1
|
Fan H, McGhee CE, Lake RJ, Yang Z, Guo Z, Zhang XB, Lu Y. A Highly Selective Mn(II)-Specific DNAzyme and Its Application in Intracellular Sensing. JACS AU 2023; 3:1615-1622. [PMID: 37388692 PMCID: PMC10302744 DOI: 10.1021/jacsau.3c00062] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 07/01/2023]
Abstract
Manganese is an essential trace element in the human body that acts as a cofactor in many enzymes and metabolisms. It is important to develop methods to detect Mn2+ in living cells. While fluorescent sensors have been very effective in detecting other metal ions, Mn2+-specific fluorescent sensors are rarely reported due to nonspecific fluorescence quenching by the paramagnetism of Mn2+ and poor selectivity against other metal ions such as Ca2+ and Mg2+. To address these issues, we herein report in vitro selection of an RNA-cleaving DNAzyme with exceptionally high selectivity for Mn2+. Through converting it into a fluorescent sensor using a catalytic beacon approach, Mn2+ sensing in immune cells and tumor cells has been achieved. The sensor is also used to monitor degradation of manganese-based nanomaterials such as MnOx in tumor cells. Therefore, this work provides an excellent tool to detect Mn2+ in biological systems and monitor the Mn2+-involved immune response and antitumor therapy.
Collapse
Affiliation(s)
- Huanhuan Fan
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), Nanjing University, Nanjing 210023, China
| | - Claire E. McGhee
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ryan J. Lake
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zhenglin Yang
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zijian Guo
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), Nanjing University, Nanjing 210023, China
| | - Xiao-Bing Zhang
- Molecular
Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing
and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative
Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China
| | - Yi Lu
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Sun H, Liu Z, Li Z, Ma X, Duan Z, Sun C. Label-Free Fluorescent Determination of Lead (II) Using DNAzyme and Thiazole Orange. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2143793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hongjing Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin, China
| | - Zheng Liu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin, China
| | - Zhihong Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin, China
| | - Xinyue Ma
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin, China
| | - Zixuan Duan
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin, China
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Recent advances in the construction of functional nucleic acids with isothermal amplification for heavy metal ions sensor. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Wu G, Li Y, Zhang J, Yun W, Xiong Z, Yang L. Simultaneous and ultra-sensitive detection of Cu 2+ and Mg 2+ in wine and beer based on dual DNA tweezers and entropy-driven three-dimensional DNA nanomachine. Food Chem 2021; 358:129835. [PMID: 33933951 DOI: 10.1016/j.foodchem.2021.129835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
Simultaneous and ultra-sensitive detection strategy of Cu2+ and Mg2+ in wine and beer was developed based on dual DNA tweezers and entropy-driven three-dimensional DNA nanomachine. The dual DNAzyme can simultaneously respond to two kinds of metal ions and cause two kinds of "turn-on" fluorescent signals. The working principle of this strategy was indirectly proven. In addition, some key experimental parameters were also optimized. Under the optimum conditions, the limit of detection was 10 pM for Cu2+ and 2 nM for Mg2+ respectively which was significantly improved by entropy driven amplification. This strategy also showed good selectivity and specificity. It was successfully used to detect of Cu2+ and Mg2+ in wine and beer with 5.26% to 9.12% of relative standard deviation and 90.4% to 110.5% of recoveries.
Collapse
Affiliation(s)
- Ge Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuting Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiafeng Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wen Yun
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Zhengwei Xiong
- School of Biological and Chemical Engineering, Innovation Center of Lipid Resources and Children's Daily Chemicals, Chongqing University of Education, Chongqing 400067, China.
| | - Lizhu Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
5
|
Lake RJ, Yang Z, Zhang J, Lu Y. DNAzymes as Activity-Based Sensors for Metal Ions: Recent Applications, Demonstrated Advantages, Current Challenges, and Future Directions. Acc Chem Res 2019; 52:3275-3286. [PMID: 31721559 PMCID: PMC7103667 DOI: 10.1021/acs.accounts.9b00419] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal ions can be beneficial or toxic depending on their identity, oxidation state, and concentration. Therefore, the ability to detect and quantify different types of metal ions using portable sensors or in situ imaging agents is important for better environmental monitoring, in vitro medical diagnostics, and imaging of biological systems. While numerous metal ions in different oxidation states are present in the environment and biological systems, only a limited number of them can be detected effectively using current methods. In this Account, we summarize research results from our group that overcome this limitation by the development of a novel class of activity-based sensors based on metal-dependent DNAzymes, which are DNA molecules with enzymatic activity. First, we have developed an in vitro selection method to obtain DNAzymes from a large DNA library of up to 1015 sequences that can carry out cleavage of an oligonucleotide substrate only in the presence of a specific metal ion with high selectivity. Negative selection steps can further be used to improve the selectivity against potentially competing targets by removing sequences that recognize the competing metal ions. Second, we have developed a patented catalytic beacon method to transform the metal-dependent DNAzyme cleavage reaction into a turn-on fluorescent signal by attaching a fluorophore and quenchers to the DNAzyme complex. Because of the difference in the melting temperatures of DNA hybridization before and after metal-ion-dependent cleavage of the DNAzyme substrate, the fluorophore on the DNA cleavage product can be released from its quenchers to create a turn-on fluorescent signal. Because DNAzymes are easy to conjugate with other signaling moieties, such as gold nanoparticles, lanthanide-doped upconversion nanoparticles, electrochemical agents, and gadolinium complexes, these DNAzymes can also readily be converted into colorimetric sensors, upconversion luminescence sensors, electrochemical sensors, or magnetic resonance contrast agents. In addition to describing recent progress in developing and applying these metal ion sensors for environmental monitoring, point-of-care diagnostics, cellular imaging, and in vivo imaging in zebrafish, we summarize major advantages of this class of activity-based sensors. In addition to advantages common to most activity-based sensors, such as enzymatic turnovers that allow for signal amplification and the use of initial rates instead of absolute signals for quantification to avoid interferences from sample matrices, the DNAzyme-based sensors allow for in vitro selection to expand the method to almost any metal ion under a variety of conditions, negative selection to improve the selectivity against competing targets, and reselection of DNAzymes and combination of active and inactive variants to fine-tune the dynamic range of detection. The use of melting temperature differences to separate target binding from signaling moieties in the catalytic beacon method allows the use of different fluorophores and nanomaterials to extend the versatility and modularity of this sensing platform. Furthermore, sensing and imaging artifacts can be minimized by using an inactive mutant DNAzyme as a negative control, while spatiotemporal control of sensing/imaging can be achieved using optical, photothermal, and endogenous orthogonal caging methods. Finally, current challenges, opportunities, and future perspectives for DNAzymes as activity-based sensors are also discussed.
Collapse
Affiliation(s)
- Ryan J. Lake
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Zhenglin Yang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - JingJing Zhang
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Hwang K, Mou Q, Lake RJ, Xiong M, Holland B, Lu Y. Metal-Dependent DNAzymes for the Quantitative Detection of Metal Ions in Living Cells: Recent Progress, Current Challenges, and Latest Results on FRET Ratiometric Sensors. Inorg Chem 2019; 58:13696-13708. [PMID: 31364355 PMCID: PMC7176321 DOI: 10.1021/acs.inorgchem.9b01280] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many different metal ions are involved in various biological functions including metallomics and trafficking, and yet there are currently effective sensors for only a few metal ions, despite the first report of metal sensors for calcium more than 40 years ago. To expand upon the number of metal ions that can be probed in biological systems, we and other laboratories employ the in vitro selection method to obtain metal-specific DNAzymes with high specificity for a metal ion and then convert these DNAzymes into fluorescent sensors for these metal ions using a catalytic beacon approach. In this Forum Article, we summarize recent progress made in developing these DNAzyme sensors to probe metal ions in living cells and in vivo, including several challenges that we were able to overcome for this application, such as DNAzyme delivery, spatiotemporal control, and signal amplification. Furthermore, we have identified a key remaining challenge for the quantitative detection of metal ions in living cells and present a new design and the results of a Förster resonance energy transfer (FRET)-based DNAzyme sensor for the ratiometric quantification of Zn2+ in HeLa cells. By converting existing DNAzyme sensors into a ratiometric readout without compromising the fundamental catalytic function of the DNAzymes, this FRET-based ratiometric DNAzyme design can readily be applied to other DNAzyme sensors as a major advance in the field to develop much more quantitative metal-ion probes for biological systems.
Collapse
Affiliation(s)
- Kevin Hwang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Quanbing Mou
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Ryan J. Lake
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Mengyi Xiong
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Brandalynn Holland
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
7
|
Suo Z, Chen J, Hou X, Hu Z, Xing F, Feng L. Growing prospects of DNA nanomaterials in novel biomedical applications. RSC Adv 2019; 9:16479-16491. [PMID: 35516377 PMCID: PMC9064466 DOI: 10.1039/c9ra01261c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/07/2019] [Indexed: 01/01/2023] Open
Abstract
As an important genetic material for life, DNA has been investigated widely in recent years, especially in interdisciplinary fields crossing nanomaterials and biomedical applications. It plays an important role because of its extraordinary molecular recognition capability and novel conformational polymorphism. DNA is also a powerful and versatile building block for the fabrication of nanostructures and nanodevices. Such DNA-based nanomaterials have also been successfully applied in various aspects ranging from biosensors to biomedicine and special logic gates, as well as in emerging molecular nanomachines. In this present mini-review, we briefly overview the recent progress in these fields. Furthermore, some challenges are also discussed in the conclusions and perspectives section, which aims to stimulate broader scientific interest in DNA nanotechnology and its biomedical applications.
Collapse
Affiliation(s)
- Zhiguang Suo
- Materials Genome Institute, Shanghai University Shanghai 200444 China
| | - Jingqi Chen
- Materials Genome Institute, Shanghai University Shanghai 200444 China
| | - Xialing Hou
- Materials Genome Institute, Shanghai University Shanghai 200444 China
| | - Ziheng Hu
- Materials Genome Institute, Shanghai University Shanghai 200444 China
| | - Feifei Xing
- Department of Chemistry, College of Science, Shanghai University Shanghai 200444 China
| | - Lingyan Feng
- Materials Genome Institute, Shanghai University Shanghai 200444 China
| |
Collapse
|
8
|
Li N, Li Y, Gao X, Yu Z, Pan W, Tang B. Multiplexed gene silencing in living cells and in vivo using a DNAzymes-CoOOH nanocomposite. Chem Commun (Camb) 2018; 53:4962-4965. [PMID: 28422198 DOI: 10.1039/c7cc00822h] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We demonstrate a novel DNAzymes-based nanocomposite that can simultaneously silence three types of genes in living cells and in vivo. The synergetic strategy for silencing three different genes can significantly enhance the knockdown efficacy and effectively inhibit the cancer cells' progression.
Collapse
Affiliation(s)
- Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | | | | | | | | | | |
Collapse
|
9
|
Affiliation(s)
- Wenhu Zhou
- Xiangya
School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Runjhun Saran
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
10
|
Recent advances in DNA-based electrochemical biosensors for heavy metal ion detection: A review. Biosens Bioelectron 2017; 90:125-139. [DOI: 10.1016/j.bios.2016.11.039] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 11/03/2016] [Accepted: 11/15/2016] [Indexed: 12/20/2022]
|
11
|
Kasprowicz A, Stokowa-Sołtys K, Jeżowska-Bojczuk M, Wrzesiński J, Ciesiołka J. Characterization of Highly Efficient RNA-Cleaving DNAzymes that Function at Acidic pH with No Divalent Metal-Ion Cofactors. ChemistryOpen 2016; 6:46-56. [PMID: 28168150 PMCID: PMC5288747 DOI: 10.1002/open.201600141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/29/2016] [Indexed: 12/02/2022] Open
Abstract
Here, we describe the characterization of new RNA‐cleaving DNAzymes that showed the highest catalytic efficiency at pH 4.0 to 4.5, and were completely inactive at pH values higher than 5.0. Importantly, these DNAzymes did not require any divalent metal ion cofactors for catalysis. This clearly suggests that protonated nucleic bases are involved in the folding of the DNAzymes into catalytically active structures and/or in the cleavage mechanism. The trans‐acting DNAzyme variants were also catalytically active. Mutational analysis revealed a conservative character of the DNAzyme catalytic core that underpins the high structural requirements of the cleavage mechanism. A significant advantage of the described DNAzymes is that they are inactive at pH values close to physiological pH and under a wide range of conditions in the presence of monovalent and divalent metal ions. These pH‐dependent DNAzymes could be used as molecular cassettes in biotechnology or nanotechnology, in molecular processes that consist of several steps. The results expand the repertoire of DNAzymes that are active under nonphysiological conditions and shed new light on the possible mechanisms of catalysis.
Collapse
Affiliation(s)
- Aleksandra Kasprowicz
- Institute of Bioorganic Chemistry Polish Academy of Sciences Noskowskiego 12/14 61-704 Poznań Poland
| | | | | | - Jan Wrzesiński
- Institute of Bioorganic Chemistry Polish Academy of Sciences Noskowskiego 12/14 61-704 Poznań Poland
| | - Jerzy Ciesiołka
- Institute of Bioorganic Chemistry Polish Academy of Sciences Noskowskiego 12/14 61-704 Poznań Poland
| |
Collapse
|
12
|
Zhang J, Cheng F, Li J, Zhu JJ, Lu Y. Fluorescent nanoprobes for sensing and imaging of metal ions: recent advances and future perspectives. NANO TODAY 2016; 11:309-329. [PMID: 27818705 PMCID: PMC5089816 DOI: 10.1016/j.nantod.2016.05.010] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Recent advances in nanoscale science and technology have generated nanomaterials with unique optical properties. Over the past decade, numerous fluorescent nanoprobes have been developed for highly sensitive and selective sensing and imaging of metal ions, both in vitro and in vivo. In this review, we provide an overview of the recent development of the design and optical properties of the different classes of fluorescent nanoprobes based on noble metal nanomaterials, upconversion nanoparticles, semiconductor quantum dots, and carbon-based nanomaterials. We further detail their application in the detection and quantification of metal ions for environmental monitoring, food safety, medical diagnostics, as well as their use in biomedical imaging in living cells and animals.
Collapse
Affiliation(s)
- JingJing Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - FangFang Cheng
- College of Chemistry, Nanjing University, Nanjing, P. R. China
| | - JingJing Li
- College of Chemistry, Nanjing University, Nanjing, P. R. China
| | - Jun-Jie Zhu
- College of Chemistry, Nanjing University, Nanjing, P. R. China
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
13
|
Hwang K, Hosseinzadeh P, Lu Y. Biochemical and Biophysical Understanding of Metal Ion Selectivity of DNAzymes. Inorganica Chim Acta 2016; 452:12-24. [PMID: 27695134 DOI: 10.1016/j.ica.2016.04.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This review summarizes research into the metal-binding properties of catalytic DNAzymes, towards the goal of understanding the structural properties leading to metal ion specificity. Progress made and insight gained from a range of biochemical and biophysical techniques are covered, and promising directions for future investigations are discussed.
Collapse
Affiliation(s)
- Kevin Hwang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Parisa Hosseinzadeh
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
14
|
Zhu G, Zhang CY. Functional nucleic acid-based sensors for heavy metal ion assays. Analyst 2015; 139:6326-42. [PMID: 25356810 DOI: 10.1039/c4an01069h] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Heavy metal contaminants such as lead ions (Pb(2+)), mercury ions (Hg(2+)) and silver ions (Ag(+)) can cause significant harm to humans and generate enduring bioaccumulation in ecological systems. Even though a variety of methods have been developed for Pb(2+), Hg(2+) and Ag(+) assays, most of them are usually laborious and time-consuming with poor sensitivity. Due to their unique advantages of excellent catalytic properties and high affinity for heavy metal ions, functional nucleic acids such as DNAzymes and aptamers show great promise in the development of novel sensors for heavy metal ion assays. In this review, we summarize the development of functional nucleic acid-based sensors for the detection of Pb(2+), Hg(2+) and Ag(+), and especially focus on two categories including the direct assay and the amplification-based assay. We highlight the emerging trends in the development of sensitive and selective sensors for heavy metal ion assays as well.
Collapse
Affiliation(s)
- Guichi Zhu
- Single-Molecule Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China.
| | | |
Collapse
|
15
|
Abstract
Increasing interest in detecting metal ions in many chemical and biomedical fields has created demands for developing sensors and imaging agents for metal ions with high sensitivity and selectivity. This review covers recent progress in DNA-based sensors and imaging agents for metal ions. Through both combinatorial selection and rational design, a number of metal-ion-dependent DNAzymes and metal-ion-binding DNA structures that can selectively recognize specific metal ions have been obtained. By attachment of these DNA molecules with signal reporters such as fluorophores, chromophores, electrochemical tags, and Raman tags, a number of DNA-based sensors for both diamagnetic and paramagnetic metal ions have been developed for fluorescent, colorimetric, electrochemical, and surface Raman detection. These sensors are highly sensitive (with a detection limit down to 11 ppt) and selective (with selectivity up to millions-fold) toward specific metal ions. In addition, through further development to simplify the operation, such as the use of "dipstick tests", portable fluorometers, computer-readable disks, and widely available glucose meters, these sensors have been applied for on-site and real-time environmental monitoring and point-of-care medical diagnostics. The use of these sensors for in situ cellular imaging has also been reported. The generality of the combinatorial selection to obtain DNAzymes for almost any metal ion in any oxidation state and the ease of modification of the DNA with different signal reporters make DNA an emerging and promising class of molecules for metal-ion sensing and imaging in many fields of applications.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Fax: 217-244-3186; Tel: 217-333-2619
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Fax: 217-244-3186; Tel: 217-333-2619
| |
Collapse
|
16
|
Nakayama S, Sintim HO. Investigating the interactions between cations, peroxidation substrates and G-quadruplex topology in DNAzyme peroxidation reactions using statistical testing. Anal Chim Acta 2012; 747:1-6. [PMID: 22986129 DOI: 10.1016/j.aca.2012.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/28/2012] [Accepted: 08/08/2012] [Indexed: 12/11/2022]
Abstract
Cations affect the topology and enzymatic proficiency of most macromolecular catalysts but the role of cations in DNAzyme peroxidation reactions remains unresolved. Herein, we use statistical methods (ANOVA, t-test and Wilcoxon Mann-Whitney non-parametric test) to demonstrate that there are strong associations between cations, DNAzyme topology, peroxidation substrate and peroxidation rates of G-quadruplex peroxidises. Ammonium cation was found to be superior to all tested cations, including potassium. A t-test indicated that NH(4)(+) was better than K(+) with a p-value=0.05. Interestingly, the nature of the peroxidation substrate employed affected the dependence of peroxidation rate on the cation present and of the three substrates tested, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS), tyramine and 3,3',5,5'-tetramethylbenzidine (TMB), ABTS was the most sensitive to the nature of cation present.
Collapse
Affiliation(s)
- Shizuka Nakayama
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|