1
|
Silva J, Spiess R, Marchesi A, Flitsch SL, Gough JE, Webb SJ. Enzymatic elaboration of oxime-linked glycoconjugates in solution and on liposomes. J Mater Chem B 2022; 10:5016-5027. [PMID: 35723603 PMCID: PMC9258907 DOI: 10.1039/d2tb00714b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/11/2022] [Indexed: 11/21/2022]
Abstract
Oxime formation is a convenient one-step method for ligating reducing sugars to surfaces, producing a mixture of closed ring α- and β-anomers along with open-chain (E)- and (Z)-isomers. Here we show that despite existing as a mixture of isomers, N-acetylglucosamine (GlcNAc) oximes can still be substrates for β(1,4)-galactosyltransferase (β4GalT1). β4GalT1 catalysed the galactosylation of GlcNAc oximes by a galactose donor (UDP-Gal) both in solution and in situ on the surface of liposomes, with conversions up to 60% in solution and ca. 15-20% at the liposome surface. It is proposed that the β-anomer is consumed preferentially but long reaction times allow this isomer to be replenished by equilibration from the remaining isomers. Adding further enzymes gave more complex oligosaccharides, with a combination of α-1,3-fucosyltransferase, β4GalT1 and the corresponding sugar donors providing Lewis X coated liposomes. However, sialylation using T. cruzi trans-sialidase and sialyllactose provided only very small amounts of sialyl Lewis X (sLex) capped lipid. These observations show that combining oxime formation with enzymatic elaboration will be a useful method for the high-throughput surface modification of drug delivery vehicles, such as liposomes, with cell-targeting oligosaccharides.
Collapse
Affiliation(s)
- Joana Silva
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Reynard Spiess
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Andrea Marchesi
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Sabine L Flitsch
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Julie E Gough
- Department of Materials and Henry Royce Institute, The University of Manchester, Manchester M13 9PL, UK
| | - Simon J Webb
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| |
Collapse
|
2
|
Di Maio A, Cioce A, Achilli S, Thépaut M, Vivès C, Fieschi F, Rojo J, Reichardt NC. Controlled density glycodendron microarrays for studying carbohydrate-lectin interactions. Org Biomol Chem 2021; 19:7357-7362. [PMID: 34387640 DOI: 10.1039/d1ob00872b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glycodendron microarrays with defined valency have been constructed by on-chip synthesis on hydrophobic indium tin oxide (ITO) coated glass slides and employed in lectin-carbohydrate binding studies with several plant and human lectins. Glycodendrons presenting sugar epitopes at different valencies were prepared by spotwise strain-promoted azide-alkyne cycloaddition (SPAAC) between immobilised cyclooctyne dendrons and azide functionalised glycans. The non-covalent immobilisation of dendrons on the ITO surface by hydrophobic interaction allowed us to study dendron surface density and SPAAC conversion rate by in situ MALDI-TOF MS analysis. By diluting the dendron surface density we could study how the carbohydrate-lectin interactions became exclusively dependant on the valency of the immobilised glycodendron.
Collapse
Affiliation(s)
- Antonio Di Maio
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, 41092 Seville, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Robakiewicz S, Bridot C, Serna S, Gimeno A, Echeverria B, Delgado S, Ruyck J, Semwal S, Charro D, Dansercoer A, Verstraete K, Azkargorta M, Noort K, Wilbers R, Savvides SN, Abrescia NGA, Arda A, Reichardt NC, Jiménez-Barbero J, Bouckaert J. Minimal epitope for Mannitou IgM on paucimannose-carrying glycoproteins. Glycobiology 2021; 31:1005-1017. [PMID: 33909073 DOI: 10.1093/glycob/cwab027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/03/2021] [Accepted: 03/30/2021] [Indexed: 11/14/2022] Open
Abstract
Paucimannosidic glycans are restricted to the core structure [Man1-3GlcNAc2Fuc0-1] of N-glycans and are rarely found in mammalian tissues. Yet, especially [Man2-3GlcNAc2Fuc1] have been found significantly upregulated in tumors, including in colorectal and liver cancer. Mannitou IgM is a murine monoclonal antibody that was previously shown to recognise Man3GlcNAc2 with an almost exclusive selectivity. Here, we have sought the definition of the minimal glycan epitope of Mannitou IgM, initiated by screening on a newly designed paucimannosidic glycan microarray. Among the best binders were Man3GlcNAc2 and its α1,6 core-fucosylated variant, Man3GlcNAc2Fuc1. Unexpectedly and in contrast to earlier findings, Man5GlcNAc2-type structures bind equally well and a large tolerance was observed for substitutions on the α1,6 arm. It was confirmed that any substitution on the single α1,3-linked mannose completely abolishes binding. Surface plasmon resonance for kinetic measurements of Mannitou IgM binding, either directly on the glycans or as presented on omega-1 and kappa-5 soluble egg antigens from the helminth parasite Schistosoma mansoni, showed submicromolar affinities. To characterize the epitope in greater and atomic detail, saturation transfer difference nuclear magnetic resonance spectroscopy was performed with the Mannitou antigen-binding fragment. The STD-NMR data demonstrated the strongest interactions with the aliphatic protons H1 and H2 of the α1-3-linked mannose, and weaker imprints on its H3, H4 and H5 protons. In conclusion, Mannitou IgM binding requires a non-substituted α1,3-linked mannose branch of paucimannose also on proteins, making it a highly specific tool for the distinction of concurrent human tumor-associated carbohydrate antigens.
Collapse
Affiliation(s)
- Stefania Robakiewicz
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 du CNRS et Université de Lille, 50 Avenue Halley, 59650 Villeneuve d'Ascq, France
| | - Clarisse Bridot
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 du CNRS et Université de Lille, 50 Avenue Halley, 59650 Villeneuve d'Ascq, France
| | - Sonia Serna
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 San Sebastian, Spain
| | - Ana Gimeno
- CIC bioGUNE, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Begoña Echeverria
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 San Sebastian, Spain
| | - Sandra Delgado
- CIC bioGUNE, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Jérôme Ruyck
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 du CNRS et Université de Lille, 50 Avenue Halley, 59650 Villeneuve d'Ascq, France
| | - Shubham Semwal
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 du CNRS et Université de Lille, 50 Avenue Halley, 59650 Villeneuve d'Ascq, France
| | - Diego Charro
- CIC bioGUNE, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Ann Dansercoer
- Unit for Structural Biology, VIB - UGent Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Kenneth Verstraete
- Unit for Structural Biology, VIB - UGent Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Mikel Azkargorta
- CIC bioGUNE, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Kim Noort
- Laboratory of Nematology, Plant Science Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ruud Wilbers
- Laboratory of Nematology, Plant Science Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Savvas N Savvides
- Unit for Structural Biology, VIB - UGent Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Nicola G A Abrescia
- CIC bioGUNE, Bizkaia Science and Technology Park, 48160 Derio, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Ana Arda
- CIC bioGUNE, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Niels C Reichardt
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 San Sebastian, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Bizkaia Science and Technology Park, 48160 Derio, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Julie Bouckaert
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 du CNRS et Université de Lille, 50 Avenue Halley, 59650 Villeneuve d'Ascq, France
| |
Collapse
|
4
|
Heine V, Kremers T, Menzel N, Schnakenberg U, Elling L. Electrochemical Impedance Spectroscopy Biosensor Enabling Kinetic Monitoring of Fucosyltransferase Activity. ACS Sens 2021; 6:1003-1011. [PMID: 33595293 DOI: 10.1021/acssensors.0c02206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Monitoring glycosyltransferases on biosensors is of great interest for pathogen and cancer diagnostics. As a proof of concept, we here demonstrate the layer-by-layer immobilization of a multivalent neoglycoprotein (NGP) as a substrate for a bacterial fucosyltransferase (FucT) and the subsequent binding of the fucose-specific Aleuria aurantia lectin (AAL) on an electrochemical impedance spectroscopy (EIS) sensor. We report for the first time the binding kinetics of a glycosyltransferase in real-time. Highly stable EIS measurements are obtained by the modification of counter and reference electrodes with polypyrrole: polystyrene sulfonate (PPy:PSS). In detail, the N-acetyllactosamine (LacNAc)-carrying NGP was covalently immobilized on the gold working electrode and served as a substrate for the FucT-catalyzed reaction. The LacNAc epitopes were converted to Lewisx (Lex) and detected by AAL. AAL binding to the Lex epitope was further confirmed in a lectin displacement and a competitive lectin binding inhibition experiment. We monitored the individual kinetic processes via EIS. The time constant for covalent immobilization of the NGP was 653 s. The FucT kinetics was the slowest process with a time constant of 1121 s. In contrast, a short time constant of 11.8 s was determined for the interaction of AAL with the modified NGPs. When this process was competed by 400 mM fucose, the binding was significantly slowed down, as indicated by a time constant of 978 s. The kinetics for the displacement of bound AAL by free fucose was observed with a time constant of 424 s. We conclude that this novel EIS biosensor and the applied workflow has the potential to detect FucT and other GT activities in general and further monitor protein-glycan interactions, which may be useful for the detection of pathogenic bacteria and cancer cells in future biomedical applications.
Collapse
Affiliation(s)
- Viktoria Heine
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, D-52074 Aachen, Germany
| | - Tom Kremers
- Chair of Micro- and Nanosystems and Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstraße 24, D-52074 Aachen, Germany
| | - Nora Menzel
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, D-52074 Aachen, Germany
- Chair of Micro- and Nanosystems and Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstraße 24, D-52074 Aachen, Germany
| | - Uwe Schnakenberg
- Chair of Micro- and Nanosystems and Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstraße 24, D-52074 Aachen, Germany
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, D-52074 Aachen, Germany
| |
Collapse
|
5
|
Enzymatic Synthesis of Glycans and Glycoconjugates. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 175:231-280. [PMID: 33052414 DOI: 10.1007/10_2020_148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycoconjugates have great potential to improve human health in a multitude of different ways and fields. Prominent examples are human milk oligosaccharides and glycosaminoglycans. The typical choice for the production of homogeneous glycoconjugates is enzymatic synthesis. Through the availability of expression and purification protocols, recombinant Leloir glycosyltransferases are widely applied as catalysts for the synthesis of a wide range of glycoconjugates. Extensive utilization of these enzymes also depends on the availability of activated sugars as building blocks. Multi-enzyme cascades have proven a versatile technique to synthesize and in situ regenerate nucleotide sugar.In this chapter, the functions and mechanisms of Leloir glycosyltransferases are revisited, and the advantage of prokaryotic sources and production systems is discussed. Moreover, in vivo and in vitro pathways for the synthesis of nucleotide sugar are reviewed. In the second part, recent and prominent examples of the application of Leloir glycosyltransferase are given, i.e., the synthesis of glycosaminoglycans, glycoconjugate vaccines, and human milk oligosaccharides as well as the re-glycosylation of biopharmaceuticals, and the status of automated glycan assembly is revisited.
Collapse
|
6
|
Ruprecht C, Bartetzko MP, Senf D, Lakhina A, Smith PJ, Soto MJ, Oh H, Yang J, Chapla D, Varon Silva D, Clausen MH, Hahn MG, Moremen KW, Urbanowicz BR, Pfrengle F. A Glycan Array‐Based Assay for the Identification and Characterization of Plant Glycosyltransferases. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Colin Ruprecht
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Present address: Department of Chemistry University of Natural Resources and Life Sciences Vienna Muthgasse 18 1190 Vienna Austria
| | - Max P. Bartetzko
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Institute of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Deborah Senf
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Institute of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Anna Lakhina
- Complex Carbohydrate Research Center University of Georgia 315 Riverbend Road Athens GA 30602 USA
| | - Peter J. Smith
- Complex Carbohydrate Research Center University of Georgia 315 Riverbend Road Athens GA 30602 USA
| | - Maria J. Soto
- Complex Carbohydrate Research Center University of Georgia 315 Riverbend Road Athens GA 30602 USA
- Present address: US Department of Energy Joint Genome Institute (JGI) Berkeley CA 94702 USA
| | - Hyunil Oh
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Institute of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Jeong‐Yeh Yang
- Complex Carbohydrate Research Center University of Georgia 315 Riverbend Road Athens GA 30602 USA
| | - Digantkumar Chapla
- Complex Carbohydrate Research Center University of Georgia 315 Riverbend Road Athens GA 30602 USA
| | - Daniel Varon Silva
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Mads H. Clausen
- Center for Nanomedicine and Theranostics Department of Chemistry Technical University of Denmark Kemitorvet 207 2800 Kgs. Lyngby Denmark
| | - Michael G. Hahn
- Complex Carbohydrate Research Center University of Georgia 315 Riverbend Road Athens GA 30602 USA
| | - Kelley W. Moremen
- Complex Carbohydrate Research Center University of Georgia 315 Riverbend Road Athens GA 30602 USA
| | - Breeanna R. Urbanowicz
- Complex Carbohydrate Research Center University of Georgia 315 Riverbend Road Athens GA 30602 USA
| | - Fabian Pfrengle
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Institute of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
- Present address: Department of Chemistry University of Natural Resources and Life Sciences Vienna Muthgasse 18 1190 Vienna Austria
| |
Collapse
|
7
|
Ruprecht C, Bartetzko MP, Senf D, Lakhina A, Smith PJ, Soto MJ, Oh H, Yang J, Chapla D, Varon Silva D, Clausen MH, Hahn MG, Moremen KW, Urbanowicz BR, Pfrengle F. A Glycan Array-Based Assay for the Identification and Characterization of Plant Glycosyltransferases. Angew Chem Int Ed Engl 2020; 59:12493-12498. [PMID: 32396713 PMCID: PMC7383710 DOI: 10.1002/anie.202003105] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/22/2020] [Indexed: 12/19/2022]
Abstract
Growing plants with modified cell wall compositions is a promising strategy to improve resistance to pathogens, increase biomass digestibility, and tune other important properties. In order to alter biomass architecture, a detailed knowledge of cell wall structure and biosynthesis is a prerequisite. We report here a glycan array-based assay for the high-throughput identification and characterization of plant cell wall biosynthetic glycosyltransferases (GTs). We demonstrate that different heterologously expressed galactosyl-, fucosyl-, and xylosyltransferases can transfer azido-functionalized sugar nucleotide donors to selected synthetic plant cell wall oligosaccharides on the array and that the transferred monosaccharides can be visualized "on chip" by a 1,3-dipolar cycloaddition reaction with an alkynyl-modified dye. The opportunity to simultaneously screen thousands of combinations of putative GTs, nucleotide sugar donors, and oligosaccharide acceptors will dramatically accelerate plant cell wall biosynthesis research.
Collapse
Affiliation(s)
- Colin Ruprecht
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Present address: Department of ChemistryUniversity of Natural Resources and Life Sciences ViennaMuthgasse 181190ViennaAustria
| | - Max P. Bartetzko
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Deborah Senf
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Anna Lakhina
- Complex Carbohydrate Research CenterUniversity of Georgia315 Riverbend RoadAthensGA30602USA
| | - Peter J. Smith
- Complex Carbohydrate Research CenterUniversity of Georgia315 Riverbend RoadAthensGA30602USA
| | - Maria J. Soto
- Complex Carbohydrate Research CenterUniversity of Georgia315 Riverbend RoadAthensGA30602USA
- Present address: US Department of Energy Joint Genome Institute (JGI)BerkeleyCA94702USA
| | - Hyunil Oh
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Jeong‐Yeh Yang
- Complex Carbohydrate Research CenterUniversity of Georgia315 Riverbend RoadAthensGA30602USA
| | - Digantkumar Chapla
- Complex Carbohydrate Research CenterUniversity of Georgia315 Riverbend RoadAthensGA30602USA
| | - Daniel Varon Silva
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Mads H. Clausen
- Center for Nanomedicine and TheranosticsDepartment of ChemistryTechnical University of DenmarkKemitorvet 2072800 Kgs.LyngbyDenmark
| | - Michael G. Hahn
- Complex Carbohydrate Research CenterUniversity of Georgia315 Riverbend RoadAthensGA30602USA
| | - Kelley W. Moremen
- Complex Carbohydrate Research CenterUniversity of Georgia315 Riverbend RoadAthensGA30602USA
| | - Breeanna R. Urbanowicz
- Complex Carbohydrate Research CenterUniversity of Georgia315 Riverbend RoadAthensGA30602USA
| | - Fabian Pfrengle
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
- Present address: Department of ChemistryUniversity of Natural Resources and Life Sciences ViennaMuthgasse 181190ViennaAustria
| |
Collapse
|
8
|
Martinez JER, Thomas B, Flitsch SL. Glycan Array Technology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 175:435-456. [PMID: 31907566 DOI: 10.1007/10_2019_112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Glycan (or carbohydrate) arrays have become an essential tool in glycomics, providing fast and high-throughput data on protein-carbohydrate interactions with small amounts of carbohydrate ligands. The general concepts of glycan arrays have been adopted from other microarray technologies such as those used for nucleic acid and proteins. However, carbohydrates have presented their own challenges, in particular in terms of access to glycan probes, linker attachment chemistries and analysis, which will be reviewed in this chapter. As more and more glycan probes have become available through chemical and enzymatic synthesis and robust linker chemistries have been developed, the applications of glycan arrays have dramatically increased over the past 10 years, which will be illustrated with recent examples.
Collapse
Affiliation(s)
| | - Baptiste Thomas
- School of Chemistry and MIB, The University of Manchester, Manchester, UK
| | | |
Collapse
|
9
|
Brzezicka K, Echeverria B, Serna S, van Diepen A, Hokke CH, Reichardt NC. Synthesis and microarray-assisted binding studies of core xylose and fucose containing N-glycans. ACS Chem Biol 2015; 10:1290-302. [PMID: 25664929 DOI: 10.1021/cb501023u] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis of a collection of 33 xylosylated and core-fucosylated N-glycans found only in nonmammalian organisms such as plants and parasitic helminths has been achieved by employing a highly convergent chemo-enzymatic approach. The influence of these core modifications on the interaction with plant lectins, with the human lectin DC-SIGN (Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Nonintegrin), and with serum antibodies from schistosome-infected individuals was studied. Core xylosylation markedly reduced or completely abolished binding to several mannose-binding plant lectins and to DC-SIGN, a C-type lectin receptor present on antigen presenting cells. Employing the synthetic collection of core-fucosylated and core-xylosylated N-glycans in the context of a larger glycan array including structures lacking these core modifications, we were able to dissect core xylose and core fucose specific antiglycan antibody responses in S. mansoni infection sera, and we observed clear and immunologically relevant differences between children and adult groups infected with this parasite. The work presented here suggests that, quite similar to bisecting N-acetylglucosamine, core xylose distorts the conformation of the unsubstituted glycan, with important implications for the immunogenicity and protein binding properties of complex N-glycans.
Collapse
Affiliation(s)
- Katarzyna Brzezicka
- Glycotechnology
Laboratory, CIC biomaGUNE, Paseo Miramón 182, 20009 San Sebastian, Spain
| | - Begoña Echeverria
- Glycotechnology
Laboratory, CIC biomaGUNE, Paseo Miramón 182, 20009 San Sebastian, Spain
| | - Sonia Serna
- Glycotechnology
Laboratory, CIC biomaGUNE, Paseo Miramón 182, 20009 San Sebastian, Spain
| | - Angela van Diepen
- Parasite
Glycobiology Group, Department of Parasitology, Leiden University Medical Center, P.O.
Box 9600, 2300 RC Leiden, The Netherlands
| | - Cornelis H. Hokke
- Parasite
Glycobiology Group, Department of Parasitology, Leiden University Medical Center, P.O.
Box 9600, 2300 RC Leiden, The Netherlands
| | - Niels-Christian Reichardt
- Glycotechnology
Laboratory, CIC biomaGUNE, Paseo Miramón 182, 20009 San Sebastian, Spain
- CIBER BBN, Paseo Miramón
182, 20009 San Sebastian, Spain
| |
Collapse
|