1
|
Lukina MV, Zhdanova PV, Koval VV. Structural and Dynamic Features of the Recognition of 8-oxoguanosine Paired with an 8-oxoG-clamp by Human 8-oxoguanine-DNA Glycosylase. Curr Issues Mol Biol 2024; 46:4119-4132. [PMID: 38785521 PMCID: PMC11120029 DOI: 10.3390/cimb46050253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
8-oxoguanine (oxoG) is formed in DNA by the action of reactive oxygen species. As a highly mutagenic and the most common oxidative DNA lesion, it is an important marker of oxidative stress. Human 8-oxoguanine-DNA glycosylase (OGG1) is responsible for its prompt removal in human cells. OGG1 is a bifunctional DNA glycosylase with N-glycosylase and AP lyase activities. Aspects of the detailed mechanism underlying the recognition of 8-oxoguanine among numerous intact bases and its subsequent interaction with the enzyme's active site amino acid residues are still debated. The main objective of our work was to determine the effect (structural and thermodynamic) of introducing an oxoG-clamp in model DNA substrates on the process of 8-oxoG excision by OGG1. Towards that end, we used DNA duplexes modeling OGG1-specific lesions: 8-oxoguanine or an apurinic/apyrimidinic site with either cytidine or the oxoG-clamp in the complementary strand opposite to the lesion. It was revealed that there was neither hydrolysis of the N-glycosidic bond at oxoG nor cleavage of the sugar-phosphate backbone during the reaction between OGG1 and oxoG-clamp-containing duplexes. Possible structural reasons for the absence of OGG1 enzymatic activity were studied via the stopped-flow kinetic approach and molecular dynamics simulations. The base opposite the damage was found to have a critical effect on the formation of the enzyme-substrate complex and the initiation of DNA cleavage. The oxoG-clamp residue prevented the eversion of the oxoG base into the OGG1 active site pocket and impeded the correct convergence of the apurinic/apyrimidinic site of DNA and the attacking nucleophilic group of the enzyme. An obtained three-dimensional model of the OGG1 complex with DNA containing the oxoG-clamp, together with kinetic data, allowed us to clarify the role of the contact of amino acid residues with DNA in the formation of (and rearrangements in) the enzyme-substrate complex.
Collapse
Affiliation(s)
- Maria V. Lukina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), Novosibirsk 630090, Russia;
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Polina V. Zhdanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), Novosibirsk 630090, Russia;
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Vladimir V. Koval
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), Novosibirsk 630090, Russia;
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Pan L, Boldogh I. The potential for OGG1 inhibition to be a therapeutic strategy for pulmonary diseases. Expert Opin Ther Targets 2024; 28:117-130. [PMID: 38344773 PMCID: PMC11111349 DOI: 10.1080/14728222.2024.2317900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/07/2024] [Indexed: 02/15/2024]
Abstract
INTRODUCTION Pulmonary diseases impose a daunting burden on healthcare systems and societies. Current treatment approaches primarily address symptoms, underscoring the urgency for the development of innovative pharmaceutical solutions. A noteworthy focus lies in targeting enzymes recognizing oxidatively modified DNA bases within gene regulatory elements, given their pivotal role in governing gene expression. AREAS COVERED This review delves into the intricate interplay between the substrate-specific binding of 8-oxoguanine DNA glycosylase 1 (OGG1) and epigenetic regulation, with a focal point on elucidating the molecular underpinnings and their biological implications. The absence of OGG1 distinctly attenuates the binding of transcription factors to cis elements, thereby modulating pro-inflammatory or pro-fibrotic transcriptional activity. Through a synergy of experimental insights gained from cell culture studies and murine models, utilizing prototype OGG1 inhibitors (O8, TH5487, and SU0268), a promising panorama emerges. These investigations underscore the absence of cytotoxicity and the establishment of a favorable tolerance profile for these OGG1 inhibitors. EXPERT OPINION Thus, the strategic targeting of the active site pocket of OGG1 through the application of small molecules introduces an innovative trajectory for advancing redox medicine. This approach holds particular significance in the context of pulmonary diseases, offering a refined avenue for their management.
Collapse
Affiliation(s)
- Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| |
Collapse
|
3
|
Copp W, Karimi A, Yang T, Guarné A, Luedtke NW. Fluorescent molecular rotors detect O6-methylguanine dynamics and repair in duplex DNA. Chem Commun (Camb) 2024; 60:1156-1159. [PMID: 38190113 DOI: 10.1039/d3cc04782b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Alkylation at the O6 position of guanine is a common and highly mutagenic form of DNA damage. Direct repair of O6-alkylguanines by the "suicide" enzyme O6-methylguanine DNA methyltransferase (MGMT, AGT, AGAT) maintains genome stability and inhibits carcinogenesis. In this study, a fluorescent analogue of thymidine containing trans-stilbene (tsT) is quenched by O6-methylguanine residues in the opposite strand of DNA by molecular dynamics that propagate through the duplex with as much as ∼9 Å of separation. Increased fluorescence of tsT or the cytosine analogue tsC resulting from MGMT-mediated DNA repair were distinguishable from non-covalent DNA-protein binding following protease digest. To our knowledge, this is the first study utilizing molecular rotor base analogues to detect DNA damage and repair activities in duplex DNA.
Collapse
Affiliation(s)
- William Copp
- Department of Chemistry, McGill University, H3A-0B8 Montreal, Canada
- Centre de Recherche en Biologie Structural, McGill University, H3G 0B1 Montreal, Canada
| | - Ashkan Karimi
- Department of Chemistry, McGill University, H3A-0B8 Montreal, Canada
- Centre de Recherche en Biologie Structural, McGill University, H3G 0B1 Montreal, Canada
| | - Tianxiao Yang
- Centre de Recherche en Biologie Structural, McGill University, H3G 0B1 Montreal, Canada
- Department of Biochemistry, McGill University, H3G 1Y6 Montreal, Canada
| | - Alba Guarné
- Centre de Recherche en Biologie Structural, McGill University, H3G 0B1 Montreal, Canada
- Department of Biochemistry, McGill University, H3G 1Y6 Montreal, Canada
| | - Nathan W Luedtke
- Department of Chemistry, McGill University, H3A-0B8 Montreal, Canada
- Centre de Recherche en Biologie Structural, McGill University, H3G 0B1 Montreal, Canada
- Department of Pharmacology and Therapeutics, McGill University, H3A-1A3 Montreal, Canada
| |
Collapse
|
4
|
Abstract
DNA repair enzymes continuously provide surveillance throughout our cells, protecting the enclosed DNA from the damage that is constantly arising from oxidation, alkylating species, and radiation. Members of this enzyme class are intimately linked to pathways controlling cancer and inflammation and are promising targets for diagnostics and future therapies. Their study is benefiting widely from the development of new tools and methods aimed at measuring their activities. Here, we provide an Account of our laboratory's work on developing chemical tools to study DNA repair processes in vitro, as well as in cells and tissues, and what we have learned by applying them.We first outline early work probing how DNA repair enzymes recognize specific forms of damage by use of chemical analogs of the damage with altered shapes and H-bonding abilities. One outcome of this was the development of an unnatural DNA base that is incorporated selectively by polymerase enzymes opposite sites of missing bases (abasic sites) in DNA, a very common form of damage.We then describe strategies for design of fluorescent probes targeted to base excision repair (BER) enzymes; these were built from small synthetic DNAs incorporating fluorescent moieties to engender light-up signals as the enzymatic reaction proceeds. Examples of targets for these DNA probes include UDG, SMUG1, Fpg, OGG1, MutYH, ALKBH2, ALKBH3, MTH1, and NTH1. Several such strategies were successful and were applied both in vitro and in cellular settings; moreover, some were used to discover small-molecule modulators of specific repair enzymes. One of these is the compound SU0268, a potent OGG1 inhibitor that is under investigation in animal models for inhibiting hyperinflammatory responses.To investigate cellular nucleotide sanitation pathways, we designed a series of "two-headed" nucleotides containing a damaged DNA nucleotide at one end and ATP at the other; these were applied to studying the three human sanitation enzymes MTH1, dUTPase, and dITPase, some of which are therapeutic targets. The MTH1 probe (ARGO) was used in collaboration with oncologists to measure the enzyme in tumors as a disease marker and also to develop the first small-molecule activators of the enzyme.We proceed to discuss the development of a "universal" probe of base excision repair processes (UBER), which reacts covalently with abasic site intermediates of base excision repair. UBER probes light up in real time as the reaction occurs, enabling the observation of base excision repair as it occurs in live cells and tissues. UBER probes can also be used in efficient and simple methods for fluorescent labeling of DNA. Finally, we suggest interesting directions for the future of this field in biomedicine and human health.
Collapse
Affiliation(s)
- Yong Woong Jun
- Department of Chemistry, Stanford University, 369 North-South Axis, Stauffer I, Stanford, California 94305, United States
| | - Eric T Kool
- Department of Chemistry, Stanford University, 369 North-South Axis, Stauffer I, Stanford, California 94305, United States
| |
Collapse
|
5
|
Efficient DNA fluorescence labeling via base excision trapping. Nat Commun 2022; 13:5043. [PMID: 36028479 PMCID: PMC9418136 DOI: 10.1038/s41467-022-32494-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/03/2022] [Indexed: 01/19/2023] Open
Abstract
Fluorescence labeling of DNAs is broadly useful, but methods for labeling are expensive and labor-intensive. Here we describe a general method for fluorescence labeling of oligonucleotides readily and cost-efficiently via base excision trapping (BETr), employing deaminated DNA bases to mark label positions, which are excised by base excision repair enzymes generating AP sites. Specially designed aminooxy-substituted rotor dyes trap the AP sites, yielding high emission intensities. BETr is orthogonal to DNA synthesis by polymerases, enabling multi-uracil incorporation into an amplicon and in situ BETr labeling without washing. BETr also enables labeling of dsDNA such as genomic DNA at a high labeling density in a single tube by use of nick translation. Use of two different deaminated bases facilitates two-color site-specific labeling. Use of a multi-labeled DNA construct as a bright fluorescence tag is demonstrated through the conjugation to an antibody for imaging proteins. Finally, double-strand selectivity of a repair enzyme is harnessed in sensitive reporting on the presence of a target DNA or RNA in a mixture with isothermal turnover and single nucleotide specificity. Overall, the results document a convenient and versatile method for general fluorescence labeling of DNAs.
Collapse
|
6
|
Signal-on/signal-off bead-based assays for the multiplexed monitoring of base excision repair activities by flow cytometry. Anal Bioanal Chem 2022; 414:2029-2040. [DOI: 10.1007/s00216-021-03849-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 11/01/2022]
|
7
|
Ge J, Ngo LP, Kaushal S, Tay IJ, Thadhani E, Kay JE, Mazzucato P, Chow DN, Fessler JL, Weingeist DM, Sobol RW, Samson LD, Floyd SR, Engelward BP. CometChip enables parallel analysis of multiple DNA repair activities. DNA Repair (Amst) 2021; 106:103176. [PMID: 34365116 PMCID: PMC8439179 DOI: 10.1016/j.dnarep.2021.103176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/09/2021] [Accepted: 07/08/2021] [Indexed: 12/28/2022]
Abstract
DNA damage can be cytotoxic and mutagenic, and it is directly linked to aging, cancer, and other diseases. To counteract the deleterious effects of DNA damage, cells have evolved highly conserved DNA repair pathways. Many commonly used DNA repair assays are relatively low throughput and are limited to analysis of one protein or one pathway. Here, we have explored the capacity of the CometChip platform for parallel analysis of multiple DNA repair activities. Taking advantage of the versatility of the traditional comet assay and leveraging micropatterning techniques, the CometChip platform offers increased throughput and sensitivity compared to the traditional comet assay. By exposing cells to DNA damaging agents that create substrates of Base Excision Repair, Nucleotide Excision Repair, and Non-Homologous End Joining, we show that the CometChip is an effective method for assessing repair deficiencies in all three pathways. With these applications of the CometChip platform, we expand the utility of the comet assay for precise, high-throughput, parallel analysis of multiple DNA repair activities.
Collapse
Affiliation(s)
- Jing Ge
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Le P Ngo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Simran Kaushal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, United States
| | - Ian J Tay
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Elina Thadhani
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Jennifer E Kay
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Patrizia Mazzucato
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Danielle N Chow
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Jessica L Fessler
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - David M Weingeist
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Robert W Sobol
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, United States; University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, United States
| | - Leona D Samson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Scott R Floyd
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27514, United States
| | - Bevin P Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
8
|
Kant M, Tahara YK, Jaruga P, Coskun E, Lloyd RS, Kool ET, Dizdaroglu M. Inhibition by Tetrahydroquinoline Sulfonamide Derivatives of the Activity of Human 8-Oxoguanine DNA Glycosylase (OGG1) for Several Products of Oxidatively induced DNA Base Lesions. ACS Chem Biol 2021; 16:45-51. [PMID: 33331782 DOI: 10.1021/acschembio.0c00877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
DNA glycosylases involved in the first step of the DNA base excision repair pathway are promising targets in cancer therapy. There is evidence that reduction of their activities may enhance cell killing in malignant tumors. Recently, two tetrahydroquinoline compounds named SU0268 and SU0383 were reported to inhibit OGG1 for the excision of 8-hydroxyguanine. This DNA repair protein is one of the major cellular enzymes responsible for excision of a number of oxidatively induced lesions from DNA. In this work, we used gas chromatography-tandem mass spectrometry with isotope-dilution to measure the excision of not only 8-hydroxyguanine but also that of the other major substrate of OGG1, i.e., 2,6-diamino-4-hydroxy-5-formamidopyrimidine, using genomic DNA with multiple purine- and pyrimidine-derived lesions. The excision of a minor substrate 4,6-diamino-5-formamidopyrimidine was also measured. Both SU0268 and SU0383 efficiently inhibited OGG1 activity for these three lesions, with the former being more potent than the latter. Dependence of inhibition on concentrations of SU0268 and SU0383 from 0.05 μmol/L to 10 μmol/L was also demonstrated. The approach used in this work may be applied to the investigation of OGG1 inhibition by SU0268 and SU0383 and other small molecule inhibitors in further studies including cellular and animal models of disease.
Collapse
Affiliation(s)
- Melis Kant
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Yu-ki Tahara
- Department of Chemistry, ChEM-H Institute and Stanford Cancer Institute, Stanford University, Stanford, California 94305, United States
| | - Pawel Jaruga
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Erdem Coskun
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| | - R. Stephen Lloyd
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Eric T. Kool
- Department of Chemistry, ChEM-H Institute and Stanford Cancer Institute, Stanford University, Stanford, California 94305, United States
| | - Miral Dizdaroglu
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
9
|
Hans F, Senarisoy M, Bhaskar Naidu C, Timmins J. Focus on DNA Glycosylases-A Set of Tightly Regulated Enzymes with a High Potential as Anticancer Drug Targets. Int J Mol Sci 2020; 21:ijms21239226. [PMID: 33287345 PMCID: PMC7730500 DOI: 10.3390/ijms21239226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/25/2022] Open
Abstract
Cancer is the second leading cause of death with tens of millions of people diagnosed with cancer every year around the world. Most radio- and chemotherapies aim to eliminate cancer cells, notably by causing severe damage to the DNA. However, efficient repair of such damage represents a common mechanism of resistance to initially effective cytotoxic agents. Thus, development of new generation anticancer drugs that target DNA repair pathways, and more particularly the base excision repair (BER) pathway that is responsible for removal of damaged bases, is of growing interest. The BER pathway is initiated by a set of enzymes known as DNA glycosylases. Unlike several downstream BER enzymes, DNA glycosylases have so far received little attention and the development of specific inhibitors of these enzymes has been lagging. Yet, dysregulation of DNA glycosylases is also known to play a central role in numerous cancers and at different stages of the disease, and thus inhibiting DNA glycosylases is now considered a valid strategy to eliminate cancer cells. This review provides a detailed overview of the activities of DNA glycosylases in normal and cancer cells, their modes of regulation, and their potential as anticancer drug targets.
Collapse
|
10
|
Nikitaki Z, Pariset E, Sudar D, Costes SV, Georgakilas AG. In Situ Detection of Complex DNA Damage Using Microscopy: A Rough Road Ahead. Cancers (Basel) 2020; 12:E3288. [PMID: 33172046 PMCID: PMC7694657 DOI: 10.3390/cancers12113288] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Complexity of DNA damage is considered currently one if not the primary instigator of biological responses and determinant of short and long-term effects in organisms and their offspring. In this review, we focus on the detection of complex (clustered) DNA damage (CDD) induced for example by ionizing radiation (IR) and in some cases by high oxidative stress. We perform a short historical perspective in the field, emphasizing the microscopy-based techniques and methodologies for the detection of CDD at the cellular level. We extend this analysis on the pertaining methodology of surrogate protein markers of CDD (foci) colocalization and provide a unique synthesis of imaging parameters, software, and different types of microscopy used. Last but not least, we critically discuss the main advances and necessary future direction for the better detection of CDD, with important outcomes in biological and clinical setups.
Collapse
Affiliation(s)
- Zacharenia Nikitaki
- Physics Department, School of Applied Mathematical and Physical Sciences, DNA Damage Laboratory, National Technical University of Athens (NTUA), 15780 Zografou, Athens, Greece
| | - Eloise Pariset
- Space Biosciences Division, Radiation Biophysics Laboratory, NASA Ames Research Center, Moffett Field, CA 94035, USA; (E.P.); (S.V.C.)
- Universities Space Research Association (USRA), Mountain View, CA 94043, USA
| | - Damir Sudar
- Life Sciences Department, Quantitative Imaging Systems LLC, Portland, OR 97209, USA;
| | - Sylvain V. Costes
- Space Biosciences Division, Radiation Biophysics Laboratory, NASA Ames Research Center, Moffett Field, CA 94035, USA; (E.P.); (S.V.C.)
| | - Alexandros G. Georgakilas
- Physics Department, School of Applied Mathematical and Physical Sciences, DNA Damage Laboratory, National Technical University of Athens (NTUA), 15780 Zografou, Athens, Greece
| |
Collapse
|
11
|
Zhu RY, Majumdar C, Khuu C, De Rosa M, Opresko PL, David SS, Kool ET. Designer Fluorescent Adenines Enable Real-Time Monitoring of MUTYH Activity. ACS CENTRAL SCIENCE 2020; 6:1735-1742. [PMID: 33145410 PMCID: PMC7596860 DOI: 10.1021/acscentsci.0c00369] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Indexed: 05/04/2023]
Abstract
The human DNA base excision repair enzyme MUTYH (MutY homolog DNA glycosylase) excises undamaged adenine that has been misincorporated opposite the oxidatively damaged 8-oxoG, preventing transversion mutations and serving as an important defense against the deleterious effects of this damage. Mutations in the MUTYH gene predispose patients to MUTYH-associated polyposis and colorectal cancer, and MUTYH expression has been documented as a biomarker for pancreatic cancer. Measuring MUTYH activity is therefore critical for evaluating and diagnosing disease states as well as for testing this enzyme as a potential therapeutic target. However, current methods for measuring MUTYH activity rely on indirect electrophoresis and radioactivity assays, which are difficult to implement in biological and clinical settings. Herein, we synthesize and identify novel fluorescent adenine derivatives that can act as direct substrates for excision by MUTYH as well as bacterial MutY. When incorporated into synthetic DNAs, the resulting fluorescently modified adenine-release turn-on (FMART) probes report on enzymatic base excision activity in real time, both in vitro and in mammalian cells and human blood. We also employ the probes to identify several promising small-molecule modulators of MUTYH by employing FMART probes for in vitro screening.
Collapse
Affiliation(s)
- Ru-Yi Zhu
- Department
of Chemistry, ChEM-H Institute, and Stanford Cancer Institute, Stanford University, Stanford, California 94305, United States
| | - Chandrima Majumdar
- Department
of Chemistry, and Biochemistry, Molecular, Cellular and Developmental
Biology Graduate Group, University of California
at Davis, Davis, California 95616, United States
| | - Cindy Khuu
- Department
of Chemistry, and Biochemistry, Molecular, Cellular and Developmental
Biology Graduate Group, University of California
at Davis, Davis, California 95616, United States
| | - Mariarosaria De Rosa
- Department
of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania 15261, United States
- Hillman
Cancer Center, University of Pittsburgh
Medical Center, Pittsburgh, Pennsylvania 15261, United States
| | - Patricia L. Opresko
- Department
of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania 15261, United States
- Hillman
Cancer Center, University of Pittsburgh
Medical Center, Pittsburgh, Pennsylvania 15261, United States
| | - Sheila S. David
- Department
of Chemistry, and Biochemistry, Molecular, Cellular and Developmental
Biology Graduate Group, University of California
at Davis, Davis, California 95616, United States
| | - Eric T. Kool
- Department
of Chemistry, ChEM-H Institute, and Stanford Cancer Institute, Stanford University, Stanford, California 94305, United States
- E-mail:
| |
Collapse
|
12
|
Jun YW, Wilson DL, Kietrys AM, Lotsof ER, Conlon SG, David SS, Kool ET. An Excimer Clamp for Measuring Damaged-Base Excision by the DNA Repair Enzyme NTH1. Angew Chem Int Ed Engl 2020; 59:7450-7455. [PMID: 32109332 PMCID: PMC7180134 DOI: 10.1002/anie.202001516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/26/2020] [Indexed: 11/10/2022]
Abstract
Direct measurement of DNA repair enzyme activities is important both for the basic study of cellular repair pathways as well as for potential new translational applications in their associated diseases. NTH1, a major glycosylase targeting oxidized pyrimidines, prevents mutations arising from this damage, and the regulation of NTH1 activity is important in resisting oxidative stress and in suppressing tumor formation. Herein, we describe a novel molecular strategy for the direct detection of damaged DNA base excision activity by a ratiometric fluorescence change. This strategy utilizes glycosylase-induced excimer formation of pyrenes, and modified DNA probes, incorporating two pyrene deoxynucleotides and a damaged base, enable the direct, real-time detection of NTH1 activity in vitro and in cellular lysates. The probe design was also applied in screening for potential NTH1 inhibitors, leading to the identification of a new small-molecule inhibitor with sub-micromolar potency.
Collapse
Affiliation(s)
- Yong Woong Jun
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - David L Wilson
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Anna M Kietrys
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Elizabeth R Lotsof
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
| | - Savannah G Conlon
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
| | - Sheila S David
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
13
|
Jun YW, Wilson DL, Kietrys AM, Lotsof ER, Conlon SG, David SS, Kool ET. An Excimer Clamp for Measuring Damaged‐Base Excision by the DNA Repair Enzyme NTH1. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yong Woong Jun
- Department of ChemistryStanford University Stanford CA 94305 USA
| | - David L. Wilson
- Department of ChemistryStanford University Stanford CA 94305 USA
| | - Anna M. Kietrys
- Department of ChemistryStanford University Stanford CA 94305 USA
| | | | - Savannah G. Conlon
- Department of ChemistryUniversity of California, Davis Davis CA 95616 USA
| | - Sheila S. David
- Department of ChemistryUniversity of California, Davis Davis CA 95616 USA
| | - Eric T. Kool
- Department of ChemistryStanford University Stanford CA 94305 USA
| |
Collapse
|
14
|
Tahara YK, Kietrys AM, Hebenbrock M, Lee Y, Wilson DL, Kool ET. Dual Inhibitors of 8-Oxoguanine Surveillance by OGG1 and NUDT1. ACS Chem Biol 2019; 14:2606-2615. [PMID: 31622553 PMCID: PMC7061906 DOI: 10.1021/acschembio.9b00490] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oxidative damage in DNA is one of the primary sources of mutations in the cell. The activities of repair enzymes 8-oxoguanine DNA glycosylase (OGG1) and human MutT Homologue 1 (NUDT1 or MTH1), which work together to ameliorate this damage, are closely linked to mutagenesis, genotoxicity, cancer, and inflammation. Here we have undertaken the development of small-molecule dual inhibitors of the two enzymes as tools to test the relationships between these pathways and disease. The compounds preserve key structural elements of known inhibitors of the two enzymes, and they were synthesized and assayed with recently developed luminescence assays of the enzymes. Further structural refinement of initial lead molecules yielded compound 5 (SU0383) with IC50(NUDT1) = 0.034 μM and IC50(OGG1) = 0.49 μM. The compound SU0383 displayed low toxicity in two human cell lines at 10 μM. Experiments confirm the ability of SU0383 to increase sensitivity of tumor cells to oxidative stress. Dual inhibitors of these two enzymes are expected to be useful in testing multiple hypotheses regarding the roles of 8-oxo-dG in multiple disease states.
Collapse
Affiliation(s)
- Yu-ki Tahara
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Anna M. Kietrys
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Marian Hebenbrock
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Yujeong Lee
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - David L. Wilson
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Eric T. Kool
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
15
|
Skiba J, Kowalczyk A, Fik MA, Gapińska M, Trzybiński D, Woźniak K, Vrček V, Czerwieniec R, Kowalski K. Luminescent pyrenyl-GNA nucleosides: synthesis, photophysics and confocal microscopy studies in cancer HeLa cells. Photochem Photobiol Sci 2019; 18:2449-2460. [PMID: 31407765 DOI: 10.1039/c9pp00271e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glycol nucleic acids (GNA) are synthetic genetic-like polymers with an acyclic three-carbon propylene glycol phosphodiester backbone. Here, synthesis, luminescence properties, circular dichroism (CD) spectra, and confocal microscopy speciation studies of (R,S) and (S,R) pyrenyl-GNA (pyr-GNA) nucleosides are reported in HeLa cells. Enantiomerically pure nucleosides were obtained by a Sharpless asymmetric dihydroxylation reaction followed by semi-preparative high-performance liquid chromatography (HPLC) separation using Amylose-2 as the chiral stationary phase. The enantiomeric relationship between stereoisomers was confirmed by CD spectra, and the absolute configurations were assigned based on experimental and theoretical CD spectra comparisons. The pyr-GNA nucleosides were not cytotoxic against human cervical (HeLa) cancer cells and thus were utilized as luminescent probes in the imaging of these cells with confocal microscopy. Cellular staining patterns were identical for both enantiomers in HeLa cells. Compounds showed no photocytotoxic effect and were localized in the lipid membranes of the mitochondria, in cellular vesicles and in other lipid cellular compartments. The overall distribution of the pyrene and pyrenyl-GNA nucleosides inside the living HeLa cells differed, since the former compound gives a more granular staining pattern and the latter a more diffuse one.
Collapse
Affiliation(s)
- Joanna Skiba
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wilson DL, Kool ET. Ultrafast Oxime Formation Enables Efficient Fluorescence Light-up Measurement of DNA Base Excision. J Am Chem Soc 2019; 141:19379-19388. [PMID: 31774658 DOI: 10.1021/jacs.9b09812] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
DNA glycosylases constitute a biologically and biomedically important group of DNA repair enzymes responsible for initiating base excision repair (BER). Measuring their activities can be useful for studying the mechanisms DNA damage and repair and for practical applications in cancer diagnosis and drug screening. Previous fluorescence methods for assaying DNA glycosylases are often complex and/or limited in scope to a single enzyme type. Here we report a universal base excision reporter (UBER) fluorescence probe design that implements an unprecedentedly rapid oxime reaction (>150 M-1 s-1) with high specificity for the abasic (AP) site of DNA. The molecular rotor design achieves a robust >250-500-fold increase in fluorescence upon reaction with AP sites in DNA. By using the fluorescence reporter in concert with specific DNA lesion-containing substrates, the UBER probe can be used in a coupled assay in principle with any DNA glycosylase. We demonstrate the utility of the UBER probe by assaying five different glycosylases in real time as well as profiling glycosylase activity in cell lysates. We anticipate that the UBER probe will be of considerable utility to researchers studying DNA repair biology owing to its high level of generalizability, ease of use, and compatibility with biologically derived samples.
Collapse
Affiliation(s)
- David L Wilson
- Department of Chemistry, Stanford Cancer Institute and ChEM-H Institute , Stanford University , Stanford , California 94305 , United States
| | - Eric T Kool
- Department of Chemistry, Stanford Cancer Institute and ChEM-H Institute , Stanford University , Stanford , California 94305 , United States
| |
Collapse
|
17
|
Mavragani IV, Nikitaki Z, Kalospyros SA, Georgakilas AG. Ionizing Radiation and Complex DNA Damage: From Prediction to Detection Challenges and Biological Significance. Cancers (Basel) 2019; 11:E1789. [PMID: 31739493 PMCID: PMC6895987 DOI: 10.3390/cancers11111789] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Biological responses to ionizing radiation (IR) have been studied for many years, generally showing the dependence of these responses on the quality of radiation, i.e., the radiation particle type and energy, types of DNA damage, dose and dose rate, type of cells, etc. There is accumulating evidence on the pivotal role of complex (clustered) DNA damage towards the determination of the final biological or even clinical outcome after exposure to IR. In this review, we provide literature evidence about the significant role of damage clustering and advancements that have been made through the years in its detection and prediction using Monte Carlo (MC) simulations. We conclude that in the future, emphasis should be given to a better understanding of the mechanistic links between the induction of complex DNA damage, its processing, and systemic effects at the organism level, like genomic instability and immune responses.
Collapse
Affiliation(s)
| | | | | | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), 15780 Athens, Greece
| |
Collapse
|
18
|
Tahara Y. Study at the Kool Lab in Stanford University —Chemical Biology of Nucleic Acid—. J SYN ORG CHEM JPN 2019. [DOI: 10.5059/yukigoseikyokaishi.77.724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuki Tahara
- New Frontiers Research Group, Frontier Research Labs, Institute for Innovation, Ajinomoto Co., Inc
| |
Collapse
|
19
|
|
20
|
Tachallait H, Safir Filho M, Marzag H, Bougrin K, Demange L, Martin AR, Benhida R. A straightforward and versatile FeCl3 catalyzed Friedel–Crafts C-glycosylation process. Application to the synthesis of new functionalized C-nucleosides. NEW J CHEM 2019. [DOI: 10.1039/c8nj06300a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rapid and straightforward access to C-nucleosides using an inexpensive FeCl3 catalyst.
Collapse
Affiliation(s)
- Hamza Tachallait
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique
- URAC23
- Faculté des Sciences
- 1014 Rabat
- Morocco
| | - Mauro Safir Filho
- Université Côte d’Azur
- CNRS
- Institut de Chimie de Nice UMR 7272
- 06108 Nice
- France
| | - Hamid Marzag
- Université Côte d’Azur
- CNRS
- Institut de Chimie de Nice UMR 7272
- 06108 Nice
- France
| | - Khalid Bougrin
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique
- URAC23
- Faculté des Sciences
- 1014 Rabat
- Morocco
| | - Luc Demange
- Université Côte d’Azur
- CNRS
- Institut de Chimie de Nice UMR 7272
- 06108 Nice
- France
| | - Anthony R. Martin
- Université Côte d’Azur
- CNRS
- Institut de Chimie de Nice UMR 7272
- 06108 Nice
- France
| | - Rachid Benhida
- Université Côte d’Azur
- CNRS
- Institut de Chimie de Nice UMR 7272
- 06108 Nice
- France
| |
Collapse
|
21
|
Abstract
DNA repair is now understood to play a key role in a variety of disease states, most notably cancer. Tools for studying DNA have typically relied on traditional biochemical methods which are often laborious and indirect. Efforts to study the biology and therapeutic relevance of DNA repair pathways can be limited by such methods. Recently, specific fluorescent probes have been developed to aid in the study of DNA repair. Fluorescent probes offer the advantage of being able to directly assay for DNA repair activity in a simple, mix-and-measure format. This review will summarize the distinct classes of probe designs and their potential utility in varied research and preclinical settings.
Collapse
Affiliation(s)
- David L. Wilson
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Eric T. Kool
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
22
|
Tahara YK, Auld D, Ji D, Beharry AA, Kietrys AM, Wilson DL, Jimenez M, King D, Nguyen Z, Kool ET. Potent and Selective Inhibitors of 8-Oxoguanine DNA Glycosylase. J Am Chem Soc 2018; 140:2105-2114. [PMID: 29376367 PMCID: PMC5823510 DOI: 10.1021/jacs.7b09316] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The activity of DNA repair enzyme 8-oxoguanine DNA glycosylase (OGG1), which excises oxidized base 8-oxoguanine (8-OG) from DNA, is closely linked to mutagenesis, genotoxicity, cancer, and inflammation. To test the roles of OGG1-mediated repair in these pathways, we have undertaken the development of noncovalent small-molecule inhibitors of the enzyme. Screening of a PubChem-annotated library using a recently developed fluorogenic 8-OG excision assay resulted in multiple validated hit structures, including selected lead hit tetrahydroquinoline 1 (IC50 = 1.7 μM). Optimization of the tetrahydroquinoline scaffold over five regions of the structure ultimately yielded amidobiphenyl compound 41 (SU0268; IC50 = 0.059 μM). SU0268 was confirmed by surface plasmon resonance studies to bind the enzyme both in the absence and in the presence of DNA. The compound SU0268 was shown to be selective for inhibiting OGG1 over multiple repair enzymes, including other base excision repair enzymes, and displayed no toxicity in two human cell lines at 10 μM. Finally, experiments confirm the ability of SU0268 to inhibit OGG1 in HeLa cells, resulting in an increase in accumulation of 8-OG in DNA. The results suggest the compound SU0268 as a potentially useful tool in studies of the role of OGG1 in multiple disease-related pathways.
Collapse
Affiliation(s)
- Yu-ki Tahara
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Douglas Auld
- Department of Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Debin Ji
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Andrew A. Beharry
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Anna M. Kietrys
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - David L. Wilson
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Marta Jimenez
- Department of Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Daniel King
- Department of Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Zachary Nguyen
- Department of Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Eric T. Kool
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
23
|
Krasheninina OA, Novopashina DS, Apartsin EK, Venyaminova AG. Recent Advances in Nucleic Acid Targeting Probes and Supramolecular Constructs Based on Pyrene-Modified Oligonucleotides. Molecules 2017; 22:E2108. [PMID: 29189716 PMCID: PMC6150046 DOI: 10.3390/molecules22122108] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 12/17/2022] Open
Abstract
In this review, we summarize the recent advances in the use of pyrene-modified oligonucleotides as a platform for functional nucleic acid-based constructs. Pyrene is of special interest for the development of nucleic acid-based tools due to its unique fluorescent properties (sensitivity of fluorescence to the microenvironment, ability to form excimers and exciplexes, long fluorescence lifetime, high quantum yield), ability to intercalate into the nucleic acid duplex, to act as a π-π-stacking (including anchoring) moiety, and others. These properties of pyrene have been used to construct novel sensitive fluorescent probes for the sequence-specific detection of nucleic acids and the discrimination of single nucleotide polymorphisms (SNPs), aptamer-based biosensors, agents for binding of double-stranded DNAs, and building blocks for supramolecular complexes. Special attention is paid to the influence of the design of pyrene-modified oligonucleotides on their properties, i.e., the structure-function relationships. The perspectives for the applications of pyrene-modified oligonucleotides in biomolecular studies, diagnostics, and nanotechnology are discussed.
Collapse
Affiliation(s)
- Olga A Krasheninina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
| | - Darya S Novopashina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
| | - Evgeny K Apartsin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
| | - Alya G Venyaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
| |
Collapse
|
24
|
Astakhova K, Golovin AV, Prokhorenko IA, Ustinov AV, Stepanova IA, Zatsepin TS, Korshun VA. Design of 2′-phenylethynylpyrene excimer forming DNA/RNA probes for homogeneous SNP detection: The attachment manner matters. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.04.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Kasprzyk R, Kowalska J, Wieczorek Z, Szabelski M, Stolarski R, Jemielity J. Acetylpyrene-labelled 7-methylguanine nucleotides: unusual fluorescence properties and application to decapping scavenger activity monitoring. Org Biomol Chem 2016; 14:3863-8. [PMID: 26975842 DOI: 10.1039/c6ob00419a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
7-Methylguanosine (m(7)G) nucleotides labelled with acetylpyrene (AcPy) were synthesized as fluorescent mRNA 5' end (cap) analogues. The unique fluorescent properties of m(7)G-AcPy conjugates, different from G-AcPy, can be applied to studying various mRNA cap-related processes including the evaluation of putative inhibitors of DcpS enzyme-a therapeutic target in neuromuscular diseases.
Collapse
Affiliation(s)
- Renata Kasprzyk
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
26
|
Beharry AA, Lacoste S, O'Connor TR, Kool ET. Fluorescence Monitoring of the Oxidative Repair of DNA Alkylation Damage by ALKBH3, a Prostate Cancer Marker. J Am Chem Soc 2016; 138:3647-50. [PMID: 26967262 DOI: 10.1021/jacs.6b00986] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 2-oxoglutarate-dependent iron enzyme ALKBH3 is an antitumor target and a potential diagnostic marker for several tumor types, including prostate cancer. However, there is at present no simple way to measure this enzyme's activity. Here we describe a fluorogenic probe design (MAQ) that is directly responsive to ALKBH3 repair activity. It makes use of the fluorescence-quenching properties of 1-methyladenine; removal of the alkyl group results in a >10-fold light-up signal. The probe is specific for ALKBH3 over its related homologue ALKBH2 and can be used to identify and measure the effectiveness of enzyme inhibitors. Measurements of the enzyme substrate parameters show that MAQ displays Km and kcat values essentially the same as those of the native substrate. Finally, we show that the probe functions efficiently in cells, allowing imaging and quantitation of ALKBH3 activity by microscopy and flow cytometry. We expect that MAQ probes will be broadly useful in the study of the basic biology of ALKBH3 and in clinical cancer applications as well.
Collapse
Affiliation(s)
- Andrew A Beharry
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Sandrine Lacoste
- Department of Cancer Biology, Beckman Research Institute , Duarte, California 91010, United States
| | - Timothy R O'Connor
- Department of Cancer Biology, Beckman Research Institute , Duarte, California 91010, United States
| | - Eric T Kool
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| |
Collapse
|