1
|
Sivaev IB. Bis(Dicarbollide) Complexes of Transition Metals: How Substituents in Dicarbollide Ligands Affect the Geometry and Properties of the Complexes. Molecules 2024; 29:3510. [PMID: 39124915 PMCID: PMC11314212 DOI: 10.3390/molecules29153510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
The interaction between different types of substituents in dicarbollide ligands and their influence on the stabilization of various rotational conformers (rotamers) of transition metal bis(dicarbollide) complexes [3,3'-M(1,2-C2B9H11)2]- are considered. It has been shown that the formation of intramolecular CH···X hydrogen bonds between dicarbollide ligands is determined by the size of the proton acceptor atom X rather than its electronegativity. Due to the stabilization of rotamers with different dipole moments, intramolecular hydrogen bonds between ligands in transition metal bis(dicarbollide) complexes can have a significant impact on the biological properties of their derivatives. In the presence of external complexing metals, weak intramolecular CH···X hydrogen bonds can be broken to form stronger X->M donor-acceptor bonds. This process is accompanied by the mutual rotation of dicarbollide ligands and can be used in sensors and molecular switches based on transition metal bis(dicarbollide) complexes.
Collapse
Affiliation(s)
- Igor B Sivaev
- A. N. Nesmeyanov Institute of Organoelement Compounds, 28 Vavilov Str., Moscow 119991, Russia
| |
Collapse
|
2
|
Gos M, Cebula J, Goszczyński TM. Metallacarboranes in Medicinal Chemistry: Current Advances and Future Perspectives. J Med Chem 2024; 67:8481-8501. [PMID: 38769934 DOI: 10.1021/acs.jmedchem.4c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Metallacarboranes, exemplified by cobalt bis(dicarbollide) ([COSAN]-), have excelled their historical metallocene analogue label to become promising in drug design, medical studies, and fundamental biological research. Serving as a unique platform for conjugation with biomolecules, they also constitute an auspicious building block for biologically active derivatives and a carrier for cellular transport of membrane-impermeable cargos. Modified [COSAN]- exhibits specific antimicrobial, antiviral, and anticancer actions showing promise for preclinical trials. Contributing to the ongoing development in medicinal chemistry, metallacarboranes offer desirable physicochemical properties and low acute toxicity. This article presents a critical look at metallacarboranes in the context of their application in medicinal chemistry, emphasizing [COSAN]- as a potential game-changer in drug design and biomedical sciences. As medicinal chemistry seeks innovative building blocks, metallacarboranes emerge as an important novelty with versatile solutions and promising implications.
Collapse
Affiliation(s)
- Michalina Gos
- Laboratory of Biomedical Chemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Jakub Cebula
- Laboratory of Biomedical Chemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Tomasz M Goszczyński
- Laboratory of Biomedical Chemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| |
Collapse
|
3
|
Pazderová L, Tüzün EZ, Bavol D, Litecká M, Fojt L, Grűner B. Chemistry of Carbon-Substituted Derivatives of Cobalt Bis(dicarbollide)(1 -) Ion and Recent Progress in Boron Substitution. Molecules 2023; 28:6971. [PMID: 37836814 PMCID: PMC10574808 DOI: 10.3390/molecules28196971] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The cobalt bis(dicarbollide)(1-) anion (1-), [(1,2-C2B9H11)2-3,3'-Co(III)](1-), plays an increasingly important role in material science and medicine due to its high chemical stability, 3D shape, aromaticity, diamagnetic character, ability to penetrate cells, and low cytotoxicity. A key factor enabling the incorporation of this ion into larger organic molecules, biomolecules, and materials, as well as its capacity for "tuning" interactions with therapeutic targets, is the availability of synthetic routes that enable easy modifications with a wide selection of functional groups. Regarding the modification of the dicarbollide cage, syntheses leading to substitutions on boron atoms are better established. These methods primarily involve ring cleavage of the ether rings in species containing an oxonium oxygen atom connected to the B(8) site. These pathways are accessible with a broad range of nucleophiles. In contrast, the chemistry on carbon vertices has remained less elaborated over the previous decades due to a lack of reliable methods that permit direct and straightforward cage modifications. In this review, we present a survey of methods based on metalation reactions on the acidic C-H vertices, followed by reactions with electrophiles, which have gained importance in only the last decade. These methods now represent the primary trends in the modifications of cage carbon atoms. We discuss the scope of currently available approaches, along with the stereochemistry of reactions, chirality of some products, available types of functional groups, and their applications in designing unconventional drugs. This content is complemented with a report of the progress in physicochemical and biological studies on the parent cobalt bis(dicarbollide) ion and also includes an overview of recent syntheses and emerging applications of boron-substituted compounds.
Collapse
Affiliation(s)
- Lucia Pazderová
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic; (L.P.); (E.Z.T.); (D.B.); (M.L.)
| | - Ece Zeynep Tüzün
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic; (L.P.); (E.Z.T.); (D.B.); (M.L.)
- Department of Inorganic Chemistry, Faculty of Natural Science, Charles University, Hlavova 2030/8, 128 43 Prague, Czech Republic
| | - Dmytro Bavol
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic; (L.P.); (E.Z.T.); (D.B.); (M.L.)
| | - Miroslava Litecká
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic; (L.P.); (E.Z.T.); (D.B.); (M.L.)
| | - Lukáš Fojt
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic;
| | - Bohumír Grűner
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic; (L.P.); (E.Z.T.); (D.B.); (M.L.)
| |
Collapse
|
4
|
Beck-Sickinger AG, Becker DP, Chepurna O, Das B, Flieger S, Hey-Hawkins E, Hosmane N, Jalisatgi SS, Nakamura H, Patil R, Vicente MDGH, Viñas C. New Boron Delivery Agents. Cancer Biother Radiopharm 2023; 38:160-172. [PMID: 36350709 PMCID: PMC10325817 DOI: 10.1089/cbr.2022.0060] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
This proceeding article compiles current research on the development of boron delivery drugs for boron neutron capture therapy that was presented and discussed at the National Cancer Institute (NCI) Workshop on Neutron Capture Therapy that took place on April 20-22, 2022. The most used boron sources are icosahedral boron clusters attached to peptides, proteins (such as albumin), porphyrin derivatives, dendrimers, polymers, and nanoparticles, or encapsulated into liposomes. These boron clusters and/or carriers can be labeled with contrast agents allowing for the use of imaging techniques, such as PET, SPECT, and fluorescence, that enable quantification of tumor-localized boron and their use as theranostic agents.
Collapse
Affiliation(s)
| | - Daniel P. Becker
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, USA
| | - Oksana Chepurna
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Bhaskar Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Surgery, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Sebastian Flieger
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, USA
| | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Leipzig, Germany
| | - Narayan Hosmane
- Department of Chemistry & Biochemistry, Northern Illinois University, DeKalb, Illinois, USA
| | | | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Rameshwar Patil
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - Clara Viñas
- Institut de Ciencia de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Spain
| |
Collapse
|
5
|
Supramolecular chemistry of anionic boron clusters and its applications in biology. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Kugler M, Holub J, Brynda J, Pospíšilová K, Anwar SE, Bavol D, Havránek M, Král V, Fábry M, Grüner B, Řezáčová P. The structural basis for the selectivity of sulfonamido dicarbaboranes toward cancer-associated carbonic anhydrase IX. J Enzyme Inhib Med Chem 2021; 35:1800-1810. [PMID: 32962427 PMCID: PMC7534198 DOI: 10.1080/14756366.2020.1816996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Human carbonic anhydrase IX (CA IX), a protein specifically expressed on the surface of solid tumour cells, represents a validated target both for anticancer therapy and diagnostics. We recently identified sulfonamide dicarbaboranes as promising inhibitors of CA IX with favourable activities both in vitro and in vivo. To explain their selectivity and potency, we performed detailed X-ray structural analysis of their interactions within the active sites of CA IX and CA II. Series of compounds bearing various aliphatic linkers between the dicarbaborane cluster and sulfonamide group were examined. Preferential binding towards the hydrophobic part of the active site cavity was observed. Selectivity towards CA IX lies in the shape complementarity of the dicarbaborane cluster with a specific CA IX hydrophobic patch containing V131 residue. The bulky side chain of F131 residue in CA II alters the shape of the catalytic cavity, disrupting favourable interactions of the spherical dicarbaborane cluster.
Collapse
Affiliation(s)
- Michael Kugler
- Deparment of Structural Biology, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.,Deparment of Structural Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Josef Holub
- Department of Syntheses, Institute of Inorganic Chemistry of the Czech Academy of Sciences, Řež, Czech Republic
| | - Jiří Brynda
- Deparment of Structural Biology, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.,Deparment of Structural Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Klára Pospíšilová
- Deparment of Structural Biology, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Suzan El Anwar
- Department of Syntheses, Institute of Inorganic Chemistry of the Czech Academy of Sciences, Řež, Czech Republic
| | - Dmytro Bavol
- Department of Syntheses, Institute of Inorganic Chemistry of the Czech Academy of Sciences, Řež, Czech Republic
| | | | - Vlastimil Král
- Deparment of Structural Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Milan Fábry
- Deparment of Structural Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Bohumír Grüner
- Department of Syntheses, Institute of Inorganic Chemistry of the Czech Academy of Sciences, Řež, Czech Republic
| | - Pavlína Řezáčová
- Deparment of Structural Biology, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.,Deparment of Structural Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
7
|
Kellert M, Friedrichs JSJ, Ullrich NA, Feinhals A, Tepper J, Lönnecke P, Hey-Hawkins E. Modular Synthetic Approach to Carboranyl‒Biomolecules Conjugates. Molecules 2021; 26:2057. [PMID: 33916755 PMCID: PMC8038343 DOI: 10.3390/molecules26072057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/16/2022] Open
Abstract
The development of novel, tumor-selective and boron-rich compounds as potential agents for use in boron neutron capture therapy (BNCT) represents a very important field in cancer treatment by radiation therapy. Here, we report the design and synthesis of two promising compounds that combine meta-carborane, a water-soluble monosaccharide and a linking unit, namely glycine or ethylenediamine, for facile coupling with various tumor-selective biomolecules bearing a free amino or carboxylic acid group. In this work, coupling experiments with two selected biomolecules, a coumarin derivative and folic acid, were included. The task of every component in this approach was carefully chosen: the carborane moiety supplies ten boron atoms, which is a tenfold increase in boron content compared to the l-boronophenylalanine (l-BPA) presently used in BNCT; the sugar moiety compensates for the hydrophobic character of the carborane; the linking unit, depending on the chosen biomolecule, acts as the connection between the tumor-selective component and the boron-rich moiety; and the respective tumor-selective biomolecule provides the necessary selectivity. This approach makes it possible to develop a modular and feasible strategy for the synthesis of readily obtainable boron-rich agents with optimized properties for potential applications in BNCT.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany; (M.K.); (J.-S.J.F.); (N.A.U.); (A.F.); (J.T.); (P.L.)
| |
Collapse
|
8
|
Gruzdev DA, Levit GL, Krasnov VP, Charushin VN. Carborane-containing amino acids and peptides: Synthesis, properties and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213753] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
El Anwar S, Růžičková Z, Bavol D, Fojt L, Grüner B. Tetrazole Ring Substitution at Carbon and Boron Sites of the Cobalt Bis(dicarbollide) Ion Available via Dipolar Cycloadditions. Inorg Chem 2020; 59:17430-17442. [DOI: 10.1021/acs.inorgchem.0c02719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Suzan El Anwar
- The Institute of Inorganic Chemistry of the Czech Academy of Sciences, Řež 25068, Czech Republic
| | - Zdeňka Růžičková
- The Department of General and Inorganic Chemistry, Faculty of Chemical Technology, Studentská 573, University of Pardubice, Pardubice 53210, Czech Republic
| | - Dmytro Bavol
- The Institute of Inorganic Chemistry of the Czech Academy of Sciences, Řež 25068, Czech Republic
| | - Lukáš Fojt
- The Institute of Biophysics of the Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno 61265, Czech Republic
| | - Bohumír Grüner
- The Institute of Inorganic Chemistry of the Czech Academy of Sciences, Řež 25068, Czech Republic
| |
Collapse
|
10
|
Hoppenz P, Els-Heindl S, Beck-Sickinger AG. Peptide-Drug Conjugates and Their Targets in Advanced Cancer Therapies. Front Chem 2020; 8:571. [PMID: 32733853 PMCID: PMC7359416 DOI: 10.3389/fchem.2020.00571] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer became recently the leading cause of death in industrialized countries. Even though standard treatments achieve significant effects in growth inhibition and tumor elimination, they cause severe side effects as most of the applied drugs exhibit only minor selectivity for the malignant tissue. Hence, specific addressing of tumor cells without affecting healthy tissue is currently a major desire in cancer therapy. Cell surface receptors, which bind peptides are frequently overexpressed on cancer cells and can therefore be considered as promising targets for selective tumor therapy. In this review, the benefits of peptides as tumor homing agents are presented and an overview of the most commonly addressed peptide receptors is given. A special focus was set on the bombesin receptor family and the neuropeptide Y receptor family. In the second part, the specific requirements of peptide-drug conjugates (PDC) and intelligent linker structures as an essential component of PDC are outlined. Furthermore, different drug cargos are presented including classical and recent toxic agents as well as radionuclides for diagnostic and therapeutic approaches. In the last part, boron neutron capture therapy as advanced targeted cancer therapy is introduced and past and recent developments are reviewed.
Collapse
Affiliation(s)
- Paul Hoppenz
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | - Sylvia Els-Heindl
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | | |
Collapse
|
11
|
Worm DJ, Els‐Heindl S, Beck‐Sickinger AG. Targeting of peptide‐binding receptors on cancer cells with peptide‐drug conjugates. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24171] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dennis J. Worm
- Faculty of Life Sciences, Institute of BiochemistryLeipzig University Leipzig Germany
| | - Sylvia Els‐Heindl
- Faculty of Life Sciences, Institute of BiochemistryLeipzig University Leipzig Germany
| | | |
Collapse
|
12
|
|
13
|
Teixeira RG, Marques F, Robalo MP, Fontrodona X, Garcia MH, Geninatti Crich S, Viñas C, Valente A. Ruthenium carboranyl complexes with 2,2′-bipyridine derivatives for potential bimodal therapy application. RSC Adv 2020; 10:16266-16276. [PMID: 35498822 PMCID: PMC9053089 DOI: 10.1039/d0ra01522a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/06/2020] [Indexed: 11/21/2022] Open
Abstract
The substituents at the bipyridine lead to different cell uptake and stability.
Collapse
Affiliation(s)
- Ricardo G. Teixeira
- Centro de Química Estrutural
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares
- Instituto Superior Técnico
- Universidade de Lisboa
- 2695-006 Bobadela LRS
- Portugal
| | - M. Paula Robalo
- Área Departamental de Engenharia Química
- Instituto Superior de Engenharia de Lisboa
- Instituto Politécnico de Lisboa
- 1959-007 Lisboa
- Portugal
| | - Xavier Fontrodona
- Departament de Química and Serveis Tècnics de Recerca
- Universitat de Girona
- 17071 Girona
- Spain
| | - M. Helena Garcia
- Centro de Química Estrutural
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
| | - Simonetta Geninatti Crich
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute
- Università di Torino
- 10126 Torino
- Italy
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
- 08193 Bellaterra
- Spain
| | - Andreia Valente
- Centro de Química Estrutural
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
| |
Collapse
|
14
|
Kellert M, Hoppenz P, Lönnecke P, Worm DJ, Riedl B, Koebberling J, Beck-Sickinger AG, Hey-Hawkins E. Tuning a modular system - synthesis and characterisation of a boron-rich s-triazine-based carboxylic acid and amine bearing a galactopyranosyl moiety. Dalton Trans 2019; 49:57-69. [PMID: 31808482 DOI: 10.1039/c9dt04031e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introduction of a bis(isopropylidene)-protected galactopyranosyl moiety in s-triazine-based boron-rich carboxylic acids and amines results in soluble and suitable coupling partners for tumour-selective biomolecules with applications as selective agents for boron neutron capture therapy (BNCT). Bearing either a carboxylic acid or primary amine as a functional group, these compounds are highly versatile and thus largely extend the possible coupling strategies with suitable biomolecules. Modification of the gastrin-releasing peptide receptor (GRPR) selective agonist [d-Phe6, β-Ala11, Ala13, Nle14]Bn(6-14) with the carboxylic acid derivative yielded a bioconjugate with an optimal receptor activation and internalisation profile. This demonstrates the great potential of this approach for the development of novel boron delivery agents.
Collapse
Affiliation(s)
- Martin Kellert
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Yin Y, Ochi N, Craven TW, Baker D, Takigawa N, Suga H. De Novo Carborane-Containing Macrocyclic Peptides Targeting Human Epidermal Growth Factor Receptor. J Am Chem Soc 2019; 141:19193-19197. [PMID: 31752491 DOI: 10.1021/jacs.9b09106] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
l-Carboranylalanine (LCba) is a unique artificial amino acid containing a cluster of 10 boron atoms. Since the three-dimensional aromaticity and charge distributions of the carborane side chain are quite different from any side chains of proteinogenic amino acids, there is no report whether LCba can be a substrate for the translation machinery. Here, we report studies on the ribosomal incorporation of LCba into peptide via initiation and elongation using the flexizyme-assisted translation system. Our results indicate that only the initiation step could tolerate LCba incorporation, but the elongation steps could not, very likely due to its steric bulkiness of the side chain. Based on this knowledge, we have designed a library of macrocyclic peptides initiated by α-N-(2-choloroacetyl)-l-carboranylalanine (ClAc-LCba) and selected molecules capable of binding to human epidermal growth factor receptor (hEGFR). Two peptides that were forwarded to deeper studies exhibited affinities with KD values at 16 and 20 nM against hEGFR. Computational modeling of one of the peptides suggested that the carborane side chain might be directly involved in the interaction with the hydrophobic β-sheet core in the EGF binding site of hEGFR, which is consistent with the mutational data where replacing LCba residue with LPhe completely eliminated the binding activity. Cell lines that stably express hEGFR could be stained by incubation with the C-terminal fluorescein-labeled peptides, whereas hEGFR-negative cells could not be stained. This study provides a general strategy for the de novo discovery of carborane-containing macrocyclic peptides targeting various tumor biomarker proteins, potentially applicable to boron neutron capture therapy.
Collapse
Affiliation(s)
- Yizhen Yin
- Department of Chemistry, School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo , Tokyo 113-0033 , Japan
| | - Nobuaki Ochi
- Department of General Internal Medicine 4 , Kawasaki Medical School , 2-6-1 Nakasange , Kita-ku , Okayama 700-8505 , Japan
| | - Timothy W Craven
- Department of Biochemistry and Institute for Protein Design , University of Washington , Seattle , Washington 98195 , United States
| | - David Baker
- Department of Biochemistry and Institute for Protein Design , University of Washington , Seattle , Washington 98195 , United States
| | - Nagio Takigawa
- Department of General Internal Medicine 4 , Kawasaki Medical School , 2-6-1 Nakasange , Kita-ku , Okayama 700-8505 , Japan
| | - Hiroaki Suga
- Department of Chemistry, School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo , Tokyo 113-0033 , Japan
| |
Collapse
|
16
|
Worm DJ, Hoppenz P, Els-Heindl S, Kellert M, Kuhnert R, Saretz S, Köbberling J, Riedl B, Hey-Hawkins E, Beck-Sickinger AG. Selective Neuropeptide Y Conjugates with Maximized Carborane Loading as Promising Boron Delivery Agents for Boron Neutron Capture Therapy. J Med Chem 2019; 63:2358-2371. [PMID: 31589041 DOI: 10.1021/acs.jmedchem.9b01136] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
G-protein-coupled receptors like the human Y1 receptor (hY1R) are promising targets in cancer therapy due to their high overexpression on cancer cells and their ability to internalize together with the bound ligand. This mechanism was exploited to shuttle boron atoms into cancer cells for the application of boron neutron capture therapy (BNCT), a noninvasive approach to eliminate cancer cells. A maximized number of carboranes was introduced to the hY1R-preferring ligand [F7,P34]-NPY by solid phase peptide synthesis. Branched conjugates loaded with up to 80 boron atoms per peptide molecule exhibited a maintained receptor activation profile, and the selective uptake into hY1R-expressing cells was demonstrated by internalization studies. In order to ensure appropriate solubility in aqueous solution, we proved the need for eight hydroxyl groups per carborane. Thus, we suggest the utilization of bis-deoxygalactosyl-carborane building blocks in solid phase peptide synthesis to produce selective boron delivery agents for BNCT.
Collapse
Affiliation(s)
- Dennis J Worm
- Institute of Biochemistry, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Paul Hoppenz
- Institute of Biochemistry, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Sylvia Els-Heindl
- Institute of Biochemistry, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Martin Kellert
- Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany
| | - Robert Kuhnert
- Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany
| | - Stefan Saretz
- Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany
| | | | - Bernd Riedl
- Bayer AG, Aprather Weg 18A, 42113 Wuppertal, Germany
| | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany
| | | |
Collapse
|
17
|
Kellert M, Worm DJ, Hoppenz P, Sárosi MB, Lönnecke P, Riedl B, Koebberling J, Beck-Sickinger AG, Hey-Hawkins E. Modular triazine-based carborane-containing carboxylic acids - synthesis and characterisation of potential boron neutron capture therapy agents made of readily accessible building blocks. Dalton Trans 2019; 48:10834-10844. [PMID: 31246208 DOI: 10.1039/c9dt02130b] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Based on a modular combination of s-triazine, the well-known 9-mercapto-1,7-dicarba-closo-dodecaborane(12) and commercially available carboxylic acids, namely thioglycolic acid, glycine, and Nα-Boc-l-lysine, several carboxylic acid derivatives were synthesised and fully characterised. The thioglycolic acid derivative was introduced into a peptide hormone by solid phase peptide synthesis. High activity and selective internalisation into peptide receptor-expressing cells was observed. With a very high boron content of twenty boron atoms, these derivatives are interesting as selective Boron Neutron Capture Therapy (BNCT) agents.
Collapse
Affiliation(s)
- Martin Kellert
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany.
| | - Dennis J Worm
- Leipzig University, Faculty of Life Sciences, Institute of Biochemistry, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Paul Hoppenz
- Leipzig University, Faculty of Life Sciences, Institute of Biochemistry, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Menyhárt B Sárosi
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany.
| | - Peter Lönnecke
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany.
| | - Bernd Riedl
- Bayer AG, Aprather Weg 18A, 42113 Wuppertal, Germany
| | | | - Annette G Beck-Sickinger
- Leipzig University, Faculty of Life Sciences, Institute of Biochemistry, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Evamarie Hey-Hawkins
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany.
| |
Collapse
|
18
|
Gozzi M, Schwarze B, Hey-Hawkins E. Half- and mixed-sandwich metallacarboranes for potential applications in medicine. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2018-0806] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Today, medicinal chemistry is still clearly dominated by organic chemistry, and commercially available boron-based drugs are rare. In contrast to hydrocarbons, boranes prefer the formation of polyhedral clusters via delocalized 3c2e bonds, such as polyhedral dicarba-closo-dodecaborane(12) (closo-C2B10H12). These clusters have remarkable biological stability, and the three isomers, 1,2- (ortho), 1,7- (meta), and 1,12-dicarba-closo-dodecaborane(12) (para), have attracted much interest due to their unique structural features. Furthermore, anionic nido clusters ([7,8-C2B9H11]2−), derived from the neutral icosahedral closo cluster 1,2-dicarba-closo-dodecaborane(12) by deboronation followed by deprotonation are suitable ligands for transition metals and offer the possibility to form metallacarboranes, for example via coordination through the upper pentagonal face of the cluster. The isolobal analogy between the cyclopentadienyl(–1) ligand (Cp−) and [C2B9H11]2− clusters (dicarbollide anion, Cb2−) is the motivation in using Cb2− as ligand for coordination to a metal center to design compounds for various applications. This review focuses on potential applications of half- and mixed-sandwich-type transition metal complexes in medicine.
Collapse
Affiliation(s)
- Marta Gozzi
- Universität Leipzig, Institut für Anorganische Chemie , Johannisallee 29 , 04103 Leipzig , Germany
| | - Benedikt Schwarze
- Universität Leipzig, Institut für Anorganische Chemie , Johannisallee 29 , 04103 Leipzig , Germany
| | - Evamarie Hey-Hawkins
- Universität Leipzig, Institut für Anorganische Chemie , Johannisallee 29 , 04103 Leipzig , Germany , Phone: +49-341-9736151, Fax: +49-341-9739319
| |
Collapse
|
19
|
Goszczyński TM, Fink K, Boratyński J. Icosahedral boron clusters as modifying entities for biomolecules. Expert Opin Biol Ther 2019; 18:205-213. [PMID: 30063861 DOI: 10.1080/14712598.2018.1473369] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Icosahedral boron clusters have unique properties useful in medicinal chemistry: rigidity, chemical stability, and three-dimensional aromaticity. Furthermore, these abiotic compounds have low toxicity and are stable in the biological environment. All these features ultimately give them the ability to interact with biological molecules in a different mode than organic compounds. AREAS COVERED In the present article, we aim to introduce boron clusters as a class of entities suitable for modifications of biomolecules to obtain a specific biological effect. We will focus on icosahedral boron clusters, as well as metallacarboranes, and their biological activity and interaction with the biological environment. EXPERT OPINION Boron clusters are suitable for altering structural and functional features of biomolecules and can be used in the development of new drugs and drug delivery systems. The high affinity of boron clusters, especially metallacarboranes, to albumin creates a new possibility to use them to optimize the pharmacokinetics of biologically active peptides. Boron clusters have high potential in biological and medicinal applications. Due to their peculiar properties, they can be used to optimize parameters critical for the biological activity of therapeutic substances and their affinity toward biological targets.
Collapse
Affiliation(s)
- Tomasz M Goszczyński
- a Laboratory of Biomedical Chemistry, Department of Experimental Oncology , Hirszfeld Institute of Immunology and Experimental Therapy, PAS , Wrocław , Poland
| | - Krzysztof Fink
- a Laboratory of Biomedical Chemistry, Department of Experimental Oncology , Hirszfeld Institute of Immunology and Experimental Therapy, PAS , Wrocław , Poland
| | - Janusz Boratyński
- a Laboratory of Biomedical Chemistry, Department of Experimental Oncology , Hirszfeld Institute of Immunology and Experimental Therapy, PAS , Wrocław , Poland
| |
Collapse
|
20
|
Fink K, Kobak K, Kasztura M, Boratyński J, Goszczyński TM. Synthesis and Biological Activity of Thymosin β4-Anionic Boron Cluster Conjugates. Bioconjug Chem 2018; 29:3509-3515. [DOI: 10.1021/acs.bioconjchem.8b00646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Krzysztof Fink
- Laboratory of Biomedical Chemistry, Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy PAS, 12 Rudolf Weigl Street, 53-114 Wrocław, Poland
| | - Kamil Kobak
- Laboratory for Applied Research on Cardiovascular System, Department of Heart Diseases, Wrocław Medical University, 5 Rudolf Weigl Street, 50-981 Wrocław, Poland
| | - Monika Kasztura
- Laboratory for Applied Research on Cardiovascular System, Department of Heart Diseases, Wrocław Medical University, 5 Rudolf Weigl Street, 50-981 Wrocław, Poland
| | - Janusz Boratyński
- Laboratory of Biomedical Chemistry, Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy PAS, 12 Rudolf Weigl Street, 53-114 Wrocław, Poland
| | - Tomasz M. Goszczyński
- Laboratory of Biomedical Chemistry, Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy PAS, 12 Rudolf Weigl Street, 53-114 Wrocław, Poland
| |
Collapse
|
21
|
|
22
|
Richter S, Singh S, Draca D, Kate A, Kumbhar A, Kumbhar AS, Maksimovic-Ivanic D, Mijatovic S, Lönnecke P, Hey-Hawkins E. Antiproliferative activity of ruthenium(ii) arene complexes with mono- and bidentate pyridine-based ligands. Dalton Trans 2018; 45:13114-25. [PMID: 27264161 DOI: 10.1039/c6dt01782g] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A series of Ru(II) arene complexes of mono- and bidentate N-donor ligands with carboxyl or ester groups and chlorido ancillary ligands were synthesised and structurally characterised. The complexes have a distorted tetrahedral piano-stool geometry. The binding interaction was studied with calf thymus DNA (CT-DNA) by absorption titration, viscosity measurement, thermal melting, circular dichroism, ethidium bromide displacement assay and DNA cleavage of plasmid DNA (pBR322), investigated by gel electrophoresis. The dichlorido complexes bind covalently to DNA in the dark, similar to cisplatin, while the monochlorido complexes bind covalently on irradiation, similar to cisplatin analogues. The compounds are selectively cytotoxic against several tumour cell lines and show specific nonlinear correlation between dose and activity. This phenomenon is closely related to their potential to act preferentially as inhibitors of cell division.
Collapse
Affiliation(s)
- Stefan Richter
- Universität Leipzig, Institut für Anorganische Chemie, Johannisallee 29, 04103 Leipzig, Germany.
| | - Sushma Singh
- Department of Chemistry, Savitribai Phule Pune University, Pune-411007, India
| | - Dijana Draca
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Anup Kate
- Department of Chemistry, Savitribai Phule Pune University, Pune-411007, India
| | - Anupa Kumbhar
- Department of Chemistry, Savitribai Phule Pune University, Pune-411007, India
| | - Avinash S Kumbhar
- Department of Chemistry, Savitribai Phule Pune University, Pune-411007, India
| | - Danijela Maksimovic-Ivanic
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Sanja Mijatovic
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Peter Lönnecke
- Universität Leipzig, Institut für Anorganische Chemie, Johannisallee 29, 04103 Leipzig, Germany.
| | - Evamarie Hey-Hawkins
- Universität Leipzig, Institut für Anorganische Chemie, Johannisallee 29, 04103 Leipzig, Germany.
| |
Collapse
|
23
|
|
24
|
Anufriev SA, Erokhina SA, Suponitsky KY, Godovikov IA, Filippov OA, Fabrizi de Biani F, Corsini M, Chizhov AO, Sivaev IB. Methylsulfanyl-Stabilized Rotamers of Cobalt Bis(dicarbollide). Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700575] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sergey A. Anufriev
- A.N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilov Str. 28 119991 Moscow Russia
| | - Svetlana A. Erokhina
- A.N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilov Str. 28 119991 Moscow Russia
| | - Kyrill Yu. Suponitsky
- A.N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilov Str. 28 119991 Moscow Russia
| | - Ivan A. Godovikov
- A.N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilov Str. 28 119991 Moscow Russia
| | - Oleg A. Filippov
- A.N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilov Str. 28 119991 Moscow Russia
| | - Fabrizia Fabrizi de Biani
- Dipartimento di Biotecnologie, Chimica e Farmacia; Università degli Studi di Siena; Via A. Moro 2 53100 Siena Italy
| | - Maddalena Corsini
- Dipartimento di Biotecnologie, Chimica e Farmacia; Università degli Studi di Siena; Via A. Moro 2 53100 Siena Italy
| | - Alexander O. Chizhov
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prosp. 47 119991 Moscow Russia
| | - Igor B. Sivaev
- A.N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilov Str. 28 119991 Moscow Russia
| |
Collapse
|
25
|
Friedrich Löffler Prize: D. Segets / Toray Science and Technology Prize: S. Kobayashi / Inhoffen Medal: T. Carell / Leipzig Science Prize: A. G. Beck-Sickinger / Nenitzescu-Criegee Lectureship: E. Hey-Hawkins / Humboldt, Siemens, and Bessel Research Awards / New Members of German Academies of Sciences and Humanities. Angew Chem Int Ed Engl 2016; 55:9129-30. [PMID: 27355969 DOI: 10.1002/anie.201605626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Friedrich‐Löffler‐Preis: D. Segets / Toray Science and Technology Prize: S. Kobayashi / Inhoffen‐Medaille: T. Carell / Leipziger Wissenschaftspreis: A. G. Beck‐Sickinger / Nenitzescu‐Criegee‐Vorlesung: E. Hey‐Hawkins / Humboldt‐, Siemens‐ und Bessel‐Forschungspreise / Neue Mitglieder deutscher Wissenschaftsakademien. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|