1
|
Chen X, Li B. Analysis of Co-localized Biosynthetic Gene Clusters Identifies a Membrane-Permeabilizing Natural Product. JOURNAL OF NATURAL PRODUCTS 2024; 87:1694-1703. [PMID: 38949271 DOI: 10.1021/acs.jnatprod.3c01231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Combination therapy is an effective strategy to combat antibiotic resistance. Multiple synergistic antimicrobial combinations are produced by enzymes encoded in biosynthetic gene clusters (BGCs) that co-localize on the bacterial genome. This phenomenon led to the hypothesis that mining co-localized BGCs will reveal new synergistic combinations of natural products. Here, we bioinformatically identified 38 pairs of co-localized BGCs, which we predict to produce natural products that are related to known compounds, including polycyclic tetramate macrolactams (PoTeMs). We further showed that ikarugamycin, a PoTeM, increases the membrane permeability of Acinetobacter baumannii and Staphylococcus aureus, which suggests that ikarugamycin might be an adjuvant that facilitates the entry of other natural products. Our work outlines a promising avenue to discover synergistic combinations of natural products by mining bacterial genomes.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Bo Li
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
2
|
Mazumdar R, Saikia K, Thakur D. Potentiality of Actinomycetia Prevalent in Selected Forest Ecosystems in Assam, India to Combat Multi-Drug-Resistant Microbial Pathogens. Metabolites 2023; 13:911. [PMID: 37623855 PMCID: PMC10456813 DOI: 10.3390/metabo13080911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Actinomycetia are known for their ability to produce a wide range of bioactive secondary metabolites having significant therapeutic importance. This study aimed to explore the potential of actinomycetia as a source of bioactive compounds with antimicrobial properties against multi-drug-resistant (MDR) clinical pathogens. A total of 65 actinomycetia were isolated from two unexplored forest ecosystems, namely the Pobitora Wildlife Sanctuary (PWS) and the Deepor Beel Wildlife Sanctuary (DBWS), located in the Indo-Burma mega-biodiversity hotspots of northeast India, out of which 19 isolates exhibited significant antimicrobial activity. 16S rRNA gene sequencing was used for the identification and phylogenetic analysis of the 19 potent actinomycetia isolates. The results reveal that the most dominant genus among the isolates was Streptomyces (84.21%), followed by rare actinomycetia genera such as Nocardia, Actinomadura, and Nonomuraea. Furthermore, seventeen of the isolates tested positive for at least one antibiotic biosynthetic gene, specifically type II polyketide synthase (PKS-II) and nonribosomal peptide synthetases (NRPSs). These genes are associated with the production of bioactive compounds with antimicrobial properties. Among the isolated strains, three actinomycetia strains, namely Streptomyces sp. PBR1, Streptomyces sp. PBR36, and Streptomyces sp. DBR11, demonstrated the most potent antimicrobial activity against seven test pathogens. This was determined through in vitro antimicrobial bioassays and the minimum inhibitory concentration (MIC) values of ethyl acetate extracts. Gas chromatography-mass spectrometry (GS-MS) and whole-genome sequencing (WGS) of the three strains revealed a diverse group of bioactive compounds and secondary metabolite biosynthetic gene clusters (smBGCs), respectively, indicating their high therapeutic potential. These findings highlight the potential of these microorganisms to serve as a valuable resource for the discovery and development of novel antibiotics and other therapeutics with high therapeutic potential.
Collapse
Affiliation(s)
- Rajkumari Mazumdar
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, India;
- Department of Molecular Biology & Biotechnology, Cotton University, Guwahati 781001, India
| | - Kangkon Saikia
- Bioinformatics Infrastructure Facility, Institute of Advanced Study in Science and Technology, Guwahati 781035, India;
| | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, India;
| |
Collapse
|
3
|
Sinner EK, Li R, Marous DR, Townsend CA. ThnL, a B12-dependent radical S-adenosylmethionine enzyme, catalyzes thioether bond formation in carbapenem biosynthesis. Proc Natl Acad Sci U S A 2022; 119:e2206494119. [PMID: 35969793 PMCID: PMC9407657 DOI: 10.1073/pnas.2206494119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
Complex carbapenems are important clinical antibiotics used to treat recalcitrant infections. Their biosynthetic gene clusters contain three essential B12-dependent radical S-adenosylmethionine (rSAM) enzymes. The majority of characterized enzymes in this subfamily catalyze methyl transfer, but only one is required to sequentially install all methionine-derived carbons in complex carbapenems. Therefore, it is probable that the other two rSAM enzymes have noncanonical functions. Through a series of fermentation and in vitro experiments, we show that ThnL uses radical SAM chemistry to catalyze thioether bond formation between C2 of a carbapenam precursor and pantetheine, uniting initial bicycle assembly common to all carbapenems with later tailoring events unique to complex carbapenems. ThnL also catalyzes reversible thiol/disulfide redox on pantetheine. Neither of these functions has been observed previously in a B12-dependent radical SAM enzyme. ThnL expands the known activity of this subclass of enzymes beyond carbon-carbon bond formation or rearrangement. It is also the only radical SAM enzyme currently known to catalyze carbon-sulfur bond formation with only an rSAM Fe-S cluster and no additional auxiliary clusters.
Collapse
Affiliation(s)
- Erica K. Sinner
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
| | - Rongfeng Li
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
| | - Daniel R. Marous
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
| | - Craig A. Townsend
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
4
|
Purification and characterization of sequential cobalamin-dependent radical SAM methylases ThnK and TokK in carbapenem β-lactam antibiotic biosynthesis. Methods Enzymol 2022; 669:29-44. [PMID: 35644176 DOI: 10.1016/bs.mie.2021.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
ThnK and TokK are cobalamin-dependent radical S-adenosylmethionine enzymes that catalyze sequential methylations of a common carbapenem biosynthetic intermediate. ThnK was an early characterized member of the subfamily of cobalamin-dependent radical S-adenosylmethionine enzymes. Since initial publication of the ThnK function, the field has progressed, and we have made methodological strides in the expression and purification of this enzyme and its ortholog TokK. An optimized protocol for obtaining the enzymes in pure and active form has enabled us to characterize their reactions and gain greater insight into the kinetic behavior of the sequential methylations they catalyze. We share here the methods and strategy that we have developed through our study of these enzymes.
Collapse
|
5
|
Iorio M, Gentile A, Brunati C, Tocchetti A, Landini P, Maffioli SI, Donadio S, Sosio M. Allopeptimicins: unique antibacterial metabolites generated by hybrid PKS-NRPS, with original self-defense mechanism in Actinoallomurus. RSC Adv 2022; 12:16640-16655. [PMID: 35754877 PMCID: PMC9169493 DOI: 10.1039/d2ra02094g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/25/2022] [Indexed: 11/21/2022] Open
Abstract
In the search for structurally novel metabolites with antibacterial activity, innovative approaches must be implemented to increase the probability of discovering novel chemistry from microbial sources. Here we report on the application of metabolomic tools to the genus Actinoallomurus, a poorly explored member of the Actinobacteria. From examining extracts derived from 88 isolates belonging to this genus, we identified a family of cyclodepsipeptides acylated with a C20 polyketide chain, which we named allopeptimicins. These molecules possess unusual structural features, including several double bonds in the amino-polyketide chain and four non-proteinogenic amino acids in the octapeptide. Remarkably, allopeptimicins are produced as a complex of active and inactive congeners, the latter carrying a sulfate group on the polyketide amine. This modification is also a mechanism of self-protection in the producer strain. The structural uniqueness of allopeptimicins is reflected in a biosynthetic gene cluster showing a mosaic structure, with dedicated gene cassettes devoted to formation of specialized precursors and modular assembly lines related to those from different pathways.
Collapse
|
6
|
Jeyachandran VR, Boal AK. Structural insights into auxiliary cofactor usage by radical S-adenosylmethionine enzymes. Curr Opin Chem Biol 2022; 68:102153. [PMID: 35512465 DOI: 10.1016/j.cbpa.2022.102153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 11/03/2022]
Abstract
Radical S-adenosylmethionine (SAM) enzymes use a common catalytic core for diverse transformations. While all radical SAM enzymes bind a Fe4S4 cluster via a characteristic tri-cysteine motif, many bind additional metal cofactors. Recently reported structures of radical SAM enzymes that use methylcobalamin or additional iron-sulfur clusters as cosubstrates show that these auxiliary units are anchored by N- and C-terminal domains that vary significantly in size and topology. Despite this architectural diversity, all use a common surface for auxiliary cofactor docking. In the sulfur insertion and metallocofactor assembly systems evaluated here, interaction with iron-sulfur cluster assembly proteins or downstream scaffold proteins is an important component of catalysis. Structures of these complexes represent important new frontiers in structural analysis of radical SAM enzymes.
Collapse
Affiliation(s)
- Vivian Robert Jeyachandran
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Amie K Boal
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA; Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
7
|
Sinner E, Marous DR, Townsend CA. Evolution of Methods for the Study of Cobalamin-Dependent Radical SAM Enzymes. ACS BIO & MED CHEM AU 2022; 2:4-10. [PMID: 35341020 PMCID: PMC8950095 DOI: 10.1021/acsbiomedchemau.1c00032] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While bioinformatic evidence of cobalamin-dependent radical S-adenosylmethionine (SAM) enzymes has existed since the naming of the radical SAM superfamily in 2001, none were biochemically characterized until 2011. In the past decade, the field has flourished as methodological advances have facilitated study of the subfamily. Because of the ingenuity and perseverance of researchers in this field, we now have functional, mechanistic, and structural insight into how this class of enzymes harnesses the power of both the cobalamin and radical SAM cofactors to achieve catalysis. All of the early characterized enzymes in this subfamily were methylases, but the activity of these enzymes has recently been expanded beyond methylation. We anticipate that the characterized functions of these enzymes will become both better understood and increasingly diverse with continued study.
Collapse
Affiliation(s)
- Erica
K. Sinner
- Department
of Chemistry, Johns Hopkins University, 3400 N Charles St., Baltimore, Maryland 21218, United States
| | - Daniel R. Marous
- Department
of Chemistry, Wittenberg University, 200 W Ward St., Springfield, Ohio 45504, United States
| | - Craig A. Townsend
- Department
of Chemistry, Johns Hopkins University, 3400 N Charles St., Baltimore, Maryland 21218, United States
| |
Collapse
|
8
|
Knox HL, Sinner EK, Townsend CA, Boal AK, Booker SJ. Structure of a B 12-dependent radical SAM enzyme in carbapenem biosynthesis. Nature 2022; 602:343-348. [PMID: 35110734 PMCID: PMC8950224 DOI: 10.1038/s41586-021-04392-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/22/2021] [Indexed: 11/08/2022]
Abstract
Carbapenems are antibiotics of last resort in the clinic. Owing to their potency and broad-spectrum activity, they are an important part of the antibiotic arsenal. The vital role of carbapenems is exemplified by the approval acquired by Merck from the US Food and Drug Administration (FDA) for the use of an imipenem combination therapy to treat the increased levels of hospital-acquired and ventilator-associated bacterial pneumonia that have occurred during the COVID-19 pandemic1. The C6 hydroxyethyl side chain distinguishes the clinically used carbapenems from the other classes of β-lactam antibiotics and is responsible for their low susceptibility to inactivation by occluding water from the β-lactamase active site2. The construction of the C6 hydroxyethyl side chain is mediated by cobalamin- or B12-dependent radical S-adenosylmethionine (SAM) enzymes3. These radical SAM methylases (RSMTs) assemble the alkyl backbone by sequential methylation reactions, and thereby underlie the therapeutic usefulness of clinically used carbapenems. Here we present X-ray crystal structures of TokK, a B12-dependent RSMT that catalyses three-sequential methylations during the biosynthesis of asparenomycin A. These structures, which contain the two metallocofactors of the enzyme and were determined in the presence and absence of a carbapenam substrate, provide a visualization of a B12-dependent RSMT that uses the radical mechanism that is shared by most of these enzymes. The structures provide insight into the stereochemistry of initial C6 methylation and suggest that substrate positioning governs the rate of each methylation event.
Collapse
Affiliation(s)
- Hayley L Knox
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
| | - Erica K Sinner
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Craig A Townsend
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA.
| | - Amie K Boal
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA.
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA.
| | - Squire J Booker
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA.
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA.
- The Howard Hughes Medical Institute, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
9
|
Biology and applications of co-produced, synergistic antimicrobials from environmental bacteria. Nat Microbiol 2021; 6:1118-1128. [PMID: 34446927 DOI: 10.1038/s41564-021-00952-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/21/2021] [Indexed: 02/07/2023]
Abstract
Environmental bacteria, such as Streptomyces spp., produce specialized metabolites that are potent antibiotics and therapeutics. Selected specialized antimicrobials are co-produced and function together synergistically. Co-produced antimicrobials comprise multiple chemical classes and are produced by a wide variety of bacteria in different environmental niches, suggesting that their combined functions are ecologically important. Here, we highlight the exquisite mechanisms that underlie the simultaneous production and functional synergy of 16 sets of co-produced antimicrobials. To date, antibiotic and antifungal discovery has focused mainly on single molecules, but we propose that methods to target co-produced antimicrobials could widen the scope and applications of discovery programs.
Collapse
|
10
|
Goh F, Zhang MM, Lim TR, Low KN, Nge CE, Heng E, Yeo WL, Sirota FL, Crasta S, Tan Z, Ng V, Leong CY, Zhang H, Lezhava A, Chen SL, Hoon SS, Eisenhaber F, Eisenhaber B, Kanagasundaram Y, Wong FT, Ng SB. Identification and engineering of 32 membered antifungal macrolactone notonesomycins. Microb Cell Fact 2020; 19:71. [PMID: 32192516 PMCID: PMC7081687 DOI: 10.1186/s12934-020-01328-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/12/2020] [Indexed: 12/29/2022] Open
Abstract
Notonesomycin A is a 32-membered bioactive glycosylated macrolactone known to be produced by Streptomyces aminophilus subsp. notonesogenes 647-AV1 and S. aminophilus DSM 40186. In a high throughput antifungal screening campaign, we identified an alternative notonesomycin A producing strain, Streptomyces sp. A793, and its biosynthetic gene cluster. From this strain, we further characterized a new more potent antifungal non-sulfated analogue, named notonesomycin B. Through CRISPR–Cas9 engineering of the biosynthetic gene cluster, we were able to increase the production yield of notonesomycin B by up to 18-fold as well as generate a strain that exclusively produces this analogue.
Collapse
Affiliation(s)
- Falicia Goh
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore.,Biotransformation Innovation Platform, A*STAR, 61 Biopolis Drive, Proteos Level 4, Singapore, 138673, Singapore
| | - Mingzi M Zhang
- Metabolic Engineering, Functional Molecules & Polymers, Institute of Chemical and Engineering Sciences, A*STAR, 31 Biopolis Way, Nanos #01-01, Singapore, 138669, Singapore.,Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan, R.O.C
| | - Tian Ru Lim
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | - Kia Ngee Low
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | - Choy Eng Nge
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | - Elena Heng
- Molecular Engineering Laboratory, Institute of Bioengineering and Nanotechnology, A*STAR, 31 Biopolis Way, Nanos, Singapore, 138669, Singapore
| | - Wan Lin Yeo
- Metabolic Engineering, Functional Molecules & Polymers, Institute of Chemical and Engineering Sciences, A*STAR, 31 Biopolis Way, Nanos #01-01, Singapore, 138669, Singapore
| | - Fernanda L Sirota
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | - Sharon Crasta
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | - Zann Tan
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | - Veronica Ng
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | - Chung Yan Leong
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | - Huibin Zhang
- Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Genome #02-01, Singapore, 138672, Singapore
| | - Alexander Lezhava
- Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Genome #02-01, Singapore, 138672, Singapore
| | - Swaine L Chen
- Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Genome #02-01, Singapore, 138672, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 10, Singapore, 119228, Singapore
| | - Shawn S Hoon
- Molecular Engineering Laboratory, Institute of Bioengineering and Nanotechnology, A*STAR, 31 Biopolis Way, Nanos, Singapore, 138669, Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore.,School of Computer Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore, 637553, Singapore
| | - Birgit Eisenhaber
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | | | - Fong T Wong
- Molecular Engineering Laboratory, Institute of Bioengineering and Nanotechnology, A*STAR, 31 Biopolis Way, Nanos, Singapore, 138669, Singapore.
| | - Siew Bee Ng
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore.
| |
Collapse
|
11
|
Sinner EK, Lichstrahl MS, Li R, Marous DR, Townsend CA. Methylations in complex carbapenem biosynthesis are catalyzed by a single cobalamin-dependent radical S-adenosylmethionine enzyme. Chem Commun (Camb) 2019; 55:14934-14937. [PMID: 31774078 DOI: 10.1039/c9cc07197k] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Complex carbapenem β-lactam antibiotics contain diverse C6 alkyl substituents constructed by cobalamin-dependent radical SAM enzymes. TokK installs the C6 isopropyl chain found in asparenomycin. Time-course analyses of TokK and its ortholog ThnK, which forms the C6 ethyl chain of thienamycin, indicate that catalysis occurs through a sequence of discrete, non-processive methyl transfers.
Collapse
Affiliation(s)
- Erica K Sinner
- Department of Chemistry, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, USA.
| | | | | | | | | |
Collapse
|
12
|
Rabe P, Kamps JJAG, Schofield CJ, Lohans CT. Roles of 2-oxoglutarate oxygenases and isopenicillin N synthase in β-lactam biosynthesis. Nat Prod Rep 2018; 35:735-756. [PMID: 29808887 PMCID: PMC6097109 DOI: 10.1039/c8np00002f] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 01/01/2023]
Abstract
Covering: up to 2017 2-Oxoglutarate (2OG) dependent oxygenases and the homologous oxidase isopenicillin N synthase (IPNS) play crucial roles in the biosynthesis of β-lactam ring containing natural products. IPNS catalyses formation of the bicyclic penicillin nucleus from a tripeptide. 2OG oxygenases catalyse reactions that diversify the chemistry of β-lactams formed by both IPNS and non-oxidative enzymes. Reactions catalysed by the 2OG oxygenases of β-lactam biosynthesis not only involve their typical hydroxylation reactions, but also desaturation, epimerisation, rearrangement, and ring-forming reactions. Some of the enzymes involved in β-lactam biosynthesis exhibit remarkable substrate and product selectivities. We review the roles of 2OG oxygenases and IPNS in β-lactam biosynthesis, highlighting opportunities for application of knowledge of their roles, structures, and mechanisms.
Collapse
Affiliation(s)
- Patrick Rabe
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Jos J A G Kamps
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Christopher J Schofield
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Christopher T Lohans
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
13
|
Hong H, Samborskyy M, Usachova K, Schnatz K, Leadlay PF. Sulfation and amidinohydrolysis in the biosynthesis of giant linear polyenes. Beilstein J Org Chem 2017; 13:2408-2415. [PMID: 29234468 PMCID: PMC5704753 DOI: 10.3762/bjoc.13.238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/13/2017] [Indexed: 12/24/2022] Open
Abstract
Clethramycin from Streptomyces malaysiensis DSM4137, and mediomycins (produced together with clethramycin from Streptomyces mediocidicus), are near-identical giant linear polyenes apparently constructed from, respectively, a 4-guanidinobutanoate or 4-aminobutanoate starter unit and 27 polyketide extender units, and bearing a specific O-sulfonate modification at the C-29 hydroxy group. We show here that mediomycins are actually biosynthesised not by use of a different starter unit but by direct late-stage deamidination of (desulfo)clethramycin. A gene (slf) encoding a candidate sulfotransferase has been located in both gene clusters. Deletion of this gene in DSM4137 led to accumulation of desulfoclethramycin only, instead of a mixture of desulfoclethramycin and clethramycin. The mediomycin gene cluster does not encode an amidinohydrolase, but when three candidate amidinohydrolase genes from elsewhere in the S. mediocidicus genome were individually expressed in Escherichia coli and assayed, only one of them (medi4948), located 670 kbp away from the mediomycin gene cluster on the chromosome, catalysed the removal of the amidino group from desulfoclethramycin. Subsequent cloning of medi4948 into DSM4137 caused mediomycins A and B to accumulate at the expense of clethramycin and desulfoclethramycin, respectively, a rare case where an essential biosynthetic gene is not co-located with other pathway genes. Clearly, both desulfoclethramycin and clethramycin are substrates for this amidinohydrolase. Also, purified recombinant sulfotransferase from DSM4137, in the presence of 3'-phosphoadenosine-5'-phosphosulfate as donor, efficiently converted mediomycin B to mediomycin A in vitro. Thus, in the final steps of mediomycin A biosynthesis deamidination and sulfotransfer can take place in either order.
Collapse
Affiliation(s)
- Hui Hong
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | | | | - Katharina Schnatz
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Peter F Leadlay
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
14
|
Dunbar KL, Scharf DH, Litomska A, Hertweck C. Enzymatic Carbon-Sulfur Bond Formation in Natural Product Biosynthesis. Chem Rev 2017; 117:5521-5577. [PMID: 28418240 DOI: 10.1021/acs.chemrev.6b00697] [Citation(s) in RCA: 356] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sulfur plays a critical role for the development and maintenance of life on earth, which is reflected by the wealth of primary metabolites, macromolecules, and cofactors bearing this element. Whereas a large body of knowledge has existed for sulfur trafficking in primary metabolism, the secondary metabolism involving sulfur has long been neglected. Yet, diverse sulfur functionalities have a major impact on the biological activities of natural products. Recent research at the genetic, biochemical, and chemical levels has unearthed a broad range of enzymes, sulfur shuttles, and chemical mechanisms for generating carbon-sulfur bonds. This Review will give the first systematic overview on enzymes catalyzing the formation of organosulfur natural products.
Collapse
Affiliation(s)
- Kyle L Dunbar
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Daniel H Scharf
- Life Sciences Institute, University of Michigan , 210 Washtenaw Avenue, Ann Arbor, Michigan 48109-2216, United States
| | - Agnieszka Litomska
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany.,Friedrich Schiller University , 07743 Jena, Germany
| |
Collapse
|
15
|
Townsend CA. Convergent biosynthetic pathways to β-lactam antibiotics. Curr Opin Chem Biol 2016; 35:97-108. [PMID: 27693891 DOI: 10.1016/j.cbpa.2016.09.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 02/05/2023]
Abstract
Five naturally-occurring families of β-lactams have inspired a class of drugs that constitute >60% of the antimicrobials used in human medicine. Their biosynthetic pathways reveal highly individualized synthetic strategies that yet converge on a common azetidinone ring assembled in structural contexts that confer selective binding and inhibition of d,d-transpeptidases that play essential roles in bacterial cell wall (peptidoglycan) biosynthesis. These enzymes belong to a single 'clan' of evolutionarily distinct serine hydrolases whose active site geometry and mechanism of action is specifically matched by these antibiotics for inactivation that is kinetically competitive with their native function. Unusual enzyme-mediated reactions and catalytic multitasking in these pathways are discussed with particular attention to the diverse ways the β-lactam itself is generated, and more broadly how the intrinsic reactivity of this core structural element is modulated in natural systems through the introduction of ring strain and electronic effects.
Collapse
Affiliation(s)
- Craig A Townsend
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
16
|
Ding W, Li Q, Jia Y, Ji X, Qianzhu H, Zhang Q. Emerging Diversity of the Cobalamin-Dependent Methyltransferases Involving Radical-Based Mechanisms. Chembiochem 2016; 17:1191-7. [PMID: 27028019 DOI: 10.1002/cbic.201600107] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Indexed: 11/10/2022]
Abstract
Cobalamins comprise a group of cobalt-containing organometallic cofactors that play important roles in cellular metabolism. Although many cobalamin-dependent methyltransferases (e.g., methionine synthase MetH) have been extensively studied, a new group of methyltransferases that are cobalamin-dependent and utilize radical chemistry in catalysis is just beginning to be appreciated. In this Concept article, we summarize recent advances in the understanding of the radical-based and cobalamin-dependent methyltransferases and discuss the functional and mechanistic diversity of this emerging class of enzymes.
Collapse
Affiliation(s)
- Wei Ding
- Key Laboratory of Cell Activities and Stress Adaptations, (Ministry of Education), School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.,Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Qien Li
- Key Laboratory of Cell Activities and Stress Adaptations, (Ministry of Education), School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Youli Jia
- Key Laboratory of Cell Activities and Stress Adaptations, (Ministry of Education), School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.,Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Xinjian Ji
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Haocheng Qianzhu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
17
|
Consecutive radical S-adenosylmethionine methylations form the ethyl side chain in thienamycin biosynthesis. Proc Natl Acad Sci U S A 2015; 112:10354-8. [PMID: 26240322 DOI: 10.1073/pnas.1508615112] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite their broad anti-infective utility, the biosynthesis of the paradigm carbapenem antibiotic, thienamycin, remains largely unknown. Apart from the first two steps shared with a simple carbapenem, the pathway sharply diverges to the more structurally complex members of this class of β-lactam antibiotics, such as thienamycin. Existing evidence points to three putative cobalamin-dependent radical S-adenosylmethionine (RS) enzymes, ThnK, ThnL, and ThnP, as potentially being responsible for assembly of the ethyl side chain at C6, bridgehead epimerization at C5, installation of the C2-thioether side chain, and C2/3 desaturation. The C2 substituent has been demonstrated to be derived by stepwise truncation of CoA, but the timing of these events with respect to C2-S bond formation is not known. We show that ThnK of the three apparent cobalamin-dependent RS enzymes performs sequential methylations to build out the C6-ethyl side chain in a stereocontrolled manner. This enzymatic reaction was found to produce expected RS methylase coproducts S-adenosylhomocysteine and 5'-deoxyadenosine, and to require cobalamin. For double methylation to occur, the carbapenam substrate must bear a CoA-derived C2-thioether side chain, implying the activity of a previous sulfur insertion by an as-yet unidentified enzyme. These insights allow refinement of the central steps in complex carbapenem biosynthesis.
Collapse
|
18
|
Doroghazi JR, Buckley DH. Intraspecies comparison of Streptomyces pratensis genomes reveals high levels of recombination and gene conservation between strains of disparate geographic origin. BMC Genomics 2014; 15:970. [PMID: 25399205 PMCID: PMC4239341 DOI: 10.1186/1471-2164-15-970] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/29/2014] [Indexed: 01/23/2023] Open
Abstract
Background Streptomyces are widespread bacteria that contribute to the terrestrial carbon cycle and produce the majority of clinically useful antibiotics. While interspecific genomic diversity has been investigated among Streptomyces, information is lacking on intraspecific genomic diversity. Streptomyces pratensis has high rates of homologous recombination but the impact of such gene exchange on genome evolution and the evolution of natural product gene clusters remains uncharacterized. Results We report draft genome sequences of four S. pratensis strains and compare to the complete genome of Streptomyces flavogriseus IAF-45-CD (=ATCC 33331), a strain recently reclassified to S. pratensis. Despite disparate geographic origins, the genomes are highly similar with 85.9% of genes present in the core genome and conservation of all natural product gene clusters. Natural products include a novel combination of carbapenem and beta-lactamase inhibitor gene clusters. While high intraspecies recombination rates abolish the phylogenetic signal across the genome, intraspecies recombination is suppressed in two genomic regions. The first region is centered on an insertion/deletion polymorphism and the second on a hybrid NRPS-PKS gene. Finally, two gene families accounted for over 25% of the divergent genes in the core genome. The first includes homologs of bldB (required for spore development and antibiotic production) while the second includes homologs of an uncharacterized protein with a helix-turn-helix motif (hpb). Genes from these families co-occur with fifteen pairs spread across the genome. These genes have evidence for co-evolution of co-localized pairs, supporting previous assertions that these genes may function akin to a toxin-antitoxin system. Conclusions S. pratensis genomes are highly similar with exceptional levels of recombination which erase phylogenetic signal among strains of the species. This species has a large core genome and variable terminal regions that are smaller than those found in interspecies comparisons. There is no geographic differentiation between these strains, but there is evidence for local linkage disequilibrium affecting two genomic regions. We have also shown further observational evidence that the DUF397-HTH (bldB and hpb) are a novel toxin-antitoxin pair.
Collapse
Affiliation(s)
| | - Daniel H Buckley
- Department of Crop and Soil Sciences, Cornell University, Ithaca, USA.
| |
Collapse
|