1
|
Ivachtchenko AV, Khvat AV, Shkil DO. Development and Prospects of Furin Inhibitors for Therapeutic Applications. Int J Mol Sci 2024; 25:9199. [PMID: 39273149 PMCID: PMC11394684 DOI: 10.3390/ijms25179199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Furin, a serine protease enzyme located in the Golgi apparatus of animal cells, plays a crucial role in cleaving precursor proteins into their mature, active forms. It is ubiquitously expressed across various tissues, including the brain, lungs, gastrointestinal tract, liver, pancreas, and reproductive organs. Since its discovery in 1990, furin has been recognized as a significant therapeutic target, leading to the active development of furin inhibitors for potential use in antiviral, antibacterial, anticancer, and other therapeutic applications. This review provides a comprehensive overview of the progress in the development and characterization of furin inhibitors, encompassing peptides, linear and macrocyclic peptidomimetics, and non-peptide compounds, highlighting their potential in the treatment of both infectious and non-infectious diseases.
Collapse
|
2
|
Gitlin-Domagalska A, Dębowski D, Maciejewska A, Samsonov S, Maszota-Zieleniak M, Ptaszyńska N, Łęgowska A, Rolka K. Cyclic Peptidic Furin Inhibitors Developed by Combinatorial Chemistry. ACS Med Chem Lett 2023; 14:458-465. [PMID: 37077382 PMCID: PMC10107917 DOI: 10.1021/acsmedchemlett.3c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Furin is a human serine protease responsible for activating numerous physiologically relevant cell substrates and is also involved in the development of various pathological conditions, including inflammatory diseases, cancers, and viral and bacterial infections. Therefore, compounds with the ability to inhibit furin's proteolytic action are regarded as potential therapeutics. Here we took the combinatorial chemistry approach (library consisting of 2000 peptides) to obtain new, strong, and stable peptide furin inhibitors. The extensively studied trypsin inhibitor SFTI-1 was used as a leading structure. A selected monocylic inhibitor was further modified to finally yield five mono- or bicyclic furin inhibitors with values of K i in the subnanomolar range. Inhibitor 5 was the most active (K i = 0.21 nM) and significantly more proteolytically resistant than the reference furin inhibitor described in the literature. Moreover, it reduced furin-like activity in PANC-1 cell lysate. Detailed analysis of furin-inhibitor complexes using molecular dynamics simulations is also reported.
Collapse
Affiliation(s)
- Agata Gitlin-Domagalska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Dawid Dębowski
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Aleksandra Maciejewska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Sergey Samsonov
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Martyna Maszota-Zieleniak
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Natalia Ptaszyńska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Anna Łęgowska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Krzysztof Rolka
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland
| |
Collapse
|
3
|
Abstract
Analysis of the SARS-CoV-2 sequence revealed a multibasic furin cleavage site at the S1/S2 boundary of the spike protein distinguishing this virus from SARS-CoV. Furin, the best-characterized member of the mammalian proprotein convertases, is an ubiquitously expressed single pass type 1 transmembrane protein. Cleavage of SARS-CoV-2 spike protein by furin promotes viral entry into lung cells. While furin knockout is embryonically lethal, its knockout in differentiated somatic cells is not, thus furin provides an exciting therapeutic target for viral pathogens including SARS-CoV-2 and bacterial infections. Several peptide-based and small-molecule inhibitors of furin have been recently reported, and select cocrystal structures have been solved, paving the way for further optimization and selection of clinical candidates. This perspective highlights furin structure, substrates, recent inhibitors, and crystal structures with emphasis on furin's role in SARS-CoV-2 infection, where the current data strongly suggest its inhibition as a promising therapeutic intervention for SARS-CoV-2.
Collapse
Affiliation(s)
- Essam
Eldin A. Osman
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Alnawaz Rehemtulla
- Department
of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
Handley TNG, Jackson MA, Craik DJ. Scalable and Efficient In Planta Biosynthesis of Sunflower Trypsin Inhibitor-1 (SFTI) Peptide Therapeutics. Methods Mol Biol 2022; 2371:117-142. [PMID: 34596846 DOI: 10.1007/978-1-0716-1689-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Sunflower trypsin inhibitor-1 (SFTI-1) is a 14 amino acid cyclic peptide which has been effectively employed as a scaffold for engineering a range of peptide therapeutic candidates. Typically, synthesis of SFTI-1-based therapeutics is performed via solid-phase peptide synthesis and native chemical ligation, with significant financial and environmental costs associated. In planta synthesis of SFTI-1 based therapeutics serves as a greener approach for environmentally sustainable production. Here, we detail the methods for the transient expression, production, and purification of SFTI-1-based therapeutic peptides in Nicotiana benthamiana using a scalable and high-throughput approach. We demonstrate that a prerequisite for this is the co-expression of specialized asparaginyl endopeptidases (AEPs) that perform the backbone cyclization of SFTI-1. In our founding study, we were able to achieve in planta yields of a plasmin inhibitor SFTI-1 peptide at yields of ~60 μg/g of dried plant material.
Collapse
Affiliation(s)
- Thomas N G Handley
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, Australia
| | - Mark A Jackson
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
5
|
Babii O, Afonin S, Diel C, Huhn M, Dommermuth J, Schober T, Koniev S, Hrebonkin A, Nesterov‐Mueller A, Komarov IV, Ulrich AS. Diarylethene-Based Photoswitchable Inhibitors of Serine Proteases. Angew Chem Int Ed Engl 2021; 60:21789-21794. [PMID: 34268844 PMCID: PMC8519022 DOI: 10.1002/anie.202108847] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Indexed: 12/20/2022]
Abstract
A bicyclic peptide scaffold was chemically adapted to generate diarylethene-based photoswitchable inhibitors of serine protease Bos taurus trypsin 1 (T1). Starting from a prototype molecule-sunflower trypsin inhibitor-1 (SFTI-1)-we obtained light-controllable inhibitors of T1 with Ki in the low nanomolar range, whose activity could be modulated over 20-fold by irradiation. The inhibitory potency as well as resistance to proteolytic degradation were systematically studied on a series of 17 SFTI-1 analogues. The hydrogen bond network that stabilizes the structure of inhibitors and possibly the enzyme-inhibitor binding dynamics were affected by isomerization of the photoswitch. The feasibility of manipulating enzyme activity in time and space was demonstrated by controlled digestion of gelatin-based hydrogel and an antimicrobial peptide BP100-RW. Finally, our design principles of diarylethene photoswitches are shown to apply also for the development of other serine protease inhibitors.
Collapse
Affiliation(s)
- Oleg Babii
- Institute of Biological Interfaces (IBG-2)Karlsruhe Institute of Technology (KIT)POB 364076021KarlsruheGermany
- Institute of Microstructure Technology (IMT)KITHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2)Karlsruhe Institute of Technology (KIT)POB 364076021KarlsruheGermany
| | - Christian Diel
- Institute of Organic Chemistry (IOC)KITFritz-Haber-Weg 676131KarlsruheGermany
| | - Marcel Huhn
- Institute of Organic Chemistry (IOC)KITFritz-Haber-Weg 676131KarlsruheGermany
| | - Jennifer Dommermuth
- Institute of Organic Chemistry (IOC)KITFritz-Haber-Weg 676131KarlsruheGermany
| | - Tim Schober
- Institute of Organic Chemistry (IOC)KITFritz-Haber-Weg 676131KarlsruheGermany
- Lumobiotics GmbHAuer Straße 276227KarlsruheGermany
| | - Serhii Koniev
- Taras Shevchenko National University of Kyivvul. Volodymyrska 601601KyivUkraine
| | - Andrii Hrebonkin
- Institute of Biological Interfaces (IBG-2)Karlsruhe Institute of Technology (KIT)POB 364076021KarlsruheGermany
| | - Alexander Nesterov‐Mueller
- Institute of Microstructure Technology (IMT)KITHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Igor V. Komarov
- Taras Shevchenko National University of Kyivvul. Volodymyrska 601601KyivUkraine
- Lumobiotics GmbHAuer Straße 276227KarlsruheGermany
| | - Anne S. Ulrich
- Institute of Biological Interfaces (IBG-2)Karlsruhe Institute of Technology (KIT)POB 364076021KarlsruheGermany
- Institute of Organic Chemistry (IOC)KITFritz-Haber-Weg 676131KarlsruheGermany
| |
Collapse
|
6
|
Babii O, Afonin S, Diel C, Huhn M, Dommermuth J, Schober T, Koniev S, Hrebonkin A, Nesterov‐Mueller A, Komarov IV, Ulrich AS. Diarylethen‐basierte lichtschaltbare Inhibitoren von Serinproteasen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Oleg Babii
- Institute of Biological Interfaces (IBG-2) Karlsruhe Institute of Technology (KIT) POB 3640 76021 Karlsruhe Deutschland
- Institute of Microstructure Technology (IMT) KIT Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2) Karlsruhe Institute of Technology (KIT) POB 3640 76021 Karlsruhe Deutschland
| | - Christian Diel
- Institute of Organic Chemistry (IOC) KIT Fritz-Haber-Weg 6 76131 Karlsruhe Deutschland
| | - Marcel Huhn
- Institute of Organic Chemistry (IOC) KIT Fritz-Haber-Weg 6 76131 Karlsruhe Deutschland
| | - Jennifer Dommermuth
- Institute of Organic Chemistry (IOC) KIT Fritz-Haber-Weg 6 76131 Karlsruhe Deutschland
| | - Tim Schober
- Institute of Organic Chemistry (IOC) KIT Fritz-Haber-Weg 6 76131 Karlsruhe Deutschland
- Lumobiotics GmbH Auer Straße 2 76227 Karlsruhe Deutschland
| | - Serhii Koniev
- Taras Shevchenko National University of Kyiv vul. Volodymyrska 60 1601 Kyiv Ukraine
| | - Andrii Hrebonkin
- Institute of Biological Interfaces (IBG-2) Karlsruhe Institute of Technology (KIT) POB 3640 76021 Karlsruhe Deutschland
| | - Alexander Nesterov‐Mueller
- Institute of Microstructure Technology (IMT) KIT Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Igor V. Komarov
- Taras Shevchenko National University of Kyiv vul. Volodymyrska 60 1601 Kyiv Ukraine
- Lumobiotics GmbH Auer Straße 2 76227 Karlsruhe Deutschland
| | - Anne S. Ulrich
- Institute of Biological Interfaces (IBG-2) Karlsruhe Institute of Technology (KIT) POB 3640 76021 Karlsruhe Deutschland
- Institute of Organic Chemistry (IOC) KIT Fritz-Haber-Weg 6 76131 Karlsruhe Deutschland
| |
Collapse
|
7
|
Dahms SO, Haider T, Klebe G, Steinmetzer T, Brandstetter H. OFF-State-Specific Inhibition of the Proprotein Convertase Furin. ACS Chem Biol 2021; 16:1692-1700. [PMID: 34415722 PMCID: PMC8453481 DOI: 10.1021/acschembio.1c00411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
The pro-protein convertase
furin is a highly specific serine protease
involved in the proteolytic maturation of many proteins in the secretory
pathway. It also activates surface proteins of many viruses including
the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Furin inhibitors effectively suppress viral replication and thus are
promising antiviral therapeutics with broad application potential.
Polybasic substrate-like ligands typically trigger conformational
changes shifting furin’s active site cleft from the OFF-state
to the ON-state. Here, we solved the X-ray structures of furin in
complex with four different arginine mimetic compounds with reduced
basicity. These guanylhydrazone-based inhibitor complexes showed for
the first time an active site-directed binding mode to furin’s
OFF-state conformation. The compounds undergo unique interactions
within the S1 pocket, largely different compared to substrate-like
ligands. A second binding site was identified at the S4/S5 pocket
of furin. Crystallography-based titration experiments confirmed the
S1 site as the primary binding pocket. We also tested the proprotein
convertases PC5/6 and PC7 for inhibition by guanylhydrazones and found
an up to 7-fold lower potency for PC7. Interestingly, the observed
differences in the Ki values correlated
with the sequence conservation of the PCs at the allosteric sodium
binding site. Therefore, OFF-state-specific targeting of furin can
serve as a valuable strategy for structure-based development of PC-selective
small-molecule inhibitors.
Collapse
Affiliation(s)
- Sven O. Dahms
- Department of Biosciences, University of Salzburg, Hellbrunnerstraße 34, A-5020 Salzburg, Austria
| | - Tanja Haider
- Department of Biosciences, University of Salzburg, Hellbrunnerstraße 34, A-5020 Salzburg, Austria
| | - Gerhard Klebe
- Department of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Torsten Steinmetzer
- Department of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Hans Brandstetter
- Department of Biosciences, University of Salzburg, Hellbrunnerstraße 34, A-5020 Salzburg, Austria
| |
Collapse
|
8
|
de Veer SJ, White AM, Craik DJ. Sunflower Trypsin Inhibitor-1 (SFTI-1): Sowing Seeds in the Fields of Chemistry and Biology. Angew Chem Int Ed Engl 2020; 60:8050-8071. [PMID: 32621554 DOI: 10.1002/anie.202006919] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Indexed: 12/24/2022]
Abstract
Nature-derived cyclic peptides have proven to be a vast source of inspiration for advancing modern pharmaceutical design and synthetic chemistry. The focus of this Review is sunflower trypsin inhibitor-1 (SFTI-1), one of the smallest disulfide-bridged cyclic peptides found in nature. SFTI-1 has an unusual biosynthetic pathway that begins with a dual-purpose albumin precursor and ends with the production of a high-affinity serine protease inhibitor that rivals other inhibitors much larger in size. Investigations on the molecular basis for SFTI-1's rigid structure and adaptable function have planted seeds for thought that have now blossomed in several different fields. Here we survey these applications to highlight the growing potential of SFTI-1 as a versatile template for engineering inhibitors, a prototypic peptide for studying inhibitory mechanisms, a stable scaffold for grafting bioactive peptides, and a model peptide for evaluating peptidomimetic motifs and platform technologies.
Collapse
Affiliation(s)
- Simon J de Veer
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Andrew M White
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
9
|
Veer SJ, White AM, Craik DJ. Der Sonnenblumen‐Trypsin‐Inhibitor 1 (SFTI‐1) in der Chemie und Biologie. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Simon J. Veer
- Institute for Molecular Bioscience, ARC Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane QLD 4072 Australien
| | - Andrew M. White
- Institute for Molecular Bioscience, ARC Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane QLD 4072 Australien
| | - David J. Craik
- Institute for Molecular Bioscience, ARC Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane QLD 4072 Australien
| |
Collapse
|
10
|
Gitlin-Domagalska A, Maciejewska A, Dębowski D. Bowman-Birk Inhibitors: Insights into Family of Multifunctional Proteins and Peptides with Potential Therapeutical Applications. Pharmaceuticals (Basel) 2020; 13:E421. [PMID: 33255583 PMCID: PMC7760496 DOI: 10.3390/ph13120421] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Bowman-Birk inhibitors (BBIs) are found primarily in seeds of legumes and in cereal grains. These canonical inhibitors share a highly conserved nine-amino acids binding loop motif CTP1SXPPXC (where P1 is the inhibitory active site, while X stands for various amino acids). They are natural controllers of plants' endogenous proteases, but they are also inhibitors of exogenous proteases present in microbials and insects. They are considered as plants' protective agents, as their elevated levels are observed during injury, presence of pathogens, or abiotic stress, i.a. Similar properties are observed for peptides isolated from amphibians' skin containing 11-amino acids disulfide-bridged loop CWTP1SXPPXPC. They are classified as Bowman-Birk like trypsin inhibitors (BBLTIs). These inhibitors are resistant to proteolysis and not toxic, and they are reported to be beneficial in the treatment of various pathological states. In this review, we summarize up-to-date research results regarding BBIs' and BBLTIs' inhibitory activity, immunomodulatory and anti-inflammatory activity, antimicrobial and insecticidal strength, as well as chemopreventive properties.
Collapse
Affiliation(s)
| | | | - Dawid Dębowski
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (A.G.-D.); (A.M.)
| |
Collapse
|
11
|
Truncation of Huia versabilis Bowman-Birk inhibitor increases its selectivity, matriptase-1 inhibitory activity and proteolytic stability. Biochimie 2020; 171-172:178-186. [PMID: 32169666 DOI: 10.1016/j.biochi.2020.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/04/2020] [Indexed: 01/14/2023]
Abstract
A gradual truncation of the primary structure of frog skin-derived Huia versabilis Bowman-Birk peptidic inhibitor (HV-BBI) resulted in 18-times stronger inhibitor of matriptase-1 (peptide 6, Ki = 8 nm) in comparison to the full-length HV-BBI (Ki = 155 nm). Analogous increase in the inhibitory activity in correlation with the peptide length reduction was not observed in case of other serine proteases, bovine trypsin (Ki = 151 nm for peptide 6 and Ki = 120 nm for HV-BBI) and plasmin (Ki = 120 nm for peptide 6 and 82 nm for HV-BBI). Weaker binding affinity to these enzymes emphasized an inhibitory specificity of peptide 6. Molecular dynamic analysis revealed that the observed variations in the binding affinity of peptide 6 and HV-BBI with matriptase-1 are associated with the entropic differences of the unbound peptides. Moreover, several aspects explaining differences in the inhibition of matriptase-1 by peptide 6 (bearing the C-terminal amide group) and its two analogues, peptide 6∗ (having the C-terminal carboxyl group, Ki = 473 nm) and cyclic peptide 6∗∗ (Ki = 533 nm), both exhibiting more than 50-fold reduced inhibitory potency, were discovered. It was also shown that peptide 6 presented significantly higher resistance to proteolytic degradation in human serum than HV-BBI. Additional investigations revealed that, in contrast to some amphibian-derived inhibitors, HV-BBI and its truncated analogues do not possess bactericidal activity, thus they cannot be considered as bifunctional agents.
Collapse
|
12
|
Steinmetzer T, Pilgram O, Wenzel BM, Wiedemeyer SJA. Fibrinolysis Inhibitors: Potential Drugs for the Treatment and Prevention of Bleeding. J Med Chem 2019; 63:1445-1472. [PMID: 31658420 DOI: 10.1021/acs.jmedchem.9b01060] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hyperfibrinolytic situations can lead to life-threatening bleeding, especially during cardiac surgery. The approved antifibrinolytic agents such as tranexamic acid, ε-aminocaproic acid, 4-aminomethylbenzoic acid, and aprotinin were developed in the 1960s without the structural insight of their respective targets. Crystal structures of the main antifibrinolytic targets, the lysine binding sites on plasminogen's kringle domains, and plasmin's serine protease domain greatly contributed to the structure-based drug design of novel inhibitor classes. Two series of ligands targeting the lysine binding sites have been recently described, which are more potent than the most-widely used antifibrinolytic agent, tranexamic acid. Furthermore, four types of promising active site inhibitors of plasmin have been developed: tranexamic acid conjugates targeting the S1 pocket and primed sites, substrate-analogue linear homopiperidylalanine-containing 4-amidinobenzylamide derivatives, macrocyclic inhibitors addressing nonprimed binding regions, and bicyclic 14-mer SFTI-1 analogues blocking both, primed and nonprimed binding sites of plasmin. Furthermore, several allosteric plasmin inhibitors based on heparin mimetics have been developed.
Collapse
Affiliation(s)
- Torsten Steinmetzer
- Department of Pharmacy, Institute of Pharmaceutical Chemistry , Philipps University Marburg , Marbacher Weg 6 , D-35032 Marburg , Germany
| | - Oliver Pilgram
- Department of Pharmacy, Institute of Pharmaceutical Chemistry , Philipps University Marburg , Marbacher Weg 6 , D-35032 Marburg , Germany
| | - Benjamin M Wenzel
- Department of Pharmacy, Institute of Pharmaceutical Chemistry , Philipps University Marburg , Marbacher Weg 6 , D-35032 Marburg , Germany
| | - Simon J A Wiedemeyer
- Department of Pharmacy, Institute of Pharmaceutical Chemistry , Philipps University Marburg , Marbacher Weg 6 , D-35032 Marburg , Germany
| |
Collapse
|
13
|
Cao C, Sheng D, Li X, Xue F, Liu L, Zhong Y, Wei P, Li R, Yi T. Furin substrate as a novel cell-penetrating peptide: combining a delivery vector and an inducer of cargo release. Chem Commun (Camb) 2019; 55:11872-11875. [PMID: 31528875 DOI: 10.1039/c9cc02353d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have developed a new cell-penetrating peptide (CPP) using a repeated protease (furin) substrate. This CPP can not only deliver cargo into cells but can also be cleaved by furin in cells and release the cargo. Cell-impermeable antitumor pro-apoptotic peptide KLAKLAKKLAKLAK (KLA) and chemotherapy drug chlorambucil were chosen to be delivered by the CPP into live cancer cells and their cytotoxicity was greatly enhanced for in vivo cancer treatment.
Collapse
Affiliation(s)
- Chunyan Cao
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| | - Danli Sheng
- Department of Ultrasound, Fudan University, Shanghai Cancer Center, Shanghai 200032, China
| | - Xiang Li
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| | - Fengfeng Xue
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| | - Lingyan Liu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| | - Yaping Zhong
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| | - Peng Wei
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| | - Ruohan Li
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| | - Tao Yi
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| |
Collapse
|
14
|
Yin H, Craik DJ, Wang CK. Anchor Residues Guide Form and Function in Grafted Peptides. Angew Chem Int Ed Engl 2019; 58:7652-7656. [DOI: 10.1002/anie.201901572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Huawu Yin
- Institute for Molecular BioscienceThe University of Queensland Brisbane Queensland 4072 Australia
| | - David J. Craik
- Institute for Molecular BioscienceThe University of Queensland Brisbane Queensland 4072 Australia
| | - Conan K. Wang
- Institute for Molecular BioscienceThe University of Queensland Brisbane Queensland 4072 Australia
| |
Collapse
|
15
|
Jackson MA, Yap K, Poth AG, Gilding EK, Swedberg JE, Poon S, Qu H, Durek T, Harris K, Anderson MA, Craik DJ. Rapid and Scalable Plant-Based Production of a Potent Plasmin Inhibitor Peptide. FRONTIERS IN PLANT SCIENCE 2019; 10:602. [PMID: 31156672 PMCID: PMC6530601 DOI: 10.3389/fpls.2019.00602] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/24/2019] [Indexed: 05/03/2023]
Abstract
The backbone cyclic and disulfide bridged sunflower trypsin inhibitor-1 (SFTI-1) peptide is a proven effective scaffold for a range of peptide therapeutics. For production at laboratory scale, solid phase peptide synthesis techniques are widely used, but these synthetic approaches are costly and environmentally taxing at large scale. Here, we developed a plant-based approach for the recombinant production of SFTI-1-based peptide drugs. We show that transient expression in Nicotiana benthamiana allows for rapid peptide production, provided that asparaginyl endopeptidase enzymes with peptide-ligase functionality are co-expressed with the substrate peptide gene. Without co-expression, no target cyclic peptides are detected, reflecting rapid in planta degradation of non-cyclized substrate. We test this recombinant production system by expressing a SFTI-1-based therapeutic candidate that displays potent and selective inhibition of human plasmin. By using an innovative multi-unit peptide expression cassette, we show that in planta yields reach ~60 μg/g dry weight at 6 days post leaf infiltration. Using nuclear magnetic resonance structural analysis and functional in vitro assays, we demonstrate the equivalence of plant and synthetically derived plasmin inhibitor peptide. The methods and insights gained in this study provide opportunities for the large scale, cost effective production of SFTI-1-based therapeutics.
Collapse
Affiliation(s)
- Mark A. Jackson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Kuok Yap
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Aaron G. Poth
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Edward K. Gilding
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Joakim E. Swedberg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Simon Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Haiou Qu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Karen Harris
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Marilyn A. Anderson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
16
|
Yin H, Craik DJ, Wang CK. Anchor Residues Guide Form and Function in Grafted Peptides. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Huawu Yin
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland 4072 Australia
| | - David J. Craik
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland 4072 Australia
| | - Conan K. Wang
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland 4072 Australia
| |
Collapse
|
17
|
Van Lam van T, Ivanova T, Hardes K, Heindl MR, Morty RE, Böttcher-Friebertshäuser E, Lindberg I, Than ME, Dahms SO, Steinmetzer T. Design, Synthesis, and Characterization of Macrocyclic Inhibitors of the Proprotein Convertase Furin. ChemMedChem 2019; 14:673-685. [PMID: 30680958 DOI: 10.1002/cmdc.201800807] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/18/2019] [Indexed: 12/20/2022]
Abstract
The activation of viral glycoproteins by the host protease furin is an essential step in the replication of numerous pathogenic viruses. Thus, effective inhibitors of furin could serve as broad-spectrum antiviral drugs. A crystal structure of an inhibitory hexapeptide derivative in complex with furin served as template for the rational design of various types of new cyclic inhibitors. Most of the prepared derivatives are relatively potent furin inhibitors with inhibition constants in the low nanomolar or even sub-nanomolar range. For seven derivatives the crystal structures in complex with furin could be determined. In three complexes, electron density was found for the entire inhibitor. In the other cases the structures could be determined only for the P6/P5-P1 segments, which directly interact with furin. The cyclic derivatives together with two non-cyclic reference compounds were tested as inhibitors of the proteolytic activation and replication of respiratory syncytial virus in cells. Significant antiviral activity was found for both linear reference inhibitors, whereas a negligible efficacy was determined for the cyclic derivatives.
Collapse
Affiliation(s)
- Thuy Van Lam van
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032, Marburg, Germany
| | - Teodora Ivanova
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032, Marburg, Germany
| | - Kornelia Hardes
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032, Marburg, Germany
| | - Miriam Ruth Heindl
- Institute of Virology, Philipps University, Hans-Meerwein-Str. 2, 35043, Marburg, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland Medical School, Baltimore, MD, 21201, USA
| | - Manuel E Than
- Protein Crystallography Group, Leibniz Institute on Aging-Fritz Lipmann Institute, Beutenbergstr. 11, 07745, Jena, Germany
| | - Sven O Dahms
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032, Marburg, Germany
| |
Collapse
|
18
|
Using backbone-cyclized Cys-rich polypeptides as molecular scaffolds to target protein-protein interactions. Biochem J 2019; 476:67-83. [PMID: 30635453 DOI: 10.1042/bcj20180792] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 12/23/2022]
Abstract
The use of disulfide-rich backbone-cyclized polypeptides, as molecular scaffolds to design a new generation of bioimaging tools and drugs that are potent and specific, and thus might have fewer side effects than traditional small-molecule drugs, is gaining increasing interest among the scientific and in the pharmaceutical industries. Highly constrained macrocyclic polypeptides are exceptionally more stable to chemical, thermal and biological degradation and show better biological activity when compared with their linear counterparts. Many of these relatively new scaffolds have been also found to be highly tolerant to sequence variability, aside from the conserved residues forming the disulfide bonds, able to cross cellular membranes and modulate intracellular protein-protein interactions both in vitro and in vivo These properties make them ideal tools for many biotechnological applications. The present study provides an overview of the new developments on the use of several disulfide-rich backbone-cyclized polypeptides, including cyclotides, θ-defensins and sunflower trypsin inhibitor peptides, in the development of novel bioimaging reagents and therapeutic leads.
Collapse
|
19
|
de Veer SJ, Li CY, Swedberg JE, Schroeder CI, Craik DJ. Engineering potent mesotrypsin inhibitors based on the plant-derived cyclic peptide, sunflower trypsin inhibitor-1. Eur J Med Chem 2018; 155:695-704. [PMID: 29936356 DOI: 10.1016/j.ejmech.2018.06.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/24/2018] [Accepted: 06/12/2018] [Indexed: 12/19/2022]
Abstract
Plants produce a diverse range of peptides and proteins that inhibit the activity of different serine proteases. The value of these inhibitors not only stems from their native role(s) in planta, but they are also regarded as promising templates for inhibitor engineering. Interest in this field has grown rapidly in recent years, particularly for therapeutic applications. The serine protease mesotrypsin has been implicated in several cancers, but is a challenging target for inhibitor engineering as a number of serine protease inhibitors that typically display broad-range activity show limited activity against mesotrypsin. In this study, we use a cyclic peptide isolated from sunflower seeds, sunflower trypsin inhibitor-1 (SFTI-1), as a scaffold for engineering potent mesotrypsin inhibitors. SFTI-1 comprises 14-amino acids and is a potent inhibitor of human cationic trypsin (Ki = 30 ± 0.8 pM) but shows 165,000-fold weaker activity against mesotrypsin (Ki = 4.96 ± 0.2 μM). Using an inhibitor library based on SFTI-1, we show that the inhibitor's P2' residue (Ile) is a key contributor to SFTI-1's limited activity against mesotrypsin. Substituting P2' Ile with chemically diverse amino acids, including non-canonical aromatic residues, produced new inhibitor variants that maintained a similar structure to SFTI-1 and showed marked improvements in activity (exceeding 100-fold). An assessment of the activity of the new inhibitors against closely-related trypsin paralogs revealed that the improved activity against mesotrypsin was accompanied by a loss in activity against off-target proteases, such that several engineered variants showed comparable activity against mesotrypsin and human cationic trypsin. Together, these findings identify potent mesotrypsin inhibitors that are suitable for further optimisation studies and demonstrate the potential gains in activity and selectivity that can be achieved by optimising the P2' residue, particularly for engineered SFTI-based inhibitors.
Collapse
Affiliation(s)
- Simon J de Veer
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Choi Yi Li
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Joakim E Swedberg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
20
|
Böttcher-Friebertshäuser E, Garten W, Klenk HD. The Antiviral Potential of Host Protease Inhibitors. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7122247 DOI: 10.1007/978-3-319-75474-1_11] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The replication of numerous pathogenic viruses depends on host proteases, which therefore emerged as potential antiviral drug targets. In some cases, e.g., for influenza viruses, their function during the viral propagation cycle is relatively well understood, where they cleave and activate viral surface glycoproteins. For other viruses, e.g., Ebola virus, the function of host proteases during replication is still not clear. Host proteases may also contribute to the pathogenicity of virus infection by activating proinflammatory cytokines. For some coronaviruses, human proteases can also serve in a nonproteolytical fashion simply as receptors for virus entry. However, blocking of such protein-protein contacts is challenging, because receptor surfaces are often flat and difficult to address with small molecules. In contrast, many proteases possess well-defined binding pockets. Therefore, they can be considered as well-druggable targets, especially, if they are extracellularly active. The number of their experimental crystal structures is steadily increasing, which is an important prerequisite for a rational structure-based inhibitor design using computational chemistry tools in combination with classical medicinal chemistry approaches. Moreover, host proteases can be considered as stable targets, and their inhibition should prevent rapid resistance developments, which is often observed when addressing viral proteins. Otherwise, the inhibition of host proteases can also affect normal physiological processes leading to a higher probability of side effects and a narrow therapeutic window. Therefore, they should be preferably used in combination therapies with additional antiviral drugs. This strategy should provide a stronger antiviral efficacy, allow to use lower drug doses, and minimize side effects. Despite numerous experimental findings on their antiviral activity, no small-molecule inhibitors of host proteases have been approved for the treatment of virus infections, so far.
Collapse
Affiliation(s)
| | - Wolfgang Garten
- Institut für Virologie, Philipps Universität, Marburg, Germany
| | | |
Collapse
|
21
|
Dahms SO, Hardes K, Steinmetzer T, Than ME. X-ray Structures of the Proprotein Convertase Furin Bound with Substrate Analogue Inhibitors Reveal Substrate Specificity Determinants beyond the S4 Pocket. Biochemistry 2018; 57:925-934. [PMID: 29314830 DOI: 10.1021/acs.biochem.7b01124] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The proprotein convertase furin is a highly specific serine protease modifying and thereby activating proteins in the secretory pathway by proteolytic cleavage. Its substrates are involved in many diseases, including cancer and infections caused by bacteria and viruses. Understanding furin's substrate specificity is crucially important for the development of pharmacologically applicable inhibitors. Using protein X-ray crystallography, we investigated the extended substrate binding site of furin in complex with three peptide-derived inhibitors at up to 1.9 Å resolution. The structure of the protease bound with a hexapeptide inhibitor revealed molecular details of its S6 pocket, which remained completely unknown so far. The arginine residue at P6 induced an unexpected turnlike conformation of the inhibitor backbone, which is stabilized by intra- and intermolecular H-bonds. In addition, we confirmed the binding of arginine to the previously proposed S5 pocket (S51). An alternative S5 site (S52) could be utilized by shorter side chains as demonstrated for a 4-aminomethyl-phenylacetyl residue, which shows steric properties similar to those of a lysine side chain. Interestingly, we also observed binding of a peptide with citrulline at P4 substituting for the highly conserved arginine. The structural data might indicate an unusual protonation state of Asp264 maintaining the interaction with uncharged citrulline. The herein identified molecular interaction sites at P5 and P6 can be utilized to improve next-generation furin inhibitors. Our data will also help to predict furin substrates more precisely on the basis of the additional specificity determinants observed for P5 and P6.
Collapse
Affiliation(s)
- Sven O Dahms
- Department of Molecular Biology, University of Salzburg , Billrothstrasse 11, A-5020 Salzburg, Austria.,Protein Crystallography Group, Leibniz Institute on Aging, Fritz Lipmann Institute (FLI) , Beutenbergstrasse 11, 07745 Jena, Germany
| | - Kornelia Hardes
- Department of Pharmaceutical Chemistry, Philipps University Marburg , Marbacher Weg 6, D-35032 Marburg, Germany
| | - Torsten Steinmetzer
- Department of Pharmaceutical Chemistry, Philipps University Marburg , Marbacher Weg 6, D-35032 Marburg, Germany
| | - Manuel E Than
- Protein Crystallography Group, Leibniz Institute on Aging, Fritz Lipmann Institute (FLI) , Beutenbergstrasse 11, 07745 Jena, Germany
| |
Collapse
|
22
|
Synthesis and investigation of the derivatives of amidinohydrazonelated aromatic compounds as furin inhibitors. UKRAINIAN BIOCHEMICAL JOURNAL 2017. [DOI: 10.15407/ubj89.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
23
|
Filipowicz M, Ptaszyńska N, Olkiewicz K, Dębowski D, Ćwikłowska K, Burster T, Pikuła M, Krzystyniak A, Łęgowska A, Rolka K. Spliced analogues of trypsin inhibitor SFTI‐1 and their application for tracing proteolysis and delivery of cargos inside the cells. Pept Sci (Hoboken) 2017; 108. [DOI: 10.1002/bip.22988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 09/05/2016] [Accepted: 09/12/2016] [Indexed: 01/08/2023]
Affiliation(s)
| | | | | | | | | | - Timo Burster
- Department of NeurosurgeryUlm University Medical CenterUlm Germany
| | - Michał Pikuła
- Department of Clinical Immunology and TransplantologyMedical University of GdanskGdansk Poland
| | | | - Anna Łęgowska
- Faculty of ChemistryUniversity of GdanskGdansk Poland
| | | |
Collapse
|
24
|
|
25
|
Kuznetsova SS, Kolesanova EF, Talanova AV, Veselovsky AV. [Prospects for the design of new therapeutically significant protease inhibitors based on knottins and sunflower seed trypsin inhibitor (SFTI 1)]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2016; 62:353-68. [PMID: 27562989 DOI: 10.18097/pbmc20166204353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Plant seed knottins, mainly from the Cucurbitacea family, and sunflower seed trypsin inhibitor (SFTI 1) are the most low-molecular canonical peptide inhibitors of serine proteases. High efficiency of inhibition of various serine proteases, structure rigidity together with the possibility of limited variations of amino acid sequences, high chemical stability, lack of toxic properties, opportunity of production by either chemical synthesis or use of heterologous expression systems make these inhibitors attractive templates for design of new compounds for regulation of therapeutically significant serine protease activities. Hence the design of such compounds represents a prospective research field. The review considers structural characteristics of these inhibitors, their properties, methods of preparation and design of new analogs. Examples of successful employment of natural serine protease inhibitors belonging to knottin family and SFTI 1 as templates for the design of highly specific inhibitors of certain proteases are given.
Collapse
Affiliation(s)
| | | | - A V Talanova
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | | |
Collapse
|