this approach. Herein we review the different techniques with a focus on liquid-state in-cell NMR spectroscopy, provide an overview of applications, and discuss the challenges that lie ahead.
Collapse
Affiliation(s)
- Robert Hänsel
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt (Germany)
| | | | | | | | | |
Collapse
|
39
|
Cellular solid-state NMR investigation of a membrane protein using dynamic nuclear polarization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:342-9. [PMID: 25017802 DOI: 10.1016/j.bbamem.2014.07.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/30/2014] [Accepted: 07/02/2014] [Indexed: 12/16/2022]
Abstract
While an increasing number of structural biology studies successfully demonstrate the power of high-resolution structures and dynamics of membrane proteins in fully understanding their function, there is considerable interest in developing NMR approaches to obtain such information in a cellular setting. As long as the proteins inside the living cell tumble rapidly in the NMR timescale, recently developed in-cell solution NMR approaches can provide 3D structural information. However, there are numerous challenges to study membrane proteins inside a cell. Research in our laboratory is focused on developing a combination of solid-state NMR and biological approaches to overcome these challenges in order to obtain high-resolution structural insights into electron transfer processes mediated by membrane-bound proteins like mammalian cytochrome-b5, cytochrome-P450 and cytochrome-P450-reductase. In this study, we demonstrate the feasibility of using dynamic nuclear polarization (DNP) magic angle spinning (MAS) NMR spectroscopy for in-cell studies on a membrane-anchored protein. Our experimental results obtained from ¹³C-labeled membrane-anchored cytochrome-b5 in native Escherichia coli cells show a ~16-fold DNP signal enhancement. Further, results obtained from a 2D ¹³C/¹³C chemical shift correlation MAS experiment demonstrate the feasibility of suppressing the background signals from other cellular contents for high-resolution structural studies on membrane proteins. We believe that this study would pave new avenues for high-resolution structural studies on a variety of membrane-associated proteins and their complexes in the cellular context to fully understand their functional roles in physiological processes.
Collapse
|
40
|
Zalesskiy SS, Danieli E, Blümich B, Ananikov VP. Miniaturization of NMR systems: desktop spectrometers, microcoil spectroscopy, and "NMR on a chip" for chemistry, biochemistry, and industry. Chem Rev 2014; 114:5641-94. [PMID: 24779750 DOI: 10.1021/cr400063g] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sergey S Zalesskiy
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Moscow, 119991, Russia
| | | | | | | |
Collapse
|
41
|
Chen Y, Zhang Z, Tang X, Li J, Glaubitz C, Yang J. Conformation and Topology of Diacylglycerol Kinase inE.coliMembranes Revealed by Solid-state NMR Spectroscopy. Angew Chem Int Ed Engl 2014; 53:5624-8. [DOI: 10.1002/anie.201311203] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 02/05/2014] [Indexed: 01/04/2023]
|
42
|
Chen Y, Zhang Z, Tang X, Li J, Glaubitz C, Yang J. Conformation and Topology of Diacylglycerol Kinase inE.coliMembranes Revealed by Solid-state NMR Spectroscopy. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201311203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Banci L, Barbieri L, Luchinat E, Secci E. Visualization of redox-controlled protein fold in living cells. ACTA ACUST UNITED AC 2014; 20:747-52. [PMID: 23790485 DOI: 10.1016/j.chembiol.2013.05.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 05/08/2013] [Accepted: 05/17/2013] [Indexed: 10/26/2022]
Abstract
Most mitochondrial proteins are encoded by nuclear DNA, synthesized in the cytoplasm, and imported into mitochondria. Several proteins of the intermembrane space (IMS) are imported and localized through an oxidative process, being folded through the formation of structural disulfide bonds catalyzed by Mia40, and trapped in the IMS. To be imported, these proteins need to be reduced and unfolded; however, no structural information in situ exists on these proteins in the cytoplasm. In humans, Mia40 undergoes the same mechanism, although its folding state in the cytoplasm is unknown. We provide atomic-level details on the Mia40 folding state in the human cell cytoplasm through in-cell nuclear magnetic resonance. Overexpressed cytoplasmic Mia40 is folded, and its folding state depends on the glutaredoxin 1 (Grx1) and thioredoxin 1 (Trx1) systems. Specifically, increased Grx1 levels keep most Mia40 unfolded, while Trx1 is less effective.
Collapse
Affiliation(s)
- Lucia Banci
- Magnetic Resonance Center - CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy.
| | | | | | | |
Collapse
|
44
|
Ye Y, Liu X, Zhang Z, Wu Q, Jiang B, Jiang L, Zhang X, Liu M, Pielak GJ, Li C. 19F NMR Spectroscopy as a Probe of Cytoplasmic Viscosity and Weak Protein Interactions in Living Cells. Chemistry 2013; 19:12705-10. [DOI: 10.1002/chem.201301657] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Indexed: 01/01/2023]
|
45
|
Goldbourt A. Biomolecular magic-angle spinning solid-state NMR: recent methods and applications. Curr Opin Biotechnol 2013; 24:705-15. [DOI: 10.1016/j.copbio.2013.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 02/06/2013] [Accepted: 02/08/2013] [Indexed: 12/28/2022]
|
46
|
Vogel EP, Weliky DP. Quantitation of recombinant protein in whole cells and cell extracts via solid-state NMR spectroscopy. Biochemistry 2013; 52:4285-7. [PMID: 23742073 DOI: 10.1021/bi4007034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recombinant proteins (RPs) are commonly expressed in bacteria followed by solubilization and chromatography. Purified RP yield can be diminished by losses at any step with very different changes in methods that can improve the yield. Time and labor can therefore be saved by first identifying the specific reason for the low yield. This study describes a new solid-state nuclear magnetic resonance approach to RP quantitation in whole cells or cell extracts without solubilization or purification. The method is straightforward and inexpensive and requires only ∼50 mL culture and a low-field spectrometer.
Collapse
Affiliation(s)
- Erica P Vogel
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | | |
Collapse
|
47
|
Banci L, Barbieri L, Bertini I, Luchinat E, Secci E, Zhao Y, Aricescu AR. Atomic-resolution monitoring of protein maturation in live human cells by NMR. Nat Chem Biol 2013; 9:297-9. [PMID: 23455544 PMCID: PMC4017183 DOI: 10.1038/nchembio.1202] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 01/31/2013] [Indexed: 12/15/2022]
Abstract
We used NMR directly in live human cells to describe the complete post-translational maturation process of human superoxide dismutase 1 (SOD1). We could follow, at atomic resolution, zinc binding, homodimer formation and copper uptake, and discover that copper chaperone for SOD1 (CCS) oxidation of the SOD1 intrasubunit disulfide bond occurs through both copper-dependent and independent mechanisms. Our approach represents a new strategy for structural investigation of endogeneously expressed proteins within a physiological (cellular) environment.
Collapse
Affiliation(s)
- Lucia Banci
- CERM, Magnetic Resonance Center, University of Florence, Florence, Italy.
| | | | | | | | | | | | | |
Collapse
|
48
|
Ikeda K, Egawa A, Fujiwara T. Secondary structural analysis of proteins based on (13)C chemical shift assignments in unresolved solid-state NMR spectra enhanced by fragmented structure database. JOURNAL OF BIOMOLECULAR NMR 2013; 55:189-200. [PMID: 23271376 DOI: 10.1007/s10858-012-9701-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 12/21/2012] [Indexed: 06/01/2023]
Abstract
Magic-angle-spinning solid-state (13)C NMR spectroscopy is useful for structural analysis of non-crystalline proteins. However, the signal assignments and structural analysis are often hampered by the signal overlaps primarily due to minor structural heterogeneities, especially for uniformly-(13)C,(15)N labeled samples. To overcome this problem, we present a method for assigning (13)C chemical shifts and secondary structures from unresolved two-dimensional (13)C-(13)C MAS NMR spectra by spectral fitting, named reconstruction of spectra using protein local structures (RESPLS). The spectral fitting was conducted using databases of protein fragmented structures related to (13)C(α), (13)C(β), and (13)C' chemical shifts and cross-peak intensities. The experimental (13)C-(13)C inter- and intra-residue correlation spectra of uniformly isotope-labeled ubiquitin in the lyophilized state had a few broad peaks. The fitting analysis for these spectra provided sequence-specific C(α), C(β), and C' chemical shifts with an accuracy of about 1.5 ppm, which enabled the assignment of the secondary structures with an accuracy of 79 %. The structural heterogeneity of the lyophilized ubiquitin is revealed from the results. Test of RESPLS analysis for simulated spectra of five different types of proteins indicated that the method allowed the secondary structure determination with accuracy of about 80 % for the 50-200 residue proteins. These results demonstrate that the RESPLS approach expands the applicability of the NMR to non-crystalline proteins exhibiting unresolved (13)C NMR spectra, such as lyophilized proteins, amyloids, membrane proteins and proteins in living cells.
Collapse
Affiliation(s)
- Keisuke Ikeda
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, 565-0871, Japan
| | | | | |
Collapse
|
49
|
Hamatsu J, O'Donovan D, Tanaka T, Shirai T, Hourai Y, Mikawa T, Ikeya T, Mishima M, Boucher W, Smith BO, Laue ED, Shirakawa M, Ito Y. High-resolution heteronuclear multidimensional NMR of proteins in living insect cells using a baculovirus protein expression system. J Am Chem Soc 2013; 135:1688-91. [PMID: 23327446 DOI: 10.1021/ja310928u] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Recent developments in in-cell NMR techniques have allowed us to study proteins in detail inside living eukaryotic cells. In order to complement the existing protocols, and to extend the range of possible applications, we introduce a novel approach for observing in-cell NMR spectra using the sf9 cell/baculovirus system. High-resolution 2D (1)H-(15)N correlation spectra were observed for four model proteins expressed in sf9 cells. Furthermore, 3D triple-resonance NMR spectra of the Streptococcus protein G B1 domain were observed in sf9 cells by using nonlinear sampling to overcome the short lifetime of the samples and the low abundance of the labeled protein. The data were processed with a quantitative maximum entropy algorithm. These were assigned ab initio, yielding approximately 80% of the expected backbone NMR resonances. Well-resolved NOE cross peaks could be identified in the 3D (15)N-separated NOESY spectrum, suggesting that structural analysis of this size of protein will be feasible in sf9 cells.
Collapse
Affiliation(s)
- Jumpei Hamatsu
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0373, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Li C, Liu M. Protein dynamics in living cells studied by in-cell NMR spectroscopy. FEBS Lett 2013; 587:1008-11. [PMID: 23318712 DOI: 10.1016/j.febslet.2012.12.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 12/18/2012] [Accepted: 12/18/2012] [Indexed: 01/06/2023]
Abstract
Most proteins function in cells where protein concentrations can reach 400 g/l. However, most quantitative studies of protein properties are performed in idealized, dilute conditions. Recently developed in-cell NMR techniques can provide protein structure and other biophysical properties inside living cells at atomic resolution. Here we review how protein dynamics, including global and internal motions have been characterized by in-cell NMR, and then discuss the remaining challenges and future directions.
Collapse
Affiliation(s)
- Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430072, PR China.
| | | |
Collapse
|