1
|
Marković V, Shaik JB, Ożga K, Ciesiołkiewicz A, Lizandra Perez J, Rudzińska-Szostak E, Berlicki Ł. Peptide foldamer-based inhibitors of the SARS-CoV-2 S protein-human ACE2 interaction. J Enzyme Inhib Med Chem 2023; 38:2244693. [PMID: 37605435 PMCID: PMC10446788 DOI: 10.1080/14756366.2023.2244693] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/07/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023] Open
Abstract
The entry of the SARS-CoV-2 virus into a human host cell begins with the interaction between the viral spike protein (S protein) and human angiotensin-converting enzyme 2 (hACE2). Therefore, a possible strategy for the treatment of this infection is based on inhibiting the interaction of the two abovementioned proteins. Compounds that bind to the SARS-CoV-2 S protein at the interface with the alpha-1/alpha-2 helices of ACE2 PD Subdomain I are of particular interest. We present a stepwise optimisation of helical peptide foldamers containing trans-2-aminocylopentanecarboxylic acid residues as the folding-inducing unit. Four rounds of optimisation led to the discovery of an 18-amino-acid peptide with high affinity for the SARS-CoV-2 S protein (Kd = 650 nM) that inhibits this protein-protein interaction with IC50 = 1.3 µM. Circular dichroism and nuclear magnetic resonance studies indicated the helical conformation of this peptide in solution.
Collapse
Affiliation(s)
- Violeta Marković
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Jeelan Basha Shaik
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Katarzyna Ożga
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Agnieszka Ciesiołkiewicz
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Juan Lizandra Perez
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Ewa Rudzińska-Szostak
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| |
Collapse
|
2
|
Lee TH, Checco JW, Malcolm T, Eller CH, Raines RT, Gellman SH, Lee EF, Fairlie WD, Aguilar MI. Differential membrane binding of α/β-peptide foldamers: implications for cellular delivery and mitochondrial targeting. Aust J Chem 2023; 76:482-492. [PMID: 37780415 PMCID: PMC10540276 DOI: 10.1071/ch23063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The intrinsic pathway of apoptosis is regulated by the Bcl-2 family of proteins. Inhibition of the anti-apoptotic members represents a strategy to induce apoptotic cell death in cancer cells. We have measured the membrane binding properties of a series of peptides, including modified α/β-peptides, designed to exhibit enhanced membrane permeability to allow cell entry and improved access for engagement of Bcl-2 family members. The peptide cargo is based on the pro-apoptotic protein Bim, which interacts with all anti-apoptotic proteins to initiate apoptosis. The α/β-peptides contained cyclic β-amino acid residues designed to increase their stability and membrane-permeability. Dual polarisation interferometry was used to study the binding of each peptide to two different model membrane systems designed to mimic either the plasma membrane or the outer mitochondrial membrane. The impact of each peptide on the model membrane structure was also investigated, and the results demonstrated that the modified peptides had increased affinity for the mitochondrial membrane and significantly altered the structure of the bilayer. The results also showed that the presence of an RRR motif significantly enhanced the ability of the peptides to bind to and insert into the mitochondrial membrane mimic, and provide insights into the role of selective membrane targeting of peptides.
Collapse
Affiliation(s)
- Tzong-Hsien Lee
- Department of Biochemistry & Molecular Biology, Monash University, Clayton Vic, 3800, Australia
| | - James W Checco
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Current address: Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
- Current address: The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Tess Malcolm
- Department of Biochemistry & Molecular Biology, Monash University, Clayton Vic, 3800, Australia
- Current address: School of Chemistry, University of Melbourne, Parkville, Vic 3052, Australia
| | - Chelcie H Eller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ronald T Raines
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Erinna F Lee
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Cell Death and Survival Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria 3086, Australia
| | - W Douglas Fairlie
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Cell Death and Survival Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry & Molecular Biology, Monash University, Clayton Vic, 3800, Australia
| |
Collapse
|
3
|
Sang P, Cai J. Unnatural helical peptidic foldamers as protein segment mimics. Chem Soc Rev 2023; 52:4843-4877. [PMID: 37401344 PMCID: PMC10389297 DOI: 10.1039/d2cs00395c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 07/05/2023]
Abstract
Unnatural helical peptidic foldamers have attracted considerable attention owing to their unique folding behaviours, diverse artificial protein binding mechanisms, and promising applications in chemical, biological, medical, and material fields. Unlike the conventional α-helix consisting of molecular entities of native α-amino acids, unnatural helical peptidic foldamers are generally comprised of well-defined backbone conformers with unique and unnatural structural parameters. Their folded structures usually arise from unnatural amino acids such as N-substituted glycine, N-substituted-β-alanine, β-amino acid, urea, thiourea, α-aminoxy acid, α-aminoisobutyric acid, aza-amino acid, aromatic amide, γ-amino acid, as well as sulfono-γ-AA amino acid. They can exhibit intriguing and predictable three-dimensional helical structures, generally featuring superior resistance to proteolytic degradation, enhanced bioavailability, and improved chemodiversity, and are promising in mimicking helical segments of various proteins. Although it is impossible to include every piece of research work, we attempt to highlight the research progress in the past 10 years in exploring unnatural peptidic foldamers as protein helical segment mimics, by giving some representative examples and discussing the current challenges and future perspectives. We expect that this review will help elucidate the principles of structural design and applications of existing unnatural helical peptidic foldamers in protein segment mimicry, thereby attracting more researchers to explore and generate novel unnatural peptidic foldamers with unique structural and functional properties, leading to more unprecedented and practical applications.
Collapse
Affiliation(s)
- Peng Sang
- Tianjian Laboratory of Advanced Biomedical Sciences, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
4
|
Di Stasi R, De Rosa L, D'Andrea LD. Structure-Based Design of Peptides Targeting VEGF/VEGFRs. Pharmaceuticals (Basel) 2023; 16:851. [PMID: 37375798 DOI: 10.3390/ph16060851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/03/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) and its receptors (VEGFRs) play a main role in the regulation of angiogenesis and lymphangiogenesis. Furthermore, they are implicated in the onset of several diseases such as rheumatoid arthritis, degenerative eye conditions, tumor growth, ulcers and ischemia. Therefore, molecules able to target the VEGF and its receptors are of great pharmaceutical interest. Several types of molecules have been reported so far. In this review, we focus on the structure-based design of peptides mimicking VEGF/VEGFR binding epitopes. The binding interface of the complex has been dissected and the different regions challenged for peptide design. All these trials furnished a better understanding of the molecular recognition process and provide us with a wealth of molecules that could be optimized to be exploited for pharmaceutical applications.
Collapse
Affiliation(s)
| | - Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini, CNR, 80131 Napoli, Italy
| | | |
Collapse
|
5
|
Menke FS, Mazzier D, Wicher B, Allmendinger L, Kauffmann B, Maurizot V, Huc I. Molecular torsion springs: alteration of helix curvature in frustrated tertiary folds. Org Biomol Chem 2023; 21:1275-1283. [PMID: 36645374 DOI: 10.1039/d2ob02109a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The first abiotic foldamer tertiary structures have been recently reported in the form of aromatic helix-turn-helix motifs based on oligo-quinolinecarboxamides held together by intramolecular hydrogen bonds. Tertiary folds were predicted by computational modelling of the hydrogen-bonding interfaces between helices and later verified by X-ray crystallography. However, the prognosis of how the conformational preference inherent to each helix influences the tertiary structure warranted further investigation. Several new helix-turn-helix sequences were synthesised in which some hydrogen bonds have been removed. Contrary to expectations, this change did not strongly destabilise the tertiary folds. On closer inspection, a new crystal structure revealed that helices adopt their natural curvature when some hydrogen bonds are missing and undergo some spring torsion upon forming the said hydrogen bonds, thus potentially giving rise to a conformational frustration. This phenomenon sheds light on the aggregation behaviour of the helices when they are not linked by a turn unit.
Collapse
Affiliation(s)
- Friedericke S Menke
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandstraße 5-13, 81377 Munich, Germany.
| | - Daniela Mazzier
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandstraße 5-13, 81377 Munich, Germany.
| | - Barbara Wicher
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Lars Allmendinger
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandstraße 5-13, 81377 Munich, Germany.
| | - Brice Kauffmann
- Institut Européen de Chimie et Biologie (UMS3011/US001), CNRS, Inserm, Université de Bordeaux, 2 rue Robert Escarpit, F-33600 Pessac, France
| | - Victor Maurizot
- CBMN (UMR 5248), Univ. Bordeaux, CNRS, Bordeaux INP, 2 rue Robert Escarpit, 33600 Pessac, France
| | - Ivan Huc
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandstraße 5-13, 81377 Munich, Germany.
| |
Collapse
|
6
|
Niu J, Cederstrand AJ, Eddinger GA, Yin B, Checco JW, Bingman CA, Outlaw VK, Gellman SH. Trimer-to-Monomer Disruption Mechanism for a Potent, Protease-Resistant Antagonist of Tumor Necrosis Factor-α Signaling. J Am Chem Soc 2022; 144:9610-9617. [PMID: 35613436 PMCID: PMC9749406 DOI: 10.1021/jacs.1c13717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aberrant tumor necrosis factor-α (TNFα) signaling is associated with many inflammatory diseases. The homotrimeric quaternary structure of TNFα is essential for receptor recognition and signal transduction. Previously, we described an engineered α/β-peptide inhibitor that potently suppresses TNFα activity and resists proteolysis. Here, we present structural evidence that both the α/β-peptide inhibitor and an all-α analogue bind to a monomeric form of TNFα. Calorimetry data support a 1:1 inhibitor/TNFα stoichiometry in solution. In contrast, previous cocrystal structures involving peptide or small-molecule inhibitors have shown the antagonists engaging a TNFα dimer. The structural data reveal why our inhibitors favor monomeric TNFα. Previous efforts to block TNFα-induced cell death with peptide inhibitors revealed that surfactant additives to the assay conditions cause a more rapid manifestation of inhibitory activity than is observed in the absence of additives. We attributed this effect to a loose surfactant TNFα association that lowers the barrier to trimer dissociation. Here, we used the new structural data to design peptide inhibitors bearing a surfactant-inspired appendage intended to facilitate TNFα trimer dissociation. The appendage modified the time course of protection from cell death.
Collapse
Affiliation(s)
- Jiani Niu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Annika J. Cederstrand
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Geoffrey A. Eddinger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Boyu Yin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - James W. Checco
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Craig A. Bingman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Victor K. Outlaw
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
7
|
Helical Foldamers and Stapled Peptides as New Modalities in Drug Discovery: Modulators of Protein-Protein Interactions. Processes (Basel) 2022. [DOI: 10.3390/pr10050924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A “foldamer” is an artificial oligomeric molecule with a regular secondary or tertiary structure consisting of various building blocks. A “stapled peptide” is a peptide with stabilized secondary structures, in particular, helical structures by intramolecular covalent side-chain cross-linking. Helical foldamers and stapled peptides are potential drug candidates that can target protein-protein interactions because they enable multipoint molecular recognition, which is difficult to achieve with low-molecular-weight compounds. This mini-review describes a variety of peptide-based foldamers and stapled peptides with a view to their applications in drug discovery, including our recent progress.
Collapse
|
8
|
Abdulkadir S, Li C, Jiang W, Zhao X, Sang P, Wei L, Hu Y, Li Q, Cai J. Modulating Angiogenesis by Proteomimetics of Vascular Endothelial Growth Factor. J Am Chem Soc 2022; 144:270-281. [PMID: 34968032 PMCID: PMC8886800 DOI: 10.1021/jacs.1c09571] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis, formation of new blood vessels from the existing vascular network, is a hallmark of cancer cells that leads to tumor vascular proliferation and metastasis. This process is mediated through the binding interaction of VEGF-A with VEGF receptors. However, the balance between pro-angiogenic and anti-angiogenic effect after ligand binding yet remains elusive and is therefore challenging to manipulate. To interrogate this interaction, herein we designed a few sulfono-γ-AA peptide based helical peptidomimetics that could effectively mimic a key binding interface on VEGF (helix-α1) for VEGFR recognition. Intriguingly, although both sulfono-γ-AA peptide sequences V2 and V3 bound to VEGF receptors tightly, in vitro angiogenesis assays demonstrated that V3 potently inhibited angiogenesis, whereas V2 activated angiogenesis effectively instead. Our findings suggested that this distinct modulation of angiogenesis might be due to the result of selective binding of V2 to VEGFR-1 and V3 to VEGFR-2, respectively. These molecules thus provide us a key to switch the angiogenic signaling, a biological process that balances the effects of pro-angiogenic and anti-angiogenic factors, where imbalances lead to several diseases including cancer. In addition, both V2 and V3 exhibited remarkable stability toward proteolytic hydrolysis, suggesting that V2 and V3 are promising therapeutic agents for the intervention of disease conditions arising due to angiogenic imbalances and could also be used as novel molecular switching probes to interrogate the mechanism of VEGFR signaling. The findings also further demonstrated the potential of sulfono-γ-AA peptides to mimic the α-helical domain for protein recognition and modulation of protein-protein interactions.
Collapse
Affiliation(s)
- Sami Abdulkadir
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Chunpu Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
- Department of Medical Oncology, Cancer Institute of Medicine, Shuguang Hospital; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wei Jiang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xue Zhao
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Peng Sang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Lulu Wei
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Yong Hu
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Qi Li
- Department of Medical Oncology, Cancer Institute of Medicine, Shuguang Hospital; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
9
|
Ye X, Gaucher JF, Vidal M, Broussy S. A Structural Overview of Vascular Endothelial Growth Factors Pharmacological Ligands: From Macromolecules to Designed Peptidomimetics. Molecules 2021; 26:6759. [PMID: 34833851 PMCID: PMC8625919 DOI: 10.3390/molecules26226759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/27/2022] Open
Abstract
The vascular endothelial growth factor (VEGF) family of cytokines plays a key role in vasculogenesis, angiogenesis, and lymphangiogenesis. VEGF-A is the main member of this family, alongside placental growth factor (PlGF), VEGF-B/C/D in mammals, and VEGF-E/F in other organisms. To study the activities of these growth factors under physiological and pathological conditions, resulting in therapeutic applications in cancer and age-related macular degeneration, blocking ligands have been developed. These have mostly been large biomolecules like antibodies. Ligands with high affinities, at least in the nanomolar range, and accurate structural data from X-ray crystallography and NMR spectroscopy have been described. They constitute the main focus of this overview, which evidences similarities and differences in their binding modes. For VEGF-A ligands, and to a limited extent also for PlGF, a transition is now observed towards developing smaller ligands like nanobodies and peptides. These include unnatural amino acids and chemical modifications for designed and improved properties, such as serum stability and greater affinity. However, this review also highlights the scarcity of such small molecular entities and the striking lack of small organic molecule ligands. It also shows the gap between the rather large array of ligands targeting VEGF-A and the general absence of ligands binding other VEGF members, besides some antibodies. Future developments in these directions are expected in the upcoming years, and the study of these growth factors and their promising therapeutic applications will be welcomed.
Collapse
Affiliation(s)
- Xiaoqing Ye
- Faculté de Pharmacie de Paris, Université de Paris, CiTCoM, 8038 CNRS, U 1268 INSERM, 75006 Paris, France; (X.Y.); (M.V.)
| | - Jean-François Gaucher
- Laboratoire de Cristallographie et RMN Biologiques, Faculté de Pharmacie de Paris, Université de Paris, CiTCoM, 8038 CNRS, 75006 Paris, France;
| | - Michel Vidal
- Faculté de Pharmacie de Paris, Université de Paris, CiTCoM, 8038 CNRS, U 1268 INSERM, 75006 Paris, France; (X.Y.); (M.V.)
- Service Biologie du Médicament, Toxicologie, AP-HP, Hôpital Cochin, 75014 Paris, France
| | - Sylvain Broussy
- Faculté de Pharmacie de Paris, Université de Paris, CiTCoM, 8038 CNRS, U 1268 INSERM, 75006 Paris, France; (X.Y.); (M.V.)
| |
Collapse
|
10
|
Peptide Inhibitors of Vascular Endothelial Growth Factor A: Current Situation and Perspectives. Pharmaceutics 2021; 13:pharmaceutics13091337. [PMID: 34575413 PMCID: PMC8467741 DOI: 10.3390/pharmaceutics13091337] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Vascular endothelial growth factors (VEGFs) are the family of extracellular signaling proteins involved in the processes of angiogenesis. VEGFA overexpression and altered regulation of VEGFA signaling pathways lead to pathological angiogenesis, which contributes to the progression of various diseases, such as age-related macular degeneration and cancer. Monoclonal antibodies and decoy receptors have been extensively used in the anti-angiogenic therapies for the neutralization of VEGFA. However, multiple side effects, solubility and aggregation issues, and the involvement of compensatory VEGFA-independent pro-angiogenic mechanisms limit the use of the existing VEGFA inhibitors. Short chemically synthesized VEGFA binding peptides are a promising alternative to these full-length proteins. In this review, we summarize anti-VEGFA peptides identified so far and discuss the molecular basis of their inhibitory activity to highlight their pharmacological potential as anti-angiogenic drugs.
Collapse
|
11
|
Abdildinova A, Kurth MJ, Gong Y. Solid‐Phase Synthesis of Peptidomimetics with Peptide Backbone Modifications. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Aizhan Abdildinova
- Innovative Drug Library Research Center Department of Chemistry College of Science Dongguk University 26, 3-ga, Pil-dong, Jung-gu Seoul 04620 Korea
| | - Mark J. Kurth
- Department of Chemistry University of California Davis CA 95616 USA
| | - Young‐Dae Gong
- Innovative Drug Library Research Center Department of Chemistry College of Science Dongguk University 26, 3-ga, Pil-dong, Jung-gu Seoul 04620 Korea
| |
Collapse
|
12
|
Guryanov I, Korzhikov-Vlakh V, Bhattacharya M, Biondi B, Masiero G, Formaggio F, Tennikova T, Urtti A. Conformationally Constrained Peptides with High Affinity to the Vascular Endothelial Growth Factor. J Med Chem 2021; 64:10900-10907. [PMID: 34269584 DOI: 10.1021/acs.jmedchem.1c00219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The design of efficient vascular endothelial growth factor (VEGF) inhibitors is a high-priority research area aimed at the treatment of pathological angiogenesis. Among other compounds, v114* has been identified as a potent VEGF-binding peptide. In order to improve the affinity to VEGF, we built a conformational constrain in its structure. To this aim, Cα-tetrasubstituted amino acid Aib was introduced into the N-terminal tail, peptide loop, or C-terminal helix. NMR studies confirmed the stabilization of the helical conformation in proximity to the Aib residue. We found that the induction of the N-terminal helical structure or stabilization of the C-terminal helix can noticeably increase the peptide affinity to the VEGF. These peptides efficiently inhibited VEGF-stimulated cell proliferation as well. The insertion of the non-proteinogenic Aib residue significantly enhanced the stability of the peptides in the vitreous environment. Thus, these Aib-containing peptides are promising candidates for the design of VEGF inhibitors with improved properties.
Collapse
Affiliation(s)
- Ivan Guryanov
- Institute of Chemistry, St. Petersburg State University, Universitetsky pr. 26, Peterhof, St. Petersburg 198504, Russia
| | - Viktor Korzhikov-Vlakh
- Institute of Chemistry, St. Petersburg State University, Universitetsky pr. 26, Peterhof, St. Petersburg 198504, Russia
| | - Madhushree Bhattacharya
- Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 5 E, Helsinki 00014, Finland
| | - Barbara Biondi
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, via Marzolo 1, Padova 35131, Italy
| | - Giulia Masiero
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, via Marzolo 1, Padova 35131, Italy
| | - Fernando Formaggio
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, via Marzolo 1, Padova 35131, Italy
| | - Tatiana Tennikova
- Institute of Chemistry, St. Petersburg State University, Universitetsky pr. 26, Peterhof, St. Petersburg 198504, Russia
| | - Arto Urtti
- Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 5 E, Helsinki 00014, Finland.,School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, Kuopio 70211, Finland
| |
Collapse
|
13
|
Sugisawa N, Nakamura H, Fuse S. Micro-flow synthesis of β-amino acid derivatives via a rapid dual activation approach. Chem Commun (Camb) 2020; 56:4527-4530. [PMID: 32242563 DOI: 10.1039/d0cc01403f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Rapid dual activation (≤3.3 s) of both β-amino acid N-carboxy anhydride and alkyl chloroformate for the synthesis of a β-amino acid-derived scaffold was demonstrated. The key to success was the use of rapid mixing enabled by using a micro-flow reactor. The one-flow synthesis of 22 β-amino acid derivatives was achieved.
Collapse
Affiliation(s)
- Naoto Sugisawa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | | | | |
Collapse
|
14
|
Nekkaa I, Bogdán D, Gáti T, Béni S, Juhász T, Palkó M, Paragi G, Tóth GK, Fülöp F, Mándity IM. Flow-chemistry enabled efficient synthesis of β-peptides: backbone topology vs. helix formation. Chem Commun (Camb) 2019; 55:3061-3064. [DOI: 10.1039/c8cc10147g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Enantiodiscriminative helix formation was observed for β-peptide H14 helices when enantiomers of bridged bicyclic residues were introduced.
Collapse
|
15
|
Yue P, Peng S, Parkin S, Li T, Yu F, Long S. Peptidomimicry with C 2
-Symmetric Oligourea Derivatives of 1,2-Diaminocyclohexane and 1,2-Diphenyl-1,2-diaminoethane: Chirality and Chain Length-Dependent Conformation. ChemistrySelect 2018. [DOI: 10.1002/slct.201801900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pengyun Yue
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology; School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1 Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei; 430205 China
| | - Siqing Peng
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology; School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1 Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei; 430205 China
| | - Sean Parkin
- Department of Chemistry; University of Kentucky, Lexington, Kentucky; 40506 USA
| | - Tonglei Li
- Department of Industrial and Physical Pharmacy; Purdue University, West Lafayette; Indiana 47907 U.S.A
| | - Faquan Yu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology; School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1 Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei; 430205 China
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology; School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1 Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei; 430205 China
| |
Collapse
|
16
|
Valeur E, Jimonet P. New Modalities, Technologies, and Partnerships in Probe and Lead Generation: Enabling a Mode-of-Action Centric Paradigm. J Med Chem 2018; 61:9004-9029. [DOI: 10.1021/acs.jmedchem.8b00378] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Eric Valeur
- Medicinal Chemistry, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Patrick Jimonet
- External Innovation Drug Discovery, Global Business Development & Licensing, Sanofi, 13 quai Jules Guesde, 94400 Vitry-sur-Seine, France
| |
Collapse
|
17
|
Guardiola S, Seco J, Varese M, Díaz-Lobo M, García J, Teixidó M, Nevola L, Giralt E. Toward a Novel Drug To Target the EGF-EGFR Interaction: Design of Metabolically Stable Bicyclic Peptides. Chembiochem 2017; 19:76-84. [DOI: 10.1002/cbic.201700519] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Salvador Guardiola
- Institute for Research in Biomedicine (IRB Barcelona); The Barcelona Institute of Science and Technology; Baldiri Reixac 10 08028 Barcelona Spain
| | - Jesús Seco
- Institute for Research in Biomedicine (IRB Barcelona); The Barcelona Institute of Science and Technology; Baldiri Reixac 10 08028 Barcelona Spain
| | - Monica Varese
- Institute for Research in Biomedicine (IRB Barcelona); The Barcelona Institute of Science and Technology; Baldiri Reixac 10 08028 Barcelona Spain
| | - Mireia Díaz-Lobo
- Institute for Research in Biomedicine (IRB Barcelona); The Barcelona Institute of Science and Technology; Baldiri Reixac 10 08028 Barcelona Spain
| | - Jesús García
- Institute for Research in Biomedicine (IRB Barcelona); The Barcelona Institute of Science and Technology; Baldiri Reixac 10 08028 Barcelona Spain
| | - Meritxell Teixidó
- Institute for Research in Biomedicine (IRB Barcelona); The Barcelona Institute of Science and Technology; Baldiri Reixac 10 08028 Barcelona Spain
| | - Laura Nevola
- IDP Discovery Pharma SL; Barcelona Science Park; Baldiri Reixac 4 08028 Barcelona Spain
| | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona); The Barcelona Institute of Science and Technology; Baldiri Reixac 10 08028 Barcelona Spain
- Department of Organic Chemistry; University of Barcelona; Martí i Franquès 1-11 08028 Barcelona Spain
| |
Collapse
|
18
|
George KL, Horne WS. Heterogeneous-Backbone Foldamer Mimics of Zinc Finger Tertiary Structure. J Am Chem Soc 2017; 139:7931-7938. [PMID: 28509549 DOI: 10.1021/jacs.7b03114] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A variety of oligomeric backbones with compositions deviating from biomacromolecules can fold in defined ways. Termed "foldamers," these agents have diverse potential applications. A number of protein-inspired secondary structures (e.g., helices, sheets) have been produced from unnatural backbones, yet examples of tertiary folds combining several secondary structural elements in a single entity are rare. One promising strategy to address this challenge is the systematic backbone alteration of natural protein sequences, through which a subset of the native side chains is displayed on an unnatural building block to generate a heterogeneous backbone. A drawback to this approach is that substitution at more than one or two sites often comes at a significant energetic cost to fold stability. Here we report heterogeneous-backbone foldamers that mimic the zinc finger domain, a ubiquitous and biologically important metal-binding tertiary motif, and do so with a folded stability that is superior to the natural protein on which their design is based. A combination of UV-vis spectroscopy, isothermal titration calorimetry, and multidimensional NMR reveals that suitably designed oligomers with >20% modified backbones can form native-like tertiary folds with metal-binding environments identical to the prototype sequence (the third finger of specificity factor 1) and enhanced thermodynamic stability. These results expand the scope of heterogeneous-backbone foldamer design to a new tertiary structure class and show that judiciously applied backbone modification can be accompanied by improvement to fold stability.
Collapse
Affiliation(s)
- Kelly L George
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - W Seth Horne
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|