1
|
Nowak B, Tomkowiak A, Sobiech A, Bocianowski J, Kowalczewski PŁ, Spychała J, Jamruszka T. Identification and Analysis of Candidate Genes Associated with Yield Structure Traits and Maize Yield Using Next-Generation Sequencing Technology. Genes (Basel) 2023; 15:56. [PMID: 38254946 PMCID: PMC10815399 DOI: 10.3390/genes15010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
The main challenge of agriculture in the 21st century is the continuous increase in food production. In addition to ensuring food security, the goal of modern agriculture is the continued development and production of plant-derived biomaterials. Conventional plant breeding methods do not allow breeders to achieve satisfactory results in obtaining new varieties in a short time. Currently, advanced molecular biology tools play a significant role worldwide, markedly contributing to biological progress. The aim of this study was to identify new markers linked to candidate genes determining grain yield. Next-generation sequencing, gene association, and physical mapping were used to identify markers. An additional goal was to also optimize diagnostic procedures to identify molecular markers on reference materials. As a result of the conducted research, 19 SNP markers significantly associated with yield structure traits in maize were identified. Five of these markers (28629, 28625, 28640, 28649, and 29294) are located within genes that can be considered candidate genes associated with yield traits. For two markers (28639 and 29294), different amplification products were obtained on the electrophorograms. For marker 28629, a specific product of 189 bp was observed for genotypes 1, 4, and 10. For marker 29294, a specific product of 189 bp was observed for genotypes 1 and 10. Both markers can be used for the preliminary selection of well-yielding genotypes.
Collapse
Affiliation(s)
- Bartosz Nowak
- Smolice Plant Breeding Ltd., IHAR Group, Smolice 146, 63-740 Kobylin, Poland;
| | - Agnieszka Tomkowiak
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (A.S.); (J.S.); (T.J.)
| | - Aleksandra Sobiech
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (A.S.); (J.S.); (T.J.)
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland;
| | - Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland;
| | - Julia Spychała
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (A.S.); (J.S.); (T.J.)
| | - Tomasz Jamruszka
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (A.S.); (J.S.); (T.J.)
| |
Collapse
|
2
|
Ashraf MF, Hou D, Hussain Q, Imran M, Pei J, Ali M, Shehzad A, Anwar M, Noman A, Waseem M, Lin X. Entailing the Next-Generation Sequencing and Metabolome for Sustainable Agriculture by Improving Plant Tolerance. Int J Mol Sci 2022; 23:651. [PMID: 35054836 PMCID: PMC8775971 DOI: 10.3390/ijms23020651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Crop production is a serious challenge to provide food for the 10 billion individuals forecasted to live across the globe in 2050. The scientists' emphasize establishing an equilibrium among diversity and quality of crops by enhancing yield to fulfill the increasing demand for food supply sustainably. The exploitation of genetic resources using genomics and metabolomics strategies can help generate resilient plants against stressors in the future. The innovation of the next-generation sequencing (NGS) strategies laid the foundation to unveil various plants' genetic potential and help us to understand the domestication process to unmask the genetic potential among wild-type plants to utilize for crop improvement. Nowadays, NGS is generating massive genomic resources using wild-type and domesticated plants grown under normal and harsh environments to explore the stress regulatory factors and determine the key metabolites. Improved food nutritional value is also the key to eradicating malnutrition problems around the globe, which could be attained by employing the knowledge gained through NGS and metabolomics to achieve suitability in crop yield. Advanced technologies can further enhance our understanding in defining the strategy to obtain a specific phenotype of a crop. Integration among bioinformatic tools and molecular techniques, such as marker-assisted, QTLs mapping, creation of reference genome, de novo genome assembly, pan- and/or super-pan-genomes, etc., will boost breeding programs. The current article provides sequential progress in NGS technologies, a broad application of NGS, enhancement of genetic manipulation resources, and understanding the crop response to stress by producing plant metabolites. The NGS and metabolomics utilization in generating stress-tolerant plants/crops without deteriorating a natural ecosystem is considered a sustainable way to improve agriculture production. This highlighted knowledge also provides useful research that explores the suitable resources for agriculture sustainability.
Collapse
Affiliation(s)
- Muhammad Furqan Ashraf
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Dan Hou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Muhammad Imran
- Colleges of Agriculture and Horticulture, South China Agricultural University, Guangzhou 510642, China; (M.I.); (M.W.)
| | - Jialong Pei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Mohsin Ali
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Aamar Shehzad
- Maize Research Station, AARI, Faisalabad 38000, Pakistan;
| | - Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China;
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad 38000, Pakistan;
| | - Muhammad Waseem
- Colleges of Agriculture and Horticulture, South China Agricultural University, Guangzhou 510642, China; (M.I.); (M.W.)
| | - Xinchun Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| |
Collapse
|
3
|
Hirose Y, Ohno T, Asamitsu S, Hashiya K, Bando T, Sugiyama H. Strong and Specific Recognition of CAG/CTG Repeat DNA (5'-dWGCWGCW-3') by a Cyclic Pyrrole-Imidazole Polyamide. Chembiochem 2021; 23:e202100533. [PMID: 34796607 PMCID: PMC9298716 DOI: 10.1002/cbic.202100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/26/2021] [Indexed: 11/30/2022]
Abstract
Abnormally expanded CAG/CTG repeat DNA sequences lead to a variety of neurological diseases, such as Huntington's disease. Here, we synthesized a cyclic pyrrole‐imidazole polyamide (cPIP), which can bind to the minor groove of the CAG/CTG DNA sequence. The double‐stranded DNA melting temperature (Tm) and surface plasmon resonance assays revealed the high binding affinity of the cPIP. In addition, next‐generation sequencing showed that the cPIP had high specificity for its target DNA sequence.
Collapse
Affiliation(s)
- Yuki Hirose
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Tomo Ohno
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Sefan Asamitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan.,Present address: Department of Genomic Neurology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan.,Institute for Integrated Cell-Material Science (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, countryPart/>Kyoto, 606-8501, Japan
| |
Collapse
|
4
|
Del Mundo IMA, Vasquez KM, Wang G. Modulation of DNA structure formation using small molecules. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:118539. [PMID: 31491448 PMCID: PMC6851491 DOI: 10.1016/j.bbamcr.2019.118539] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/20/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023]
Abstract
Genome integrity is essential for proper cell function such that genetic instability can result in cellular dysfunction and disease. Mutations in the human genome are not random, and occur more frequently at "hotspot" regions that often co-localize with sequences that have the capacity to adopt alternative (i.e. non-B) DNA structures. Non-B DNA-forming sequences are mutagenic, can stimulate the formation of DNA double-strand breaks, and are highly enriched at mutation hotspots in human cancer genomes. Thus, small molecules that can modulate the conformations of these structure-forming sequences may prove beneficial in the prevention and/or treatment of genetic diseases. Further, the development of molecular probes to interrogate the roles of non-B DNA structures in modulating DNA function, such as genetic instability in cancer etiology are warranted. Here, we discuss reported non-B DNA stabilizers, destabilizers, and probes, recent assays to identify ligands, and the potential biological applications of these DNA structure-modulating molecules.
Collapse
Affiliation(s)
- Imee M A Del Mundo
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA.
| | - Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| |
Collapse
|
5
|
Yu Z, Pandian GN, Hidaka T, Sugiyama H. Therapeutic gene regulation using pyrrole-imidazole polyamides. Adv Drug Deliv Rev 2019; 147:66-85. [PMID: 30742856 DOI: 10.1016/j.addr.2019.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/22/2018] [Accepted: 02/04/2019] [Indexed: 12/13/2022]
Abstract
Recent innovations in cutting-edge sequencing platforms have allowed the rapid identification of genes associated with communicable, noncommunicable and rare diseases. Exploitation of this collected biological information has facilitated the development of nonviral gene therapy strategies and the design of several proteins capable of editing specific DNA sequences for disease control. Small molecule-based targeted therapeutic approaches have gained increasing attention because of their suggested clinical benefits, ease of control and lower costs. Pyrrole-imidazole polyamides (PIPs) are a major class of DNA minor groove-binding small molecules that can be predesigned to recognize specific DNA sequences. This programmability of PIPs allows the on-demand design of artificial genetic switches and fluorescent probes. In this review, we detail the progress in the development of PIP-based designer ligands and their prospects as advanced DNA-based small-molecule drugs for therapeutic gene modulation.
Collapse
|
6
|
Vaijayanthi T, Pandian GN, Sugiyama H. Chemical Control System of Epigenetics. CHEM REC 2018; 18:1833-1853. [DOI: 10.1002/tcr.201800067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/07/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Thangavel Vaijayanthi
- Department of ChemistryGraduate School of ScienceKyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8502, Japan
| | - Ganesh N. Pandian
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)Kyoto University Yoshida-Ushinomaecho, Sakyo-ku Kyoto 606-8501 Japan
| | - Hiroshi Sugiyama
- Department of ChemistryGraduate School of ScienceKyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)Kyoto University Yoshida-Ushinomaecho, Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
7
|
Barros-Silva D, Marques CJ, Henrique R, Jerónimo C. Profiling DNA Methylation Based on Next-Generation Sequencing Approaches: New Insights and Clinical Applications. Genes (Basel) 2018; 9:genes9090429. [PMID: 30142958 PMCID: PMC6162482 DOI: 10.3390/genes9090429] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/28/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022] Open
Abstract
DNA methylation is an epigenetic modification that plays a pivotal role in regulating gene expression and, consequently, influences a wide variety of biological processes and diseases. The advances in next-generation sequencing technologies allow for genome-wide profiling of methyl marks both at a single-nucleotide and at a single-cell resolution. These profiling approaches vary in many aspects, such as DNA input, resolution, coverage, and bioinformatics analysis. Thus, the selection of the most feasible method according with the project’s purpose requires in-depth knowledge of those techniques. Currently, high-throughput sequencing techniques are intensively used in epigenomics profiling, which ultimately aims to find novel biomarkers for detection, diagnosis prognosis, and prediction of response to therapy, as well as to discover new targets for personalized treatments. Here, we present, in brief, a portrayal of next-generation sequencing methodologies’ evolution for profiling DNA methylation, highlighting its potential for translational medicine and presenting significant findings in several diseases.
Collapse
Affiliation(s)
- Daniela Barros-Silva
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua António Bernardino Almeida, 4200-072 Porto, Portugal.
| | - C Joana Marques
- Genetics, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal.
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua António Bernardino Almeida, 4200-072 Porto, Portugal.
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal.
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS)-University of Porto, 4050-313 Porto, Portugal.
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua António Bernardino Almeida, 4200-072 Porto, Portugal.
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS)-University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
8
|
Kashiwazaki G, Maeda R, Kawase T, Hashiya K, Bando T, Sugiyama H. Evaluation of alkylating pyrrole-imidazole polyamide conjugates by a novel method for high-throughput sequencer. Bioorg Med Chem 2018; 26:1-7. [DOI: 10.1016/j.bmc.2017.08.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022]
|
9
|
Kawamoto Y, Sasaki A, Chandran A, Hashiya K, Ide S, Bando T, Maeshima K, Sugiyama H. Targeting 24 bp within Telomere Repeat Sequences with Tandem Tetramer Pyrrole–Imidazole Polyamide Probes. J Am Chem Soc 2016; 138:14100-14107. [DOI: 10.1021/jacs.6b09023] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yusuke Kawamoto
- Department
of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Asuka Sasaki
- Structural Biology Center, National Institute
of Genetics, and Department of Genetics, School of Life Science, Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka 411-8540, Japan
| | - Anandhakumar Chandran
- Department
of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kaori Hashiya
- Department
of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Satoru Ide
- Structural Biology Center, National Institute
of Genetics, and Department of Genetics, School of Life Science, Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka 411-8540, Japan
| | - Toshikazu Bando
- Department
of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kazuhiro Maeshima
- Structural Biology Center, National Institute
of Genetics, and Department of Genetics, School of Life Science, Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka 411-8540, Japan
| | - Hiroshi Sugiyama
- Department
of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material
Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
10
|
Chandran A, Syed J, Li Y, Sato S, Bando T, Sugiyama H. Genome-Wide Assessment of the Binding Effects of Artificial Transcriptional Activators by High-Throughput Sequencing. Chembiochem 2016; 17:1905-1910. [DOI: 10.1002/cbic.201600274] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Anandhakumar Chandran
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawa-oiwakecho Sakyo-ku Kyoto 606-8502 Japan
| | - Junetha Syed
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawa-oiwakecho Sakyo-ku Kyoto 606-8502 Japan
| | - Yue Li
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawa-oiwakecho Sakyo-ku Kyoto 606-8502 Japan
| | - Shinsuke Sato
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS); Kyoto University; Yoshida-ushinomiyacho Sakyo-ku Kyoto 606-8501 Japan
| | - Toshikazu Bando
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawa-oiwakecho Sakyo-ku Kyoto 606-8502 Japan
| | - Hiroshi Sugiyama
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawa-oiwakecho Sakyo-ku Kyoto 606-8502 Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS); Kyoto University; Yoshida-ushinomiyacho Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
11
|
Pandian GN, Sugiyama H. Nature-Inspired Design of Smart Biomaterials Using the Chemical Biology of Nucleic Acids. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2016. [DOI: 10.1246/bcsj.20160062] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Kashiwazaki G, Chandran A, Asamitsu S, Kawase T, Kawamoto Y, Sawatani Y, Hashiya K, Bando T, Sugiyama H. Comparative Analysis of DNA-Binding Selectivity of Hairpin and Cyclic Pyrrole-Imidazole Polyamides Based on Next-Generation Sequencing. Chembiochem 2016; 17:1752-8. [DOI: 10.1002/cbic.201600282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Gengo Kashiwazaki
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawaoiwakecho Sakyo Kyoto 606-8502 Japan
| | - Anandhakumar Chandran
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawaoiwakecho Sakyo Kyoto 606-8502 Japan
| | - Sefan Asamitsu
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawaoiwakecho Sakyo Kyoto 606-8502 Japan
| | - Takashi Kawase
- Department of Systems Science; Graduate School of Informatics; Kyoto University; Yoshida-Honmachi 36-1 Sakyo Kyoto 606-8501 Japan
| | - Yusuke Kawamoto
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawaoiwakecho Sakyo Kyoto 606-8502 Japan
| | - Yoshito Sawatani
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawaoiwakecho Sakyo Kyoto 606-8502 Japan
| | - Kaori Hashiya
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawaoiwakecho Sakyo Kyoto 606-8502 Japan
| | - Toshikazu Bando
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawaoiwakecho Sakyo Kyoto 606-8502 Japan
| | - Hiroshi Sugiyama
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawaoiwakecho Sakyo Kyoto 606-8502 Japan
- Institute for Integrated Cell-Material Sciences (iCeMS); Kyoto University; Yoshida-Ushinomiyacho Sakyo Kyoto 606-8501 Japan
| |
Collapse
|
13
|
Xing-lin H, Shi-ru J, Wu-jiu Z. Analysis of Daqu produced in different seasons. JOURNAL OF THE INSTITUTE OF BREWING 2016. [DOI: 10.1002/jib.336] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Han Xing-lin
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, and College of Biotechnology; Tianjin University of Science and Technology; Tianjin China
- China National Research Institute of Food and Fermentation Industries; Beijing China
| | - Jia Shi-ru
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, and College of Biotechnology; Tianjin University of Science and Technology; Tianjin China
| | - Zhang Wu-jiu
- China National Research Institute of Food and Fermentation Industries; Beijing China
| |
Collapse
|
14
|
Sawatani Y, Kashiwazaki G, Chandran A, Asamitsu S, Guo C, Sato S, Hashiya K, Bando T, Sugiyama H. Sequence-specific DNA binding by long hairpin pyrrole-imidazole polyamides containing an 8-amino-3,6-dioxaoctanoic acid unit. Bioorg Med Chem 2016; 24:3603-11. [PMID: 27301681 DOI: 10.1016/j.bmc.2016.05.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 05/28/2016] [Accepted: 05/30/2016] [Indexed: 12/13/2022]
Abstract
With the aim of improving aqueous solubility, we designed and synthesized five N-methylpyrrole (Py)-N-methylimidazole (Im) polyamides capable of recognizing 9-bp sequences. Their DNA-binding affinities and sequence specificities were evaluated by SPR and Bind-n-Seq analyses. The design of polyamide 1 was based on a conventional model, with three consecutive Py or Im rings separated by a β-alanine to match the curvature and twist of long DNA helices. Polyamides 2 and 3 contained an 8-amino-3,6-dioxaoctanoic acid (AO) unit, which has previously only been used as a linker within linear Py-Im polyamides or between Py-Im hairpin motifs for tandem hairpin. It is demonstrated herein that AO also functions as a linker element that can extend to 2-bp in hairpin motifs. Notably, although the AO-containing unit can fail to bind the expected sequence, polyamide 4, which has two AO units facing each other in a hairpin form, successfully showed the expected motif and a KD value of 16nM was recorded. Polyamide 5, containing a β-alanine-β-alanine unit instead of the AO of polyamide 2, was synthesized for comparison. The aqueous solubilities and nuclear localization of three of the polyamides were also examined. The results suggest the possibility of applying the AO unit in the core of Py-Im polyamide compounds.
Collapse
Affiliation(s)
- Yoshito Sawatani
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawaoiwakecho, Sakyo, Kyoto 606-8502, Japan
| | - Gengo Kashiwazaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawaoiwakecho, Sakyo, Kyoto 606-8502, Japan
| | - Anandhakumar Chandran
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawaoiwakecho, Sakyo, Kyoto 606-8502, Japan
| | - Sefan Asamitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawaoiwakecho, Sakyo, Kyoto 606-8502, Japan
| | - Chuanxin Guo
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawaoiwakecho, Sakyo, Kyoto 606-8502, Japan
| | - Shinsuke Sato
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-Ushinomiyacho, Sakyo, Kyoto 606-8501, Japan
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawaoiwakecho, Sakyo, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawaoiwakecho, Sakyo, Kyoto 606-8502, Japan.
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawaoiwakecho, Sakyo, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-Ushinomiyacho, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
15
|
Betzer JF, Nuter F, Chtchigrovsky M, Hamon F, Kellermann G, Ali S, Calméjane MA, Roque S, Poupon J, Cresteil T, Teulade-Fichou MP, Marinetti A, Bombard S. Linking of Antitumor trans NHC-Pt(II) Complexes to G-Quadruplex DNA Ligand for Telomeric Targeting. Bioconjug Chem 2016; 27:1456-70. [PMID: 27115175 DOI: 10.1021/acs.bioconjchem.6b00079] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
G-quadruplex structures (G4) are promising anticancerous targets. A great number of small molecules targeting these structures have already been identified through biophysical methods. In cellulo, some of them are able to target either telomeric DNA and/or some sequences involved in oncogene promotors, both resulting in cancer cell death. However, only a few of them are able to bind to these structures G4 irreversibly. Here we combine within the same molecule the G4-binding agent PDC (pyridodicarboxamide) with a N-heterocyclic carbene-platinum complex NHC-Pt already identified for its antitumor properties. The resulting conjugate platinum complex NHC-Pt-PDC stabilizes strongly G-quadruplex structures in vitro, with affinity slightly affected as compared to PDC. In addition, we show that the new conjugate binds preferentially and irreversibly the quadruplex form of the human telomeric sequence with a profile in a way different from that of NHC-Pt thereby indicating that the platination reaction is oriented by stacking of the PDC moiety onto the G4-structure. In cellulo, NHC-Pt-PDC induces a significant loss of TRF2 from telomeres that is considerably more important than the effect of its two components alone, PDC and NHC-Pt, respectively.
Collapse
Affiliation(s)
- Jean-François Betzer
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay , 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Frédérick Nuter
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay , 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Mélanie Chtchigrovsky
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay , 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Florian Hamon
- CNRS UMR9187/INSERM U1196, Institut Curie, Centre Universitaire Paris XI , Bâtiments 110-112, 91405 Orsay, France
| | - Guillaume Kellermann
- INSERM UMR-S-1007, Université Paris Descartes , 45, rue des Saints Pères, 75270 Paris, France
| | - Samar Ali
- INSERM UMR-S-1007, Université Paris Descartes , 45, rue des Saints Pères, 75270 Paris, France
| | - Marie-Ange Calméjane
- INSERM UMR-S-1007, Université Paris Descartes , 45, rue des Saints Pères, 75270 Paris, France
| | - Sylvain Roque
- INSERM UMR-S-1007, Université Paris Descartes , 45, rue des Saints Pères, 75270 Paris, France
| | - Joël Poupon
- Laboratoire de Toxicologie Biologique, Hôpital Lariboisière , 2 rue Ambroise Paré, 75475 Paris, France
| | - Thierry Cresteil
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay , 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France.,Université Paris-Sud d'Innovation Thérapeutique , 5 rue J.B. Clément, 92290 Châtenay-Malabry, France
| | - Marie-Paule Teulade-Fichou
- CNRS UMR9187/INSERM U1196, Institut Curie, Centre Universitaire Paris XI , Bâtiments 110-112, 91405 Orsay, France
| | - Angela Marinetti
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay , 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Sophie Bombard
- CNRS UMR9187/INSERM U1196, Institut Curie, Centre Universitaire Paris XI , Bâtiments 110-112, 91405 Orsay, France.,INSERM UMR-S-1007, Université Paris Descartes , 45, rue des Saints Pères, 75270 Paris, France
| |
Collapse
|
16
|
Chandran A, Syed J, Taylor RD, Kashiwazaki G, Sato S, Hashiya K, Bando T, Sugiyama H. Deciphering the genomic targets of alkylating polyamide conjugates using high-throughput sequencing. Nucleic Acids Res 2016; 44:4014-24. [PMID: 27098039 PMCID: PMC4872120 DOI: 10.1093/nar/gkw283] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 04/05/2016] [Indexed: 12/17/2022] Open
Abstract
Chemically engineered small molecules targeting specific genomic sequences play an important role in drug development research. Pyrrole-imidazole polyamides (PIPs) are a group of molecules that can bind to the DNA minor-groove and can be engineered to target specific sequences. Their biological effects rely primarily on their selective DNA binding. However, the binding mechanism of PIPs at the chromatinized genome level is poorly understood. Herein, we report a method using high-throughput sequencing to identify the DNA-alkylating sites of PIP-indole-seco-CBI conjugates. High-throughput sequencing analysis of conjugate 2: showed highly similar DNA-alkylating sites on synthetic oligos (histone-free DNA) and on human genomes (chromatinized DNA context). To our knowledge, this is the first report identifying alkylation sites across genomic DNA by alkylating PIP conjugates using high-throughput sequencing.
Collapse
Affiliation(s)
- Anandhakumar Chandran
- Department of Chemistry, Graduate School of Science Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Junetha Syed
- Department of Chemistry, Graduate School of Science Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Rhys D Taylor
- Department of Chemistry, Graduate School of Science Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Gengo Kashiwazaki
- Department of Chemistry, Graduate School of Science Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Shinsuke Sato
- Institute for Integrated Cell-Materials Science (iCeMS) Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science Kyoto University, Sakyo, Kyoto 606-8502, Japan Institute for Integrated Cell-Materials Science (iCeMS) Kyoto University, Sakyo, Kyoto 606-8502, Japan CREST, Japan Science and Technology Corporation (JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
17
|
Tschapalda K, Zhang YQ, Liu L, Golovnina K, Schlemper T, Eichmann TO, Lal-Nag M, Sreenivasan U, McLenithan J, Ziegler S, Sztalryd C, Lass A, Auld D, Oliver B, Waldmann H, Li Z, Shen M, Boxer MB, Beller M. A Class of Diacylglycerol Acyltransferase 1 Inhibitors Identified by a Combination of Phenotypic High-throughput Screening, Genomics, and Genetics. EBioMedicine 2016; 8:49-59. [PMID: 27428418 PMCID: PMC4919474 DOI: 10.1016/j.ebiom.2016.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 04/02/2016] [Accepted: 04/12/2016] [Indexed: 12/13/2022] Open
Abstract
Excess lipid storage is an epidemic problem in human populations. Thus, the identification of small molecules to treat or prevent lipid storage-related metabolic complications is of great interest. Here we screened > 320.000 compounds for their ability to prevent a cellular lipid accumulation phenotype. We used fly cells because the multifarious tools available for this organism should facilitate unraveling the mechanism-of-action of active small molecules. Of the several hundred lipid storage inhibitors identified in the primary screen we concentrated on three structurally diverse and potent compound classes active in cells of multiple species (including human) and negligible cytotoxicity. Together with Drosophila in vivo epistasis experiments, RNA-Seq expression profiles suggested that the target of one of the small molecules was diacylglycerol acyltransferase 1 (DGAT1), a key enzyme in the production of triacylglycerols and prominent human drug target. We confirmed this prediction by biochemical and enzymatic activity tests. We identified > 600 potent small molecule inhibitors of cellular lipid storage deposition. RNA-Seq expression profiling discriminated the activity of three lead scaffolds and guided subsequent functional studies. We discovered a class of DGAT1 inhibitors, which is active in fly and mammalian cell lines as well as whole flies.
Obesity and other lipid storage associated diseases are a growing health threat of human populations. In an undirected phenotypic screen, we identified pharmacologically active small molecules that reduce or enhance lipid storage. Our work focuses on three lead structures that prevent lipid storage in diverse cellular systems including cells from a diabetes patient. In order to elucidate the compound mechanisms-of-action and cellular targets, we used a combination of RNA-Seq transcriptional profiling and diverse functional assays. Our results strongly suggest that one of our lead structures represents a class of inhibitors targeting the key lipogenic enzyme diacylglycerol acyltransferase 1.
Collapse
Affiliation(s)
- Kirsten Tschapalda
- Systems Biology of Lipid Metabolism, Heinrich Heine University Düsseldorf, Germany; Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University Düsseldorf, Germany; Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany; Department of Molecular Developmental Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ya-Qin Zhang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, USA
| | - Li Liu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, USA
| | - Kseniya Golovnina
- National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, USA
| | - Thomas Schlemper
- Systems Biology of Lipid Metabolism, Heinrich Heine University Düsseldorf, Germany; Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University Düsseldorf, Germany
| | | | - Madhu Lal-Nag
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, USA
| | - Urmila Sreenivasan
- Department of Medicine, Division of Endocrinology University of Maryland School of Medicine, USA
| | - John McLenithan
- Department of Medicine, Division of Endocrinology University of Maryland School of Medicine, USA
| | - Slava Ziegler
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Carole Sztalryd
- Department of Medicine, Division of Endocrinology University of Maryland School of Medicine, USA; Baltimore VA Medical Center, VA Research Service, Geriatric Research, Education and Clinical Center (GRECC) and VA Maryland Health Care System, Department of Medicine, Division of Endocrinology University of Maryland School of Medicine, USA
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Austria
| | - Douglas Auld
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, USA
| | - Brian Oliver
- National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, USA
| | - Herbert Waldmann
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Zhuyin Li
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, USA
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, USA
| | - Matthew B Boxer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, USA
| | - Mathias Beller
- Systems Biology of Lipid Metabolism, Heinrich Heine University Düsseldorf, Germany; Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University Düsseldorf, Germany.
| |
Collapse
|
18
|
Kizaki S, Chandran A, Sugiyama H. Identification of Sequence Specificity of 5-Methylcytosine Oxidation by Tet1 Protein with High-Throughput Sequencing. Chembiochem 2016; 17:403-6. [PMID: 26715454 DOI: 10.1002/cbic.201500646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Indexed: 12/23/2022]
Abstract
Tet (ten-eleven translocation) family proteins have the ability to oxidize 5-methylcytosine (mC) to 5-hydroxymethylcytosine (hmC), 5-formylcytosine (fC), and 5-carboxycytosine (caC). However, the oxidation reaction of Tet is not understood completely. Evaluation of genomic-level epigenetic changes by Tet protein requires unbiased identification of the highly selective oxidation sites. In this study, we used high-throughput sequencing to investigate the sequence specificity of mC oxidation by Tet1. A 6.6×10(4) -member mC-containing random DNA-sequence library was constructed. The library was subjected to Tet-reactive pulldown followed by high-throughput sequencing. Analysis of the obtained sequence data identified the Tet1-reactive sequences. We identified mCpG as a highly reactive sequence of Tet1 protein.
Collapse
Affiliation(s)
- Seiichiro Kizaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8502, Japan
| | - Anandhakumar Chandran
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8502, Japan. .,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8501, Japan.
| |
Collapse
|
19
|
Pasipoularides A. Mechanotransduction Mechanisms for Intraventricular Diastolic Vortex Forces and Myocardial Deformations: Part 2. J Cardiovasc Transl Res 2015; 8:293-318. [PMID: 25971844 PMCID: PMC4519381 DOI: 10.1007/s12265-015-9630-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/27/2015] [Indexed: 01/10/2023]
Abstract
Epigenetic mechanisms are fundamental in cardiac adaptations, remodeling, reverse remodeling, and disease. A primary goal of translational cardiovascular research is recognizing whether disease-related changes in phenotype can be averted by eliminating or reducing the effects of environmental epigenetic risks. There may be significant medical benefits in using gene-by-environment interaction knowledge to prevent or reverse organ abnormalities and disease. This survey proposes that "environmental" forces associated with diastolic RV/LV rotatory flows exert important, albeit still unappreciated, epigenetic actions influencing functional and morphological cardiac adaptations. Mechanisms analogous to Murray's law of hydrodynamic shear-induced endothelial cell modulation of vascular geometry are likely to link diastolic vortex-associated shear, torque and "squeeze" forces to RV/LV adaptations. The time has come to explore a new paradigm in which such forces play a fundamental epigenetic role, and to work out how heart cells react to them. Findings from various imaging modalities, computational fluid dynamics, molecular cell biology and cytomechanics are considered. The following are examined, among others: structural dynamics of myocardial cells (endocardium, cardiomyocytes, and fibroblasts), cytoskeleton, nucleoskeleton, and extracellular matrix; mechanotransduction and signaling; and mechanical epigenetic influences on genetic expression. To help integrate and focus relevant pluridisciplinary research, rotatory RV/LV filling flow is placed within a working context that has a cytomechanics perspective. This new frontier in cardiac research should uncover versatile mechanistic insights linking filling vortex patterns and attendant forces to variable expressions of gene regulation in RV/LV myocardium. In due course, it should reveal intrinsic homeostatic arrangements that support ventricular myocardial function and adaptability.
Collapse
Affiliation(s)
- Ares Pasipoularides
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA,
| |
Collapse
|