1
|
Wei X, Li S, Li Z, Wang L, Fan W, Ruan K, Gao J. Fragment-based discovery of small molecule inhibitors of the HDGFRP2 PWWP domain. FEBS Lett 2024; 598:2533-2543. [PMID: 39031937 DOI: 10.1002/1873-3468.14981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/20/2024] [Accepted: 06/19/2024] [Indexed: 07/22/2024]
Abstract
The PWWP domain of hepatoma-derived growth factor-related protein 2 (HDGFRP2) recognizes methylated histones to initiate the recruitment of homologous recombination repair proteins to damaged silent genes. The combined depletion of HDGFRP2 and its paralog PSIP1 effectively impedes the onset and progression of diffuse intrinsic pontine glioma (DIPG). Here, we discovered varenicline and 4-(4-bromo-1H-pyrazol-3-yl) pyridine (BPP) as inhibitors of the HDGFRP2 PWWP domain through a fragment-based screening method. The complex crystal structures reveal that both Varenicline and BPP engage with the aromatic cage of the HDGFRP2 PWWP domain, albeit via unique binding mechanisms. Notably, BPP represents the first single-digit micromolar inhibitor of the HDGFRP2 PWWP domain with a high ligand efficiency. As a dual inhibitor targeting both HDGFRP2 and PSIP1 PWWP domains, BPP offers an exceptional foundation for further optimization into a chemical tool to dissect the synergetic function of HDGFRP2 and PSIP1 in DIPG pathogenesis.
Collapse
Affiliation(s)
- Xiaoli Wei
- Department of Medical Oncology, The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuju Li
- Department of Medical Oncology, The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zihuan Li
- Department of Medical Oncology, The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lei Wang
- Department of Medical Oncology, The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weiwei Fan
- Department of Medical Oncology, The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ke Ruan
- Department of Medical Oncology, The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jia Gao
- Department of Medical Oncology, The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
2
|
Colarusso E, Ceccacci S, Monti MC, Gazzillo E, Giordano A, Chini MG, Ferraro MG, Piccolo M, Ruggiero D, Irace C, Terracciano S, Bruno I, Bifulco G, Lauro G. Identification of 2,4,5-trisubstituted-2,4-dihydro-3H-1,2,4-triazol-3-one-based small molecules as selective BRD9 binders. Eur J Med Chem 2023; 247:115018. [PMID: 36577218 DOI: 10.1016/j.ejmech.2022.115018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Targeting bromodomain-containing protein 9 (BRD9) represents a promising strategy for the development of new agents endowed with anticancer properties. With this aim, a set of 2,4,5-trisubstituted-2,4-dihydro-3H-1,2,4-triazol-3-one-based compounds was investigated following a combined approach that relied on in silico studies, chemical synthesis, biophysical and biological evaluation of the most promising items. The protocol was initially based on molecular docking experiments, accounting a library of 1896 potentially synthesizable items tested in silico against the bromodomain of BRD9. A first set of 21 compounds (1-21) was selected and the binding on BDR9 was assessed through AlphaScreen assays. The obtained results disclosed compounds 17 and 20 able to bind BRD9 in the submicromolar range (IC50 = 0.35 ± 0.18 μM and IC50 = 0.14 ± 0.03 μM, respectively) showing a promising selectivity profile when tested against further nine bromodomains. Taking advantage of 3D structure-based pharmacophore models, additional 10 derivatives were selected in silico for the synthetic step and binding assessment, highlighting seven compounds (22, 23, 25, 26, 28, 29, 31) able to selectively bind BRD9 among different bromodomains. The ability of the identified BRD9 binders to cross artificial membranes in vitro was also assessed, revealing a very good passive permeability profile. Preliminary studies were carried out on a panel of healthy and cancer human cell lines to explore the biological behavior of the selected compounds, disclosing a moderate activity and significant selectivity profile towards leukaemia cells. These results highlighted the applicability of the reported multidisciplinary approach for accelerating the selection of promising items and for driving the chemical synthesis of novel selective BRD9 binders. Moreover, the low molecular weight of the reported 2,4,5-trisubstituted-2,4-dihydro-3H-1,2,4-triazol-3-one-based BRD9 binders suggests the possibility for further exploring the chemical space in order to obtain new analogues with improved potency.
Collapse
Affiliation(s)
- Ester Colarusso
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Sara Ceccacci
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy; PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Maria Chiara Monti
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Erica Gazzillo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy; PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Assunta Giordano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy; Institute of Biomolecular Chemistry (ICB), Consiglio Nazionale Delle Ricerche (CNR), Via Campi Flegrei 34, I-80078, Pozzuoli, Napoli, Italy
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, C.da Fonte Lappone, Pesche, 86090, Italy
| | - Maria Grazia Ferraro
- Department of Pharmacy, School of Medicine and Surgery, University of Naples "Federico II", Via Domenico Montesano 49, Naples, 80131, Italy
| | - Marialuisa Piccolo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples "Federico II", Via Domenico Montesano 49, Naples, 80131, Italy
| | - Dafne Ruggiero
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Carlo Irace
- Department of Pharmacy, School of Medicine and Surgery, University of Naples "Federico II", Via Domenico Montesano 49, Naples, 80131, Italy
| | - Stefania Terracciano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Ines Bruno
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy.
| |
Collapse
|
3
|
Fragment-Based Discovery of AF9 YEATS Domain Inhibitors. Int J Mol Sci 2022; 23:ijms23073893. [PMID: 35409252 PMCID: PMC8998803 DOI: 10.3390/ijms23073893] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
YEATS (YAF9, ENL, AF9, TAF14, SAS5) family proteins recognize acylated histones and in turn regulate chromatin structure, gene transcription, and stress signaling. The chromosomal translocations of ENL and mixed lineage leukemia are considered oncogenic drivers in acute myeloid leukemia and acute lymphoid leukemia. However, known ENL YEATS domain inhibitors have failed to suppress the proliferation of 60 tested cancer cell lines. Herein, we identified four hits from the NMR fragment-based screening against the AF9 YEATS domain. Ten inhibitors of new chemotypes were then designed and synthesized guided by two complex structures and affinity assays. The complex structures revealed that these inhibitors formed an extra hydrogen bond to AF9, with respect to known ENL inhibitors. Furthermore, these inhibitors demonstrated antiproliferation activities in AF9-sensitive HGC-27 cells, which recapitulated the phenotype of the CRISPR studies against AF9. Our work will provide the basis for further structured-based optimization and reignite the campaign for potent AF9 YEATS inhibitors as a precise treatment for AF9-sensitive cancers.
Collapse
|
4
|
Wang L, Wang Y, Zhao J, Yu Y, Kang N, Yang Z. Theoretical exploration of the binding selectivity of inhibitors to BRD7 and BRD9 with multiple short molecular dynamics simulations. RSC Adv 2022; 12:16663-16676. [PMID: 35754900 PMCID: PMC9169554 DOI: 10.1039/d2ra02637f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/29/2022] [Indexed: 12/18/2022] Open
Abstract
Bromodomain-containing proteins 7 and 9 (BRD7 and BRD9) have been considered as potential targets of clinical drug design toward treatment of human cancers and other diseases. Multiple short molecular dynamics simulations and binding free energy predictions were carried out to decipher the binding selectivity of three inhibitors 4L2, 5U6, and 6KT toward BRD7 and BRD9. The results show that 4L2 has more favorable binding ability to BRD7 over BRD9 compared to 5U6 and 6KT, while 5U6 and 6KT possess more favorable associations with BRD9 than BRD7. Furthermore, estimations of residue-based free energy decompositions further identify that four common residue pairs, including (F155, F44), (V160, V49), (Y168, Y57) and (Y217, Y106) in (BRD7, BRD9) generate obvious binding differences with 4L2, 5U6, and 6KT, which mostly drives the binding selectivity of 4L2, 5U6, and 6KT to BRD7 and BRD9. Dynamic information arising from trajectory analysis also suggests that inhibitor bindings affect structural flexibility and motion modes, which is responsible for the partial selectivity of 4L2, 5U6, and 6KT toward BRD7 and BRD9. As per our expectation, this study theoretically provides useful hints for design of dual inhibitors with high selectivity on BRD7 and BRD9. Bromodomains (BRDs) are structurally conserved epigenetic reader modules observed in numerous chromatin- and transcription-associated proteins that have a capability to identify acetylated lysine residues.![]()
Collapse
Affiliation(s)
- Lifei Wang
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Yan Wang
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Juan Zhao
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Yingxia Yu
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Nianqian Kang
- Department of Physics, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhiyong Yang
- Department of Physics, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
5
|
Pierri M, Gazzillo E, Chini MG, Ferraro MG, Piccolo M, Maione F, Irace C, Bifulco G, Bruno I, Terracciano S, Lauro G. Introducing structure-based three-dimensional pharmacophore models for accelerating the discovery of selective BRD9 binders. Bioorg Chem 2021; 118:105480. [PMID: 34823196 DOI: 10.1016/j.bioorg.2021.105480] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 01/18/2023]
Abstract
A well-structured in silico workflow is here reported for disclosing structure-based pharmacophore models against bromodomain-containing protein 9 (BRD9), accelerating virtual screening campaigns and facilitating the identification of novel binders. Specifically, starting from 23 known ligands co-crystallized with BRD9, three-dimensional pharmacophore models, namely placed in a reference protein structure, were developed. Specifically, we here introduce a fragment-related pharmacophore model, useful for the identification of new promising small chemical probes targeting the protein region responsible of the acetyllysine recognition, and two further pharmacophore models useful for the selection of compounds featuring drug-like properties. A pharmacophore-driven virtual screening campaign was then performed to facilitate the selection of new selective BRD9 ligands, starting from a large library of commercially available molecules. The identification of a promising BRD9 binder (7) prompted us to re-iterate this computational workflow on a second focused in-house built library of synthesizable compounds and, eventually, three further novel BRD9 binders were disclosed (8-10). Moreover, all these compounds were tested among a panel comprising other nine bromodomains, showing a high selectivity for BRD9. Preclinical bioscreens for potential anticancer activity highlighted compound 7 as that showing the most promising biological effects, proving the reliability of this in silico pipeline and confirming the applicability of the here introduced structure-based three-dimensional (3D) pharmacophore models as straightforward tools for the selection of new BRD9 ligands.
Collapse
Affiliation(s)
- Martina Pierri
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano 84084, Italy; PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, Fisciano 84084, Italy
| | - Erica Gazzillo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano 84084, Italy; PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, Fisciano 84084, Italy
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, C.da Fonte Lappone, Pesche 86090, Italy
| | - Maria Grazia Ferraro
- Department of Pharmacy, School of Medicine and Surgery, University of Naples, Via Domenico Montesano 49, Naples 80131, Italy
| | - Marialuisa Piccolo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples, Via Domenico Montesano 49, Naples 80131, Italy
| | - Francesco Maione
- Department of Pharmacy, School of Medicine and Surgery, University of Naples, Via Domenico Montesano 49, Naples 80131, Italy
| | - Carlo Irace
- Department of Pharmacy, School of Medicine and Surgery, University of Naples, Via Domenico Montesano 49, Naples 80131, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano 84084, Italy
| | - Ines Bruno
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano 84084, Italy
| | - Stefania Terracciano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano 84084, Italy.
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano 84084, Italy.
| |
Collapse
|
6
|
Schiedel M, Moroglu M, Ascough DMH, Chamberlain AER, Kamps JJAG, Sekirnik AR, Conway SJ. Chemical Epigenetics: The Impact of Chemical and Chemical Biology Techniques on Bromodomain Target Validation. Angew Chem Int Ed Engl 2019; 58:17930-17952. [DOI: 10.1002/anie.201812164] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/08/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Matthias Schiedel
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Mustafa Moroglu
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - David M. H. Ascough
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Anna E. R. Chamberlain
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Jos J. A. G. Kamps
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Angelina R. Sekirnik
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Stuart J. Conway
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
7
|
Schiedel M, Moroglu M, Ascough DMH, Chamberlain AER, Kamps JJAG, Sekirnik AR, Conway SJ. Chemische Epigenetik: der Einfluss chemischer und chemo‐biologischer Techniken auf die Zielstruktur‐Validierung von Bromodomänen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Matthias Schiedel
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Mustafa Moroglu
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - David M. H. Ascough
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Anna E. R. Chamberlain
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Jos J. A. G. Kamps
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Angelina R. Sekirnik
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Stuart J. Conway
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| |
Collapse
|
8
|
Nshogoza G, Liu Y, Gao J, Liu M, Moududee SA, Ma R, Li F, Zhang J, Wu J, Shi Y, Ruan K. NMR Fragment-Based Screening against Tandem RNA Recognition Motifs of TDP-43. Int J Mol Sci 2019; 20:ijms20133230. [PMID: 31262091 PMCID: PMC6651732 DOI: 10.3390/ijms20133230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 01/10/2023] Open
Abstract
The TDP-43 is originally a nuclear protein but translocates to the cytoplasm in the pathological condition. TDP-43, as an RNA-binding protein, consists of two RNA Recognition Motifs (RRM1 and RRM2). RRMs are known to involve both protein-nucleotide and protein-protein interactions and mediate the formation of stress granules. Thus, they assist the entire TDP-43 protein with participating in neurodegenerative and cancer diseases. Consequently, they are potential therapeutic targets. Protein-observed and ligand-observed nuclear magnetic resonance (NMR) spectroscopy were used to uncover the small molecule inhibitors against the tandem RRM of TDP-43. We identified three hits weakly binding the tandem RRMs using the ligand-observed NMR fragment-based screening. The binding topology of these hits is then depicted by chemical shift perturbations (CSP) of the 15N-labeled tandem RRM and RRM2, respectively, and modeled by the CSP-guided High Ambiguity Driven biomolecular DOCKing (HADDOCK). These hits mainly bind to the RRM2 domain, which suggests the druggability of the RRM2 domain of TDP-43. These hits also facilitate further studies regarding the hit-to-lead evolution against the TDP-43 RRM domain.
Collapse
Affiliation(s)
- Gilbert Nshogoza
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yaqian Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Jia Gao
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Mingqing Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Sayed Ala Moududee
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Rongsheng Ma
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Fudong Li
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Jiahai Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Jihui Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yunyu Shi
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- CAS, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China
| | - Ke Ruan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
9
|
Clegg MA, Tomkinson NCO, Prinjha RK, Humphreys PG. Advancements in the Development of non-BET Bromodomain Chemical Probes. ChemMedChem 2019; 14:362-385. [PMID: 30624862 DOI: 10.1002/cmdc.201800738] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Indexed: 01/07/2023]
Abstract
The bromodomain and extra terminal (BET) family of bromodomain-containing proteins (BCPs) have been the subject of extensive research over the past decade, resulting in a plethora of high-quality chemical probes for their tandem bromodomains. In turn, these chemical probes have helped reveal the profound biological role of the BET bromodomains and their role in disease, ultimately leading to a number of molecules in active clinical development. However, the BET subfamily represents just 8/61 of the known human bromodomains, and attention has now expanded to the biological role of the remaining 53 non-BET bromodomains. Rapid growth of this research area has been accompanied by a greater understanding of the requirements for an effective bromodomain chemical probe and has led to a number of new non-BET bromodomain chemical probes being developed. Advances since December 2015 are discussed, highlighting the strengths/caveats of each molecule, and the value they add toward validating the non-BET bromodomains as tractable therapeutic targets.
Collapse
Affiliation(s)
- Michael A Clegg
- Epigenetics Discovery Performance Unit, GlaxoSmithKline R&D, Stevenage, Hertfordshire, SG1 2NY, UK.,WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Thomas Graham Building, Glasgow, G1 1XL, UK
| | - Nicholas C O Tomkinson
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Thomas Graham Building, Glasgow, G1 1XL, UK
| | - Rab K Prinjha
- Epigenetics Discovery Performance Unit, GlaxoSmithKline R&D, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Philip G Humphreys
- Epigenetics Discovery Performance Unit, GlaxoSmithKline R&D, Stevenage, Hertfordshire, SG1 2NY, UK
| |
Collapse
|
10
|
Song LT, Tu J, Liu RR, Zhu M, Meng YJ, Zhai HL. Molecular mechanism study of several inhibitors binding to BRD9 bromodomain based on molecular simulations. J Biomol Struct Dyn 2018; 37:2970-2979. [DOI: 10.1080/07391102.2018.1502097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Li Ting Song
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, P. R. China
| | - Jing Tu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, P. R. China
| | - Rui Rui Liu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, P. R. China
| | - Min Zhu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, P. R. China
| | - Ya Jie Meng
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, P. R. China
| | - Hong Lin Zhai
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, P. R. China
| |
Collapse
|
11
|
Xu D, Li B, Gao J, Liu Z, Niu X, Nshogoza G, Zhang J, Wu J, Su XC, He W, Ma R, Yang D, Ruan K. Ligand Proton Pseudocontact Shifts Determined from Paramagnetic Relaxation Dispersion in the Limit of NMR Intermediate Exchange. J Phys Chem Lett 2018; 9:3361-3367. [PMID: 29864276 DOI: 10.1021/acs.jpclett.8b01443] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Delineation of protein-ligand interaction modes is key for rational drug discovery. The availability of complex crystal structures is often limited by the aqueous solubility of the compounds, while lead-like compounds with micromolar affinities normally fall into the NMR intermediate exchange regime, in which severe line broadening to beyond the detection of interfacial resonances limits NMR applications. Here, we developed a new method to retrieve low-populated bound-state 1H pseudocontact shifts (PCSs) using paramagnetic relaxation dispersion (RD). We evaluated using a 1H PCS-RD approach in a BRM bromodomain lead-like inhibitor to filter molecular docking poses using multiple intermolecular structural restraints. Considering the universal presence of proton atoms in druglike compounds, our work will have wide application in structure-guided drug discovery even under an extreme condition of NMR intermediate exchange and low aqueous solubility of ligands.
Collapse
Affiliation(s)
- Difei Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230027 , PR China
| | - Bin Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua-Peking Joint Center for Life Sciences , Tsinghua University , Beijing , 100084 , PR China
| | - Jia Gao
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230027 , PR China
- Center of Medical Physics and Technology, Hefei Institute of Physical Science , Cancer Hospital Chinese Academy of Science , Hefei , Anhui 230031 , PR China
| | - Zhijun Liu
- National Facility for Protein Science in Shanghai, ZhangJiang Lab, Shanghai Advanced Research Institute , Chinese Academy of Sciences , Shanghai , 201210 , PR China
| | - Xiaogang Niu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , PR China
| | - Gilbert Nshogoza
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230027 , PR China
| | - Jiahai Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230027 , PR China
| | - Jihui Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230027 , PR China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin , 300071 , PR China
| | - Wei He
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua-Peking Joint Center for Life Sciences , Tsinghua University , Beijing , 100084 , PR China
| | - Rongsheng Ma
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230027 , PR China
| | - Daiwen Yang
- Department of Biological Sciences , National University of Singapore , Singapore , 117543 , Singapore
| | - Ke Ruan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230027 , PR China
| |
Collapse
|
12
|
Ali I, Conrad RJ, Verdin E, Ott M. Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics. Chem Rev 2018; 118:1216-1252. [PMID: 29405707 PMCID: PMC6609103 DOI: 10.1021/acs.chemrev.7b00181] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Post-translational acetylation of lysine residues has emerged as a key regulatory mechanism in all eukaryotic organisms. Originally discovered in 1963 as a unique modification of histones, acetylation marks are now found on thousands of nonhistone proteins located in virtually every cellular compartment. Here we summarize key findings in the field of protein acetylation over the past 20 years with a focus on recent discoveries in nuclear, cytoplasmic, and mitochondrial compartments. Collectively, these findings have elevated protein acetylation as a major post-translational modification, underscoring its physiological relevance in gene regulation, cell signaling, metabolism, and disease.
Collapse
Affiliation(s)
- Ibraheem Ali
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Ryan J. Conrad
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, California 94945, United States
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| |
Collapse
|
13
|
Ángeles Canales M, Félix Espinosa J. Ligand-detected NMR Methods in Drug Discovery. BIOPHYSICAL TECHNIQUES IN DRUG DISCOVERY 2017. [DOI: 10.1039/9781788010016-00023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This book chapter describes the basic principles of NMR-based techniques for detecting ligand binding and uses examples of the application of these techniques in drug discovery programs for screening, hit validation and optimization to illustrate their utility in characterizing ligand–protein interactions. The binding of small molecules to biological receptors can be observed directly by detecting changes in a particular NMR parameter when the protein is added to a sample containing the ligand, or indirectly, using a “spy” molecule in competitive NMR experiments. Combinations of different NMR experiments can be used to confirm binding and also to obtain structural information that can be used to guide medicinal chemistry decisions. Ligand-observed NMR methods are able to identify weak affinity ligands that cannot be detected by other biophysical techniques, which means that NMR-based methods are extremely valuable tools for fragment-based drug discovery approaches.
Collapse
Affiliation(s)
- María Ángeles Canales
- Department of Química Orgánica I, Universidad Complutense de Madrid Avd. Complutense s/n 28040 Madrid Spain
| | - Juan Félix Espinosa
- Centro de Investigación Lilly Avda. de la Industria 30 28108, Alcobendas, Madrid Spain
| |
Collapse
|
14
|
W Young D. Using Fragment Based Drug Discovery to Target Epigenetic Regulators in Cancer. ACTA ACUST UNITED AC 2017. [DOI: 10.15406/mojbb.2017.04.00062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Spiliotopoulos D, Zhu J, Wamhoff EC, Deerain N, Marchand JR, Aretz J, Rademacher C, Caflisch A. Virtual screen to NMR (VS2NMR): Discovery of fragment hits for the CBP bromodomain. Bioorg Med Chem Lett 2017; 27:2472-2478. [DOI: 10.1016/j.bmcl.2017.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/31/2017] [Accepted: 04/01/2017] [Indexed: 01/07/2023]
|
16
|
Liu J, Li F, Bao H, Jiang Y, Zhang S, Ma R, Gao J, Wu J, Ruan K. The polar warhead of a TRIM24 bromodomain inhibitor rearranges a water-mediated interaction network. FEBS J 2017; 284:1082-1095. [PMID: 28207202 DOI: 10.1111/febs.14041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/11/2017] [Accepted: 02/13/2017] [Indexed: 12/22/2022]
Abstract
Tripartite motif-containing protein 24 (TRIM24) is closely correlated with multiple cancers, and a recent study demonstrated that the bromodomain of TRIM24 is essential for the proliferation of lethal castration-resistant prostate cancer. Here, we identify three new inhibitors of the TRIM24 bromodomain using NMR fragment-based screening. The crystal structures of two new inhibitors in complex with the TRIM24 bromodomain reveal that the water-bridged interaction network is conserved in the same fashion as those for known benzoimidazolone inhibitors. Interestingly, the polar substitution on the warhead of one new inhibitor pulls the whole ligand approximately 2 Å into the inner side pocket of the TRIM24 bromodomain, and thus exhibits a binding mode significantly different from other known bromodomain ligands. This mode provides a useful handle for further hit-to-lead evolution toward novel inhibitors of the TRIM24 bromodomain. DATABASE Structural data are available in the PDB under the accession numbers 5H1T, 5H1U, and 5H1V.
Collapse
Affiliation(s)
- Jiuyang Liu
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Fudong Li
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Hongyu Bao
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yiyang Jiang
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Shuya Zhang
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Rongsheng Ma
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jia Gao
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jihui Wu
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Ke Ruan
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
17
|
Liu J, Gao J, Li F, Ma R, Wei Q, Wang A, Wu J, Ruan K. NMR characterization of weak interactions between RhoGDI2 and fragment screening hits. Biochim Biophys Acta Gen Subj 2017; 1861:3061-3070. [DOI: 10.1016/j.bbagen.2016.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/26/2016] [Accepted: 10/04/2016] [Indexed: 12/31/2022]
|