1
|
Roy P, Maturano J, Hasdemir H, Lopez A, Xu F, Hellman J, Tajkhorshid E, Sarlah D, Das A. Elucidating the Mechanism of Metabolism of Cannabichromene by Human Cytochrome P450s. JOURNAL OF NATURAL PRODUCTS 2024; 87:639-651. [PMID: 38477310 PMCID: PMC11061835 DOI: 10.1021/acs.jnatprod.3c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
Cannabichromene (CBC) is a nonpsychoactive phytocannabinoid well-known for its wide-ranging health advantages. However, there is limited knowledge regarding its human metabolism following CBC consumption. This research aimed to explore the metabolic pathways of CBC by various human liver cytochrome P450 (CYP) enzymes and support the outcomes using in vivo data from mice. The results unveiled two principal CBC metabolites generated by CYPs: 8'-hydroxy-CBC and 6',7'-epoxy-CBC, along with a minor quantity of 1″-hydroxy-CBC. Notably, among the examined CYPs, CYP2C9 demonstrated the highest efficiency in producing these metabolites. Moreover, through a molecular dynamics simulation spanning 1 μs, it was observed that CBC attains stability at the active site of CYP2J2 by forming hydrogen bonds with I487 and N379, facilitated by water molecules, which specifically promotes the hydroxy metabolite's formation. Additionally, the presence of cytochrome P450 reductase (CPR) amplified CBC's binding affinity to CYPs, particularly with CYP2C8 and CYP3A4. Furthermore, the metabolites derived from CBC reduced cytokine levels, such as IL6 and NO, by approximately 50% in microglia cells. This investigation offers valuable insights into the biotransformation of CBC, underscoring the physiological importance and the potential significance of these metabolites.
Collapse
Affiliation(s)
- Pritam Roy
- School
of Chemistry and Biochemistry, College of Sciences, and Parker H.
Petit Institute for Bioengineering and Biosciences (IBB), Georgia Institute of Technology (GaTech), Atlanta, Georgia 30332, United States
| | - Jonathan Maturano
- Roger
Adams Laboratory, Department of Chemistry, Cancer Center at Illinois, University of Illinois, Urbana, Illinois 61801, United States
| | - Hale Hasdemir
- Theoretical
and Computational Biophysics Group, NIH Center for Macromolecular
Modeling and Visualization, Beckman Institute for Advanced Science
and Technology, Department of Biochemistry, and Center for Biophysics
and Quantitative Biology, University of
Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Angel Lopez
- School
of Chemistry and Biochemistry, College of Sciences, and Parker H.
Petit Institute for Bioengineering and Biosciences (IBB), Georgia Institute of Technology (GaTech), Atlanta, Georgia 30332, United States
| | - Fengyun Xu
- Judith
Hellman Department of Anesthesia and Perioperative Care, University of California, San Francisco, California 94143, United States
| | - Judith Hellman
- Department
of Anesthesia and Perioperative Care, University
of California, San Francisco, California 94143, United States
| | - Emad Tajkhorshid
- Theoretical
and Computational Biophysics Group, NIH Center for Macromolecular
Modeling and Visualization, Beckman Institute for Advanced Science
and Technology, Department of Biochemistry, and Center for Biophysics
and Quantitative Biology, University of
Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - David Sarlah
- Roger
Adams Laboratory, Department of Chemistry, Cancer Center at Illinois, University of Illinois, Urbana, Illinois 61801, United States
| | - Aditi Das
- School
of Chemistry and Biochemistry, College of Sciences, and Parker H.
Petit Institute for Bioengineering and Biosciences (IBB), Georgia Institute of Technology (GaTech), Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Alijotas-Reig J, Esteve-Valverde E, Anunciación-Llunell A, Marques-Soares J, Pardos-Gea J, Miró-Mur F. Pathogenesis, Diagnosis and Management of Obstetric Antiphospholipid Syndrome: A Comprehensive Review. J Clin Med 2022; 11:675. [PMID: 35160128 PMCID: PMC8836886 DOI: 10.3390/jcm11030675] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Antiphospholipid syndrome is an autoimmune disorder characterized by vascular thrombosis and/or pregnancy morbidity associated with persistent antiphospholipid antibody positivity. Cases fulfilling the Sydney criteria for obstetric morbidity with no previous thrombosis are known as obstetric antiphospholipid syndrome (OAPS). OAPS is the most identified cause of recurrent pregnancy loss and late-pregnancy morbidity related to placental injury. Cases with incomplete clinical or laboratory data are classified as obstetric morbidity APS (OMAPS) and non-criteria OAPS (NC-OAPS), respectively. Inflammatory and thrombotic mechanisms are involved in the pathophysiology of OAPS. Trophoblasts, endothelium, platelets and innate immune cells are key cellular players. Complement activation plays a crucial pathogenic role. Secondary placental thrombosis appears by clot formation in response to tissue factor activation. New risk assessment tools could improve the prediction of obstetric complication recurrences or thromboses. The standard-of-care treatment consists of low-dose aspirin and prophylactic low molecular weight heparin. In refractory cases, the addition of hydroxychloroquine, low-dose prednisone or IVIG improve pregnancy outcomes. Statins and eculizumab are currently being tested for treating selected OAPS women. Finally, we revisited recent insights and concerns about the pathophysiology, diagnosis and management of OAPS.
Collapse
Affiliation(s)
- Jaume Alijotas-Reig
- Systemic Autoimmune Diseases Research Unit, Vall d’Hebron Hospital Campus, Vall d’Hebron Institut de Recerca (VHIR), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.A.-L.); (J.M.-S.); (J.P.-G.)
- Systemic Autoimmune Diseases Unit, Department of Internal Medicine, Vall d’Hebron Hospital Campus, Hospital Universitari Vall d’Hebron (HUVH), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Department of Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Enrique Esteve-Valverde
- Department of Internal Medicine, Althaia Xarxa Assistencial, Carrer Dr Joan Soler 1-3, 08243 Manresa, Spain;
| | - Ariadna Anunciación-Llunell
- Systemic Autoimmune Diseases Research Unit, Vall d’Hebron Hospital Campus, Vall d’Hebron Institut de Recerca (VHIR), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.A.-L.); (J.M.-S.); (J.P.-G.)
| | - Joana Marques-Soares
- Systemic Autoimmune Diseases Research Unit, Vall d’Hebron Hospital Campus, Vall d’Hebron Institut de Recerca (VHIR), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.A.-L.); (J.M.-S.); (J.P.-G.)
- Systemic Autoimmune Diseases Unit, Department of Internal Medicine, Vall d’Hebron Hospital Campus, Hospital Universitari Vall d’Hebron (HUVH), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Josep Pardos-Gea
- Systemic Autoimmune Diseases Research Unit, Vall d’Hebron Hospital Campus, Vall d’Hebron Institut de Recerca (VHIR), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.A.-L.); (J.M.-S.); (J.P.-G.)
- Systemic Autoimmune Diseases Unit, Department of Internal Medicine, Vall d’Hebron Hospital Campus, Hospital Universitari Vall d’Hebron (HUVH), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Francesc Miró-Mur
- Systemic Autoimmune Diseases Research Unit, Vall d’Hebron Hospital Campus, Vall d’Hebron Institut de Recerca (VHIR), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.A.-L.); (J.M.-S.); (J.P.-G.)
| |
Collapse
|
3
|
Kruyer NS, Sugianto W, Tickman BI, Alba Burbano D, Noireaux V, Carothers JM, Peralta-Yahya P. Membrane Augmented Cell-Free Systems: A New Frontier in Biotechnology. ACS Synth Biol 2021; 10:670-681. [PMID: 33749249 DOI: 10.1021/acssynbio.0c00625] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Membrane proteins are present in a wide array of cellular processes from primary and secondary metabolite synthesis to electron transport and single carbon metabolism. A key barrier to applying membrane proteins industrially is their difficult functional production. Beyond expression, folding, and membrane insertion, membrane protein activity is influenced by the physicochemical properties of the associated membrane, making it difficult to achieve optimal membrane protein performance outside the endogenous host. In this review, we highlight recent work on production of membrane proteins in membrane augmented cell-free systems (CFSs) and applications thereof. CFSs lack membranes and can thus be augmented with user-specified, tunable, mimetic membranes to generate customized environments for production of functional membrane proteins of interest. Membrane augmented CFSs would enable the synthesis of more complex plant secondary metabolites, the growth and division of synthetic cells for drug delivery and cell therapeutic applications, as well as enable green energy applications including methane capture and artificial photosynthesis.
Collapse
Affiliation(s)
- Nicholas S. Kruyer
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Widianti Sugianto
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Benjamin I. Tickman
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
| | - Diego Alba Burbano
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - James M. Carothers
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Pamela Peralta-Yahya
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
4
|
Sligar SG, Denisov IG. Nanodiscs: A toolkit for membrane protein science. Protein Sci 2020; 30:297-315. [PMID: 33165998 DOI: 10.1002/pro.3994] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 12/25/2022]
Abstract
Membrane proteins are involved in numerous vital biological processes, including transport, signal transduction and the enzymes in a variety of metabolic pathways. Integral membrane proteins account for up to 30% of the human proteome and they make up more than half of all currently marketed therapeutic targets. Unfortunately, membrane proteins are inherently recalcitrant to study using the normal toolkit available to scientists, and one is most often left with the challenge of finding inhibitors, activators and specific antibodies using a denatured or detergent solubilized aggregate. The Nanodisc platform circumvents these challenges by providing a self-assembled system that renders typically insoluble, yet biologically and pharmacologically significant, targets such as receptors, transporters, enzymes, and viral antigens soluble in aqueous media in a native-like bilayer environment that maintain a target's functional activity. By providing a bilayer surface of defined composition and structure, Nanodiscs have found great utility in the study of cellular signaling complexes that assemble on a membrane surface. Nanodiscs provide a nanometer scale vehicle for the in vivo delivery of amphipathic drugs, therapeutic lipids, tethered nucleic acids, imaging agents and active protein complexes. This means for generating nanoscale lipid bilayers has spawned the successful use of numerous other polymer and peptide amphipathic systems. This review, in celebration of the Anfinsen Award, summarizes some recent results and provides an inroad into the current and historical literature.
Collapse
Affiliation(s)
- Stephen G Sligar
- Departments of Biochemistry Chemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| | - Ilia G Denisov
- Departments of Biochemistry Chemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
5
|
Das A, Weigle AT, Arnold WR, Kim JS, Carnevale LN, Huff HC. CYP2J2 Molecular Recognition: A New Axis for Therapeutic Design. Pharmacol Ther 2020; 215:107601. [PMID: 32534953 PMCID: PMC7773148 DOI: 10.1016/j.pharmthera.2020.107601] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022]
Abstract
Cytochrome P450 (CYP) epoxygenases are a special subset of heme-containing CYP enzymes capable of performing the epoxidation of polyunsaturated fatty acids (PUFA) and the metabolism of xenobiotics. This dual functionality positions epoxygenases along a metabolic crossroad. Therefore, structure-function studies are critical for understanding their role in bioactive oxy-lipid synthesis, drug-PUFA interactions, and for designing therapeutics that directly target the epoxygenases. To better exploit CYP epoxygenases as therapeutic targets, there is a need for improved understanding of epoxygenase structure-function. Of the characterized epoxygenases, human CYP2J2 stands out as a potential target because of its role in cardiovascular physiology. In this review, the early research on the discovery and activity of epoxygenases is contextualized to more recent advances in CYP epoxygenase enzymology with respect to PUFA and drug metabolism. Additionally, this review employs CYP2J2 epoxygenase as a model system to highlight both the seminal works and recent advances in epoxygenase enzymology. Herein we cover CYP2J2's interactions with PUFAs and xenobiotics, its tissue-specific physiological roles in diseased states, and its structural features that enable epoxygenase function. Additionally, the enumeration of research on CYP2J2 identifies the future needs for the molecular characterization of CYP2J2 to enable a new axis of therapeutic design.
Collapse
Affiliation(s)
- Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Bioengineering, Neuroscience Program, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - Austin T Weigle
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - William R Arnold
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Justin S Kim
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Lauren N Carnevale
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Hannah C Huff
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
6
|
Kuzikov A, Masamrekh R, Ershov P, Mezentsev Y, Ivanov A, Gilep A, Usanov S, Shumyantseva V. Interaction of Isatin with Cytochrome P450 Isoenzymes: Investigation by Means of Spectral and Electrochemical Methods The role of Isatin in Cytochromes P450 Ligand-Protein Binding Events. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-019-00707-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Polymorphisms of CYP2C8 Alter First-Electron Transfer Kinetics and Increase Catalytic Uncoupling. Int J Mol Sci 2019; 20:ijms20184626. [PMID: 31540428 PMCID: PMC6769586 DOI: 10.3390/ijms20184626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/29/2022] Open
Abstract
Cytochrome P450 2C8 (CYP2C8) epoxygenase is responsible for the metabolism of over 60 clinically relevant drugs, notably the anticancer drug Taxol (paclitaxel, PAC). Specifically, there are naturally occurring polymorphisms, CYP2C8*2 and CYP2C8*3, that display altered PAC hydroxylation rates despite these mutations not being located in the active site. Herein, we demonstrate that these polymorphisms result in a greater uncoupling of PAC metabolism by increasing the amount of hydrogen peroxide formed per PAC turnover. Anaerobic stopped-flow measurements determined that these polymorphisms have altered first electron transfer kinetics, compared to CYP2C8*1 (wildtype), that suggest electron transfer from cytochrome P450 reductase (CPR) is disfavored. Therefore, these data demonstrate that these polymorphisms affect the catalytic cycle of CYP2C8 and suggest that redox interactions with CPR are disrupted.
Collapse
|
8
|
Malinska H, Hüttl M, Oliyarnyk O, Markova I, Poruba M, Racova Z, Kazdova L, Vecera R. Beneficial effects of troxerutin on metabolic disorders in non-obese model of metabolic syndrome. PLoS One 2019; 14:e0220377. [PMID: 31404079 PMCID: PMC6690532 DOI: 10.1371/journal.pone.0220377] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/15/2019] [Indexed: 12/19/2022] Open
Abstract
Background Troxerutin (TRX) has a beneficial effect on blood viscosity and platelet aggregation, and is currently used for the treatment of chronic varicosity. Recently, TRX can improve lipid abnormalities, glucose intolerance and oxidative stress in high-fat diet-induced metabolic disorders. In this study, we tested the effect of TRX on metabolic syndrome-associated disorders using a non-obese model of metabolic syndrome–the Hereditary Hypertriglyceridaemic rats (HHTg). Methods Adult male HHTg rats were fed standard diet without or with TRX (150 mg/kg bwt/day for 4 weeks). Results Compared to untreated rats, TRX supplementation in HHTg rats decreased serum glucose (p<0.05) and insulin (p<0.05). Although blood lipids were not affected, TRX decreased hepatic cholesterol concentrations (p<0.01) and reduced gene expression of HMGCR, SREBP2 and SCD1 (p<0.01), involved in cholesterol synthesis and lipid homeostasis. TRX-treated rats exhibited decreased lipoperoxidation and increased activity of antioxidant enzymes SOD and GPx (p<0.05) in the liver. In addition, TRX supplementation increased insulin sensitivity in muscles and epididymal adipose tissue (p<0.05). Elevated serum adiponectin (p<0.05) and decreased muscle triglyceride (p<0.05) helped improve insulin sensitivity. Among the beneficial effects of TRX were changes to cytochrome P450 family enzymes. Hepatic gene expression of CYP4A1, CYP4A3 and CYP5A1 (p<0.01) decreased, while there was a marked elevation in gene expression of CYP1A1 (p<0.01). Conclusion Our results indicate that TRX improves hepatic lipid metabolism and insulin sensitivity in peripheral tissues. As well as ameliorating oxidative stress, TRX can reduce ectopic lipid deposition, affect genes involved in lipid metabolism, and influence the activity of CYP family enzymes.
Collapse
Affiliation(s)
- Hana Malinska
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- * E-mail:
| | - Martina Hüttl
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Olena Oliyarnyk
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Irena Markova
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martin Poruba
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Zuzana Racova
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Ludmila Kazdova
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Rostislav Vecera
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
9
|
Huff HC, Maroutsos D, Das A. Lipid composition and macromolecular crowding effects on CYP2J2-mediated drug metabolism in nanodiscs. Protein Sci 2019; 28:928-940. [PMID: 30861250 DOI: 10.1002/pro.3603] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/11/2019] [Indexed: 01/13/2023]
Abstract
Lipid composition and macromolecular crowding are key external effectors of protein activity and stability whose role varies between different proteins. Therefore, it is imperative to study their effects on individual protein function. CYP2J2 is a membrane-bound cytochrome P450 in the heart involved in the metabolism of fatty acids and xenobiotics. In order to facilitate this metabolism, cytochrome P450 reductase (CPR), transfers electrons to CYP2J2 from NADPH. Herein, we use nanodiscs to show that lipid composition of the membrane bilayer affects substrate metabolism of the CYP2J2-CPR nanodisc (ND) system. Differential effects on both NADPH oxidation and substrate metabolism by CYP2J2-CPR are dependent on the lipid composition. For instance, sphingomyelin containing nanodiscs produced more secondary substrate metabolites than discs of other lipid compositions, implying a possible conformational change leading to processive metabolism. Furthermore, we demonstrate that macromolecular crowding plays a role in the lipid-solubilized CYP2J2-CPR system by increasing the Km and decreasing the Vmax , and effect that is size-dependent. Crowding also affects the CYP2J2-CPR-ND system by decreasing both the Km and Vmax for Dextran-based macromolecular crowding agents, implying an increase in substrate affinity but a lack of metabolism. Finally, protein denaturation studies show that crowding agents destabilize CYP2J2, while the multidomain protein CPR is stabilized. Overall, these studies are the first report on the role of the surrounding lipid environment and macromolecular crowding in modulating enzymatic function of CYP2J2-CPR membrane protein system.
Collapse
Affiliation(s)
- Hannah C Huff
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Demetri Maroutsos
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Aditi Das
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Beckman Institute for Advanced Science and Technology, Division of Nutritional Science, Neuroscience Program, and Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
10
|
Kuzikov AV, Masamrekh RA, Archakov AI, Shumyantseva VV. Methods for Determination of Functional Activity of Cytochrome P450 Isoenzymes. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2018. [DOI: 10.1134/s1990750818030046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Kuzikov AV, Masamrekh RA, Archakov AI, Shumyantseva VV. [Methods for determining of cytochrome P450 isozymes functional activity]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2018; 64:149-168. [PMID: 29723145 DOI: 10.18097/pbmc20186402149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review is dedicated to modern methods and technologies for determining of cytochrome P450 isozymes functional activity, such as absorbance and fluorescent spectroscopy, electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), Raman, Mossbauer, and X-ray spectroscopy, surface plasmon resonance (SPR), atomic force microscopy (AFM). Methods of molecular genetic analysis were reviewed from personalized medicine point of view. The use of chromate-mass-spectrometric methods for cytochrome P450-dependent catalytic reactions' products was discussed. The review covers modern electrochemical systems based on cytochrome P450 isozymes for their catalytic activity analysis, their use in practice and further development perspectives for experimental pharmacology, biotechnology and translational medicine.
Collapse
Affiliation(s)
- A V Kuzikov
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - R A Masamrekh
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - V V Shumyantseva
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| |
Collapse
|
12
|
Yang HC, Ge YC, Yang CH, Chao WC. Substrate Channeling of Prostaglandin H2 on the Stereochemical Control of a Cascade Cyclization Route. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hsiao-Ching Yang
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Yung-Chi Ge
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Cheng-Han Yang
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Wei-Chih Chao
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| |
Collapse
|
13
|
Abstract
Membrane proteins play a most important part in metabolism, signaling, cell motility, transport, development, and many other biochemical and biophysical processes which constitute fundamentals of life on the molecular level. Detailed understanding of these processes is necessary for the progress of life sciences and biomedical applications. Nanodiscs provide a new and powerful tool for a broad spectrum of biochemical and biophysical studies of membrane proteins and are commonly acknowledged as an optimal membrane mimetic system that provides control over size, composition, and specific functional modifications on the nanometer scale. In this review we attempted to combine a comprehensive list of various applications of nanodisc technology with systematic analysis of the most attractive features of this system and advantages provided by nanodiscs for structural and mechanistic studies of membrane proteins.
Collapse
Affiliation(s)
- Ilia G Denisov
- Department of Biochemistry and Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| | - Stephen G Sligar
- Department of Biochemistry and Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| |
Collapse
|
14
|
Arnold WR, Baylon JL, Tajkhorshid E, Das A. Asymmetric Binding and Metabolism of Polyunsaturated Fatty Acids (PUFAs) by CYP2J2 Epoxygenase. Biochemistry 2016; 55:6969-6980. [PMID: 27992998 DOI: 10.1021/acs.biochem.6b01037] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cytochrome P450 (CYP) 2J2 is the primary epoxygenase in the heart and is responsible for the epoxidation of arachidonic acid (AA), an ω-6 polyunsaturated fatty acid (PUFA), into anti-inflammatory epoxide metabolites. It also epoxidizes other PUFAs such as docosahexaenoic acid (DHA), linoleic acid (LA), and eicosapentaenoic acid (EPA). Herein, we have performed detailed thermodynamic and kinetic analyses to determine how DHA, LA, and EPA modulate the metabolism of AA by CYP2J2. We use the Nanodisc system to stabilize CYP2J2 and its redox partner, CYP reductase (CPR). We observe that DHA strongly inhibits CYP2J2-mediated AA metabolism, LA only moderately inhibits AA metabolism, and EPA exhibits insignificant inhibition. We also characterized the binding of these molecules using ebastine competitive binding assays and show that DHA binds significantly tighter to CYP2J2 than AA, EPA, or LA. Furthermore, we utilize a combined approach of molecular dynamics (MD) simulations and docking to predict key residues mediating the tight binding of DHA. We show that although all the tested fatty acids form similar contacts to the active site residues, the affinity of DHA for CYP2J2 is tighter because of the interaction of DHA with residues Arg-321, Thr-318, and Ser-493. To demonstrate the importance of these residues in binding, we mutated these residues to make two mutant variants, CYP2J2-T318A and CYP2J2-T318V/S493A. Both mutant variants showed weaker binding than the wild type (WT) to DHA and AA; DHA inhibition of AA was also mitigated in the mutants compared to the WT. Therefore, using a combined experimental and MD simulation approach, we establish that CYP2J2 inhibition of AA metabolism by DHA, EPA, and LA is asymmetric because of tighter binding of DHA to select residues in the active site.
Collapse
Affiliation(s)
- William R Arnold
- Department of Comparative Biosciences, ‡Department of Biochemistry, §Center for Biophysics and Quantitative Biology, ∥Beckman Institute for Advanced Science and Technology, and ⊥Neuroscience Program, Department of Bioengineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Javier L Baylon
- Department of Comparative Biosciences, ‡Department of Biochemistry, §Center for Biophysics and Quantitative Biology, ∥Beckman Institute for Advanced Science and Technology, and ⊥Neuroscience Program, Department of Bioengineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- Department of Comparative Biosciences, ‡Department of Biochemistry, §Center for Biophysics and Quantitative Biology, ∥Beckman Institute for Advanced Science and Technology, and ⊥Neuroscience Program, Department of Bioengineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Aditi Das
- Department of Comparative Biosciences, ‡Department of Biochemistry, §Center for Biophysics and Quantitative Biology, ∥Beckman Institute for Advanced Science and Technology, and ⊥Neuroscience Program, Department of Bioengineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
15
|
Roy J, Adili R, Kulmacz R, Holinstat M, Das A. Development of Poly Unsaturated Fatty Acid Derivatives of Aspirin for Inhibition of Platelet Function. J Pharmacol Exp Ther 2016; 359:134-41. [PMID: 27488919 DOI: 10.1124/jpet.116.234781] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/01/2016] [Indexed: 01/11/2023] Open
Abstract
The inhibition of platelet aggregation is key to preventing conditions such as myocardial infarction and ischemic stroke. Aspirin is the most widely used drug to inhibit platelet aggregation. Aspirin absorption can be improved further to increase its permeability across biologic membranes via esterification or converting the carboxylic acid to an anhydride. There are several reports indicating that ω-3 and ω-6 fatty acids such as linoleic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) separately inhibit platelet aggregation. Herein, we synthesize anhydride conjugates of aspirin with linoleic acid, EPA, and DHA to form aspirin anhydrides that are expected to have higher permeability across cellular membranes. These aspirin-fatty acid anhydrides inhibited platelet aggregation in washed human platelets and platelet-rich plasma in a dose-dependent manner. In particular, the aspirin-DHA anhydride displayed similar effectiveness to aspirin. Platelet aggregation studies conducted in the presence of various platelet agonists indicated that the aspirin-lipid conjugates act through inhibition of the cyclooxygenase (COX)-thromboxane synthase (TXAS) pathway. Hence, we performed detailed biochemical studies using purified COX-1 as well as TXAS stabilized in nanoscale lipid bilayers of nanodiscs to confirm results from the platelet aggregation studies. We show that although all of the aspirin conjugates act through the COX-TXAS pathway by inhibiting COX-1, the parent fatty acids do not act via this pathway. Finally, we studied the hydrolysis of these compounds in buffer and human plasma, and we demonstrate that all of the aspirin-fatty acid conjugates hydrolyze to the parent molecules aspirin and fatty acid in a controlled manner.
Collapse
Affiliation(s)
- Jahnabi Roy
- Department of Chemistry (J.R.), Division of Nutritional Sciences, Departments of Comparative Biosciences, Biochemistry, and Bioengineering, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science (A.D.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Division of Cardiovascular Medicine (M.H.), Department of Pharmacology (R.A., M.H.), University of Michigan Medical School, Ann Arbor, Michigan; and Department of Internal Medicine, Texas Health Science Center, McGovern Medical School, Houston, Texas (R.K.)
| | - Reheman Adili
- Department of Chemistry (J.R.), Division of Nutritional Sciences, Departments of Comparative Biosciences, Biochemistry, and Bioengineering, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science (A.D.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Division of Cardiovascular Medicine (M.H.), Department of Pharmacology (R.A., M.H.), University of Michigan Medical School, Ann Arbor, Michigan; and Department of Internal Medicine, Texas Health Science Center, McGovern Medical School, Houston, Texas (R.K.)
| | - Richard Kulmacz
- Department of Chemistry (J.R.), Division of Nutritional Sciences, Departments of Comparative Biosciences, Biochemistry, and Bioengineering, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science (A.D.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Division of Cardiovascular Medicine (M.H.), Department of Pharmacology (R.A., M.H.), University of Michigan Medical School, Ann Arbor, Michigan; and Department of Internal Medicine, Texas Health Science Center, McGovern Medical School, Houston, Texas (R.K.)
| | - Michael Holinstat
- Department of Chemistry (J.R.), Division of Nutritional Sciences, Departments of Comparative Biosciences, Biochemistry, and Bioengineering, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science (A.D.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Division of Cardiovascular Medicine (M.H.), Department of Pharmacology (R.A., M.H.), University of Michigan Medical School, Ann Arbor, Michigan; and Department of Internal Medicine, Texas Health Science Center, McGovern Medical School, Houston, Texas (R.K.)
| | - Aditi Das
- Department of Chemistry (J.R.), Division of Nutritional Sciences, Departments of Comparative Biosciences, Biochemistry, and Bioengineering, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science (A.D.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Division of Cardiovascular Medicine (M.H.), Department of Pharmacology (R.A., M.H.), University of Michigan Medical School, Ann Arbor, Michigan; and Department of Internal Medicine, Texas Health Science Center, McGovern Medical School, Houston, Texas (R.K.)
| |
Collapse
|
16
|
Roy J, Pondenis H, Fan TM, Das A. Direct Capture of Functional Proteins from Mammalian Plasma Membranes into Nanodiscs. Biochemistry 2015; 54:6299-302. [PMID: 26415091 DOI: 10.1021/acs.biochem.5b00954] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mammalian plasma membrane proteins make up the largest class of drug targets yet are difficult to study in a cell free system because of their intransigent nature. Herein, we perform direct encapsulation of plasma membrane proteins derived from mammalian cells into a functional nanodisc library. Peptide fingerprinting was used to analyze the proteome of the incorporated proteins in nanodiscs and to further demonstrate that the lipid composition of the nanodiscs directly affects the class of protein that is incorporated. Furthermore, the functionality of the incorporated membrane proteome was evaluated by measuring the activity of membrane proteins: Na(+)/K(+)-ATPase and receptor tyrosine kinases. This work is the first report of the successful establishment and characterization of a cell free functional library of mammalian membrane proteins into nanodiscs.
Collapse
Affiliation(s)
- Jahnabi Roy
- Department of Comparative Biosciences, ‡Department of Veterinary Clinical Medicine, §Department of Chemistry, and ∥Department of Biochemistry, Department of Bioengineering, and Beckman Institute for Advanced Science and Department of Bioengineering, University of Illinois Urbana-Champaign , Urbana, Illinois 61802, United States
| | - Holly Pondenis
- Department of Comparative Biosciences, ‡Department of Veterinary Clinical Medicine, §Department of Chemistry, and ∥Department of Biochemistry, Department of Bioengineering, and Beckman Institute for Advanced Science and Department of Bioengineering, University of Illinois Urbana-Champaign , Urbana, Illinois 61802, United States
| | - Timothy M Fan
- Department of Comparative Biosciences, ‡Department of Veterinary Clinical Medicine, §Department of Chemistry, and ∥Department of Biochemistry, Department of Bioengineering, and Beckman Institute for Advanced Science and Department of Bioengineering, University of Illinois Urbana-Champaign , Urbana, Illinois 61802, United States
| | - Aditi Das
- Department of Comparative Biosciences, ‡Department of Veterinary Clinical Medicine, §Department of Chemistry, and ∥Department of Biochemistry, Department of Bioengineering, and Beckman Institute for Advanced Science and Department of Bioengineering, University of Illinois Urbana-Champaign , Urbana, Illinois 61802, United States
| |
Collapse
|
17
|
McDougle DR, Baylon JL, Meling DD, Kambalyal A, Grinkova YV, Hammernik J, Tajkhorshid E, Das A. Incorporation of charged residues in the CYP2J2 F-G loop disrupts CYP2J2-lipid bilayer interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2460-2470. [PMID: 26232558 DOI: 10.1016/j.bbamem.2015.07.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 12/19/2022]
Abstract
CYP2J2 epoxygenase is an extrahepatic, membrane bound cytochrome P450 (CYP) that is primarily found in the heart and mediates endogenous fatty acid metabolism. CYP2J2 interacts with membranes through an N-terminal anchor and various non-contiguous hydrophobic residues. The molecular details of the motifs that mediate membrane interactions are complex and not fully understood. To gain better insights of these complex protein-lipid interactions, we employed molecular dynamics (MD) simulations using a highly mobile membrane mimetic (HMMM) model that enabled multiple independent spontaneous membrane binding events to be captured. Simulations revealed that CYP2J2 engages with the membrane at the F-G loop through hydrophobic residues Trp-235, Ille-236, and Phe-239. To explore the role of these residues, three F-G loop mutants were modeled from the truncated CYP2J2 construct (Δ34) which included Δ34-I236D, Δ34-F239H and Δ34-I236D/F239H. Using the HMMM coordinates of CYP2J2, the simulations were extended to a full POPC membrane which showed a significant decrease in the depth of insertion for each of the F-G loop mutants. The CYP2J2 F-G loop mutants were expressed in E. coli and were shown to be localized to the cytosolic fraction at a greater percentage relative to construct Δ34. Notably, the functional data demonstrated that the double mutant, Δ34-I236D/F239H, maintained native-like enzymatic activity. The membrane insertion characteristics were examined by monitoring CYP2J2 Trp-quenching fluorescence spectroscopy upon binding nanodiscs containing pyrene phospholipids. Relative to the Δ34 construct, the F-G loop mutants exhibited lower Trp quenching and membrane insertion. Taken together, the results suggest that the mutants exhibit a different membrane topology in agreement with the MD simulations and provide important evidence towards the involvement of key residues in the F-G loop of CYP2J2.
Collapse
Affiliation(s)
- Daniel R McDougle
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana IL 61801.,Medical Scholars Program, University of Illinois Urbana-Champaign, Urbana IL 61801
| | - Javier L Baylon
- Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana IL 61801.,Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana IL 61801
| | - Daryl D Meling
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana IL 61801
| | - Amogh Kambalyal
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana IL 61801
| | - Yelena V Grinkova
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana IL 61801
| | - Jared Hammernik
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana IL 61801
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana IL 61801.,Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana IL 61801.,Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana IL 61801
| | - Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana IL 61801.,Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana IL 61801.,Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana IL 61801
| |
Collapse
|
18
|
Meling DD, Zelasko S, Kambalyal A, Roy J, Das A. Functional role of the conserved i-helix residue I346 in CYP5A1-Nanodiscs. Biophys Chem 2015; 200-201:34-40. [PMID: 25900452 DOI: 10.1016/j.bpc.2015.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/04/2015] [Accepted: 03/04/2015] [Indexed: 12/20/2022]
Abstract
Thromboxane synthase (CYP5A1) is a non-classical cytochrome P450 (CYP) expressed in human platelets that mediates vascular homeostasis by producing thromboxane A2 (TXA2) through the isomerization of prostaglandin H2 (PGH2). A homology alignment of CYP5A1 with human CYPs indicates that a highly conserved I-helix threonine residue is occupied by an isoleucine at position 346 in CYP5A1. We find that reverse-engineering CYP5A1 to contain either threonine or serine in this position dramatically increases TXA2 formation. Interestingly, the levels of malondialdehyde (MDA), a homolytic fragmentation product of PGH2 formed via a pathway independent of TXA2 formation, remain constant. Furthermore, spectral analysis using two PGH2 substrate analogs supports the observed activity changes in the hydroxyl-containing mutants. The more constrained active site of the I346T mutant displays altered PGH2 substrate analog binding properties. Together these studies provide new mechanistic insights into CYP5A1 mediated isomerization of PGH2 with respect to a critical active site residue.
Collapse
Affiliation(s)
- Daryl D Meling
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana IL 61802, USA
| | - Susan Zelasko
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana IL 61802, USA
| | - Amogh Kambalyal
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana IL 61802, USA
| | - Jahnabi Roy
- Department of Chemistry, University of Illinois Urbana-Champaign, IL 61802, USA
| | - Aditi Das
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana IL 61802, USA; Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana IL 61802, USA; Beckman Institute for Advanced Science and Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana IL 61802, USA.
| |
Collapse
|
19
|
McDougle DR, Kambalyal A, Meling DD, Das A. Endocannabinoids anandamide and 2-arachidonoylglycerol are substrates for human CYP2J2 epoxygenase. J Pharmacol Exp Ther 2014; 351:616-27. [PMID: 25277139 DOI: 10.1124/jpet.114.216598] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are arachidonic acid (AA) derivatives that are known to regulate human cardiovascular functions. CYP2J2 is the primary cytochrome P450 in the human heart and is most well known for the metabolism of AA to the biologically active epoxyeicosatrienoic acids. In this study, we demonstrate that both 2-AG and AEA are substrates for metabolism by CYP2J2 epoxygenase in the model membrane bilayers of nanodiscs. Reactions of CYP2J2 with AEA formed four AEA-epoxyeicosatrienoic acids, whereas incubations with 2-AG yielded detectable levels of only two 2-AG epoxides. Notably, 2-AG was shown to undergo enzymatic oxidative cleavage to form AA through a NADPH-dependent reaction with CYP2J2 and cytochrome P450 reductase. The formation of the predominant AEA and 2-AG epoxides was confirmed using microsomes prepared from the left myocardium of porcine and bovine heart tissues. The nuances of the ligand-protein interactions were further characterized using spectral titrations, stopped-flow small-molecule ligand egress, and molecular modeling. The experimental and theoretical data were in agreement, which showed that substitution of the AA carboxylic acid with the 2-AG ester-glycerol changes the binding interaction of these lipids within the CYP2J2 active site, leading to different product distributions. In summary, we present data for the functional metabolomics of AEA and 2-AG by a membrane-bound cardiovascular epoxygenase.
Collapse
Affiliation(s)
- Daniel R McDougle
- Department of Comparative Biosciences (D.R.M., A.D.), Department of Biochemistry (A.K., D.D.M., A.D.), and Medical Scholars Program (D.R.M.), Beckman Institute for Advanced Science and Technology, and Department of Bioengineering (A.D.), University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Amogh Kambalyal
- Department of Comparative Biosciences (D.R.M., A.D.), Department of Biochemistry (A.K., D.D.M., A.D.), and Medical Scholars Program (D.R.M.), Beckman Institute for Advanced Science and Technology, and Department of Bioengineering (A.D.), University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Daryl D Meling
- Department of Comparative Biosciences (D.R.M., A.D.), Department of Biochemistry (A.K., D.D.M., A.D.), and Medical Scholars Program (D.R.M.), Beckman Institute for Advanced Science and Technology, and Department of Bioengineering (A.D.), University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Aditi Das
- Department of Comparative Biosciences (D.R.M., A.D.), Department of Biochemistry (A.K., D.D.M., A.D.), and Medical Scholars Program (D.R.M.), Beckman Institute for Advanced Science and Technology, and Department of Bioengineering (A.D.), University of Illinois Urbana-Champaign, Urbana, Illinois
| |
Collapse
|