1
|
Zhang W, Cao Y, Li H, Rasmey AHM, Zhang K, Shi L, Ge B. Membrane protein Bcsdr2 mediates biofilm integrity, hyphal growth and virulence of Botrytis cinerea. Appl Microbiol Biotechnol 2024; 108:398. [PMID: 38940906 PMCID: PMC11213811 DOI: 10.1007/s00253-024-13238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
Grey mould caused by Botrytis cinerea is a devastating disease responsible for large losses to agricultural production, and B. cinerea is a necrotrophic model fungal plant pathogen. Membrane proteins are important targets of fungicides and hotspots in the research and development of fungicide products. Wuyiencin affects the permeability and pathogenicity of B. cinerea, parallel reaction monitoring revealed the association of membrane protein Bcsdr2, and the bacteriostatic mechanism of wuyiencin was elucidated. In the present work, we generated and characterised ΔBcsdr2 deletion and complemented mutant B. cinerea strains. The ΔBcsdr2 deletion mutants exhibited biofilm loss and dissolution, and their functional activity was illustrated by reduced necrotic colonisation on strawberry and grape fruits. Targeted deletion of Bcsdr2 also blocked several phenotypic defects in aspects of mycelial growth, conidiation and virulence. All phenotypic defects were restored by targeted gene complementation. The roles of Bcsdr2 in biofilms and pathogenicity were also supported by quantitative real-time RT-PCR results showing that phosphatidylserine decarboxylase synthesis gene Bcpsd and chitin synthase gene BcCHSV II were downregulated in the early stages of infection for the ΔBcsdr2 strain. The results suggest that Bcsdr2 plays important roles in regulating various cellular processes in B. cinerea. KEY POINTS: • The mechanism of wuyiencin inhibits B. cinerea is closely associated with membrane proteins. • Wuyiencin can downregulate the expression of the membrane protein Bcsdr2 in B. cinerea. • Bcsdr2 is involved in regulating B. cinerea virulence, growth and development.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Beijing, 100193, China
- Qian Xinan Branch of Guizhou Provincial Tobacco Company, 60 Ruijin Southern Road, Xingyi, 562499, China
| | - Yi Cao
- Guizhou Academy of Tobacco Science, 29 Longtanba Road, Guiyang, 550081, China
| | - Hua Li
- School of Light Industry Science and Engineering, Beijing Technology and Business University, 11 & 33 Fucheng Road, Beijing, 100048, China
| | - Abdel-Hamied M Rasmey
- Botany and Microbiology Department, Faculty of Science, Suez University, Elsalam 1, Cairo-Suez Road, Suez, 43221, Egypt
| | - Kecheng Zhang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Liming Shi
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Beijing, 100193, China.
| | - Beibei Ge
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
2
|
Stander EA, Lehka B, Carqueijeiro I, Cuello C, Hansson FG, Jansen HJ, Dugé De Bernonville T, Birer Williams C, Vergès V, Lezin E, Lorensen MDBB, Dang TT, Oudin A, Lanoue A, Durand M, Giglioli-Guivarc'h N, Janfelt C, Papon N, Dirks RP, O'connor SE, Jensen MK, Besseau S, Courdavault V. The Rauvolfia tetraphylla genome suggests multiple distinct biosynthetic routes for yohimbane monoterpene indole alkaloids. Commun Biol 2023; 6:1197. [PMID: 38001233 PMCID: PMC10673892 DOI: 10.1038/s42003-023-05574-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Monoterpene indole alkaloids (MIAs) are a structurally diverse family of specialized metabolites mainly produced in Gentianales to cope with environmental challenges. Due to their pharmacological properties, the biosynthetic modalities of several MIA types have been elucidated but not that of the yohimbanes. Here, we combine metabolomics, proteomics, transcriptomics and genome sequencing of Rauvolfia tetraphylla with machine learning to discover the unexpected multiple actors of this natural product synthesis. We identify a medium chain dehydrogenase/reductase (MDR) that produces a mixture of four diastereomers of yohimbanes including the well-known yohimbine and rauwolscine. In addition to this multifunctional yohimbane synthase (YOS), an MDR synthesizing mainly heteroyohimbanes and the short chain dehydrogenase vitrosamine synthase also display a yohimbane synthase side activity. Lastly, we establish that the combination of geissoschizine synthase with at least three other MDRs also produces a yohimbane mixture thus shedding light on the complex mechanisms evolved for the synthesis of these plant bioactives.
Collapse
Affiliation(s)
- Emily Amor Stander
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Beata Lehka
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Inês Carqueijeiro
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Clément Cuello
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Frederik G Hansson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Hans J Jansen
- Future Genomics Technologies, 2333 BE, Leiden, The Netherlands
| | - Thomas Dugé De Bernonville
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
- Limagrain, Centre de Recherche, Route d'Ennezat, Chappes, France
| | - Caroline Birer Williams
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Valentin Vergès
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Enzo Lezin
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | | | - Thu-Thuy Dang
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| | - Audrey Oudin
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Arnaud Lanoue
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Mickael Durand
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | | | - Christian Janfelt
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000, Angers, France
| | - Ron P Dirks
- Future Genomics Technologies, 2333 BE, Leiden, The Netherlands
| | - Sarah Ellen O'connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany.
| | - Michael Krogh Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark.
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France.
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France.
| |
Collapse
|
3
|
Satyaveanthan MV, Ng CL, Awang A, Lam KW, Hassan M. Isolation, purification and biochemical characterization of Conopomorpha cramerella farnesol dehydrogenase. INSECT MOLECULAR BIOLOGY 2023; 32:143-159. [PMID: 36454188 DOI: 10.1111/imb.12820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
In Southeast Asia, Conopomorpha cramerella (Snellen) which is commonly known as the cocoa pod borer (CPB) moth has been identified as the most detrimental pest of Theobroma cacao L. Apart from the various side effects on human health and non-target organisms, heavily relying on synthetic pyrethroid insecticides to control CPB infestations also increases the environmental contamination risks. Thus, developing biorational insecticides that minimally affect the non-target organism and environment by targeting the insect growth regulation process is needed to manage the pest population. In insects, juvenile hormones (JH) regulate critical biological events, especially metamorphosis, development and reproduction. Since the physiological roles of JH III vary among different organisms, the biochemical properties, especially substrate specificity and analogue inhibition, may also be different. Therefore, studies on the JH III biosynthetic pathway enzymes in both plants and insects are beneficial to discover more effective analogues. Bioinformatic analysis and biochemical characterization of a NADP+ -dependent farnesol dehydrogenase, an intermediate enzyme of the JH III pathway, from C. cramerella (CcFolDH), were described in this study. In addition, the farnesol analogues that may act as a potent analogue inhibitor for CcFolDH ware determined using in vitro enzymatic study. The phylogenetic analysis indicated that CcFolDH shared a close phylogenetic relationship to the honeybee's short-chain dehydrogenase/reductase. The 27 kDa CcFolDH has an NADP(H) binding domain with a typical Rossmann fold and is likely a homotetrameric protein in the solution. The enzyme had a greater preference for substrate trans, trans-farnesol and coenzyme NADP+ . In terms of analogue inhibitor inhibition, hexahydroxyfarnesyl acetone showed the highest inhibition (the lowest Ki ) compared to other farnesol analogues. Thus, hexahydroxyfarnesyl acetone would serve as the most potent active ingredient for future biorational pesticide management for C. cramerella infestation. Based on the bioinformatic analyses and biochemical characterizations conducted in this research, we proposed that rCcFolDH differs slightly from other reported farnesol dehydrogenases in terms of molecular weight, substrate preference, coenzymes utilization and analogue inhibitors selection.
Collapse
Affiliation(s)
| | - Chyan Leong Ng
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Alias Awang
- Cocoa Research & Development Centre (Bagan Datuk), Malaysian Cocoa Board, Sg. Sumun, Malaysia
| | - Kok Wai Lam
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Maizom Hassan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
4
|
Zhang S, Zhang W, Martin JJJ, Qadri R, Fu X, Feng M, Wei L, Zhang A, Yang C, Cao H. Differential analysis of transcriptomic and metabolomic of free fatty acid rancidity process in oil palm ( Elaeis guineensis) fruits of different husk types. FRONTIERS IN PLANT SCIENCE 2023; 14:1132024. [PMID: 36968425 PMCID: PMC10030942 DOI: 10.3389/fpls.2023.1132024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Oil palm is the world's highest yielding oil crop and its palm oil has high nutritional value, making it an oilseed plant with important economic value and application prospects. After picking, oil palm fruits exposed to air will gradually become soft and accelerate the process of fatty acid rancidity, which will not only affect their flavor and nutritional value, but also produce substances harmful to the human body. As a result, studying the dynamic change pattern of free fatty acids and important fatty acid metabolism-related regulatory genes during oil palm fatty acid rancidity can provide a theoretical basis for improving palm oil quality and extending its shelf life. METHODS The fruit of two shell types of oil palm, Pisifera (MP) and Tenera (MT), were used to study the changes of fruit souring at different times points of postharvesting, combined with LC-MS/MS metabolomics and RNA-seq transcriptomics techniques to analyze the dynamic changes of free fatty acids during fruit rancidity, and to find out the key enzyme genes and proteins in the process of free fatty acid synthesis and degradation according to metabolic pathways. RESULTS AND DISCUSSION Metabolomic study revealed that there were 9 different types of free fatty acids at 0 hours of postharvest, 12 different types of free fatty acids at 24 hours of postharvest, and 8 different types of free fatty acids at 36 hours of postharvest. Transcriptomic research revealed substantial changes in gene expression between the three harvest phases of MT and MP. Combined metabolomics and transcriptomics analysis results show that the expression of SDR, FATA, FATB and MFP four key enzyme genes and enzyme proteins in the rancidity of free fatty acids are significantly correlated with Palmitic acid, Stearic acid, Myristic acid and Palmitoleic acid in oil palm fruit. In terms of binding gene expression, the expression of FATA gene and MFP protein in MT and MP was consistent, and both were expressed higher in MP. FATB fluctuates unevenly in MT and MP, with the level of expression growing steadily in MT and decreasing in MP before increasing. The amount of SDR gene expression varies in opposite directions in both shell types. The above findings suggest that these four enzyme genes and enzyme proteins may play an important role in regulating fatty acid rancidity and are the key enzyme genes and enzyme proteins that cause differences in fatty acid rancidity between MT and MP and other fruit shell types. Additionally, differential metabolite and differentially expressed genes were present in the three postharvest times of MT and MP fruits, with the difference occurring 24 hours postharvest being the most notable. As a result, 24 hours postharvest revealed the most obvious difference in fatty acid tranquility between MT and MP shell types of oil palm. The results from this study offer a theoretical underpinning for the gene mining of fatty acid rancidity of various oil palm fruit shell types and the enhancement of oilseed palm acid-resistant germplasm cultivation using molecular biology methods.
Collapse
Affiliation(s)
- Shuyan Zhang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences / Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Weisheng Zhang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences / Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, China
| | - Jerome Jeyakumar John Martin
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences / Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, China
| | - Rashad Qadri
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences / Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, China
| | - Xiaopeng Fu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Meili Feng
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences / Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, China
| | - Lu Wei
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences / Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, China
| | - Anni Zhang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences / Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, China
| | - Cheng Yang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences / Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Hongxing Cao
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences / Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Li Y, Bai Y, Fan TP, Zheng X, Cai Y. Characterization of a putative tropinone reductase from Tarenaya hassleriana with a broad substrate specificity. Biotechnol Appl Biochem 2022; 69:2530-2539. [PMID: 34902878 DOI: 10.1002/bab.2302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/07/2021] [Indexed: 12/27/2022]
Abstract
A novel short-chain alcohol dehydrogenase from Tarenaya hassleriana labeled as putative tropinone reductase was heterologously expressed in Escherichia coli. Purified recombinant protein had molecular weight of approximately 30 kDa on 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis. T. hassleriana tropinone reductase-like enzyme (ThTRL) had not detected oxidative activity. The optimum pH for enzyme activity of ThTRL was weakly acidic (pH 5.0). 50°C was the optimum temperature for ThTRL. The highest catalytic efficiency and substrate affinity for recombinant ThTRL were observed with (+)-camphorquinone (kcat /Km = 814.3 s-1 mM-1 , Km = 44.25 μM). ThTRL exhibited a broad substrate specificity and reduced various carbonyl compounds, including small lipophilic aldehydes and ketones, terpene ketones, and their structural analogs.
Collapse
Affiliation(s)
- Yixiang Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yajun Bai
- College of Life Sciences, Northwest University, Xi'an, Shanxi, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Xiaohui Zheng
- College of Life Sciences, Northwest University, Xi'an, Shanxi, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
6
|
Ge C, Wang L, Yang Y, Liu R, Liu S, Chen J, Shen Q, Ma H, Li Y, Zhang S, Pang C. Genome-wide association study identifies variants of GhSAD1 conferring cold tolerance in cotton. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2222-2237. [PMID: 34919655 DOI: 10.1093/jxb/erab555] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Cold stress is a major environmental factor affecting plant growth and development. Although some plants have developed resistance to cold stress, the molecular mechanisms underlying this process are poorly understood. Using genome-wide association mapping with 200 cotton accessions collected from different regions, we identified variations in the short chain alcohol dehydrogenase gene, GhSAD1, that responds to cold stress. Virus-induced gene silencing and overexpression in Arabidopsis revealed that GhSAD1 fulfils important roles in cold stress responses. Ectopic expression of a haploid genotype of GhSAD1 (GhSAD1HapB) in Arabidopsis increased cold tolerance. Silencing of GhSAD1HapB resulted in a decrease in abscisic acid (ABA) content. Conversely, overexpression of GhSAD1HapB increased ABA content. GhSAD1HapB regulates cold stress responses in cotton through modulation of C-repeat binding factor activity, which regulates ABA signalling. GhSAD1HapB induces the expression of COLD-REGULATED (COR) genes and increases the amount of metabolites associated with cold stress tolerance. Overexpression of GhSAD1HapB partially complements the phenotype of the Arabidopsis ABA2 mutant, aba2-1. Collectively, these findings increase our understanding of the mechanisms underlying GhSAD1-mediated cold stress responses in cotton.
Collapse
Affiliation(s)
- Changwei Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Li Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Yongfei Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Ruihua Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Shaodong Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Jing Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Qian Shen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Huijuan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Yang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Siping Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Li J, Dinh T, Phillips R. The crystal structure of the S154Y mutant carbonyl reductase from Leifsonia xyli explains enhanced activity for 3,5-Bis(trifluoromethyl)acetophenone reduction. Arch Biochem Biophys 2022; 720:109158. [PMID: 35247363 DOI: 10.1016/j.abb.2022.109158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 11/24/2022]
Abstract
Carbonyl reductase from Leifsonia xyli (LXCAR, UniProtKB - T2FLN4) can stereoselectively catalyze the reduction of 3,5-bis(trifluoromethyl)acetophenone (BTAP) to its corresponding alcohol, (R)-[3,5-bis(trifluoromethyl)phenyl]ethanol ((R)-BTPE), which is a valuable chiral intermediate for the synthesis of antiemetic drugs, Aprepitant and Fosaprepitant. Moreover, this protein was found to have a broad spectrum of substrate specificity and can asymmetrically catalyze the reduction of a variety of ketones and keto esters. Even though molecular modelling of this protein was done by Wang et al. (2014), a crystal structure has not yet obtained. In this study, a single mutant, S154Y, which was shown to have higher catalytic activity toward BTAP than that of the wild type, was overexpressed in Escherichia coli BL21 (DE3), purified, and crystallized. The crystal structure of LXCAR-S154Y explains how the mutant enzyme can work with BTAP more efficiently than wild type carbonyl reductase. Furthermore, the structure explains why LXCAR-S154Y can use either NADH or NADPH efficiently as a cofactor, as well as elucidates a proton relay system present in the enzyme.
Collapse
Affiliation(s)
- Jun Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, PR China.
| | - Tung Dinh
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA.
| | - Robert Phillips
- Department of Chemistry and of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
8
|
Jamieson CS, Misa J, Tang Y, Billingsley JM. Biosynthesis and synthetic biology of psychoactive natural products. Chem Soc Rev 2021; 50:6950-7008. [PMID: 33908526 PMCID: PMC8217322 DOI: 10.1039/d1cs00065a] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Psychoactive natural products play an integral role in the modern world. The tremendous structural complexity displayed by such molecules confers diverse biological activities of significant medicinal value and sociocultural impact. Accordingly, in the last two centuries, immense effort has been devoted towards establishing how plants, animals, and fungi synthesize complex natural products from simple metabolic precursors. The recent explosion of genomics data and molecular biology tools has enabled the identification of genes encoding proteins that catalyze individual biosynthetic steps. Once fully elucidated, the "biosynthetic pathways" are often comparable to organic syntheses in elegance and yield. Additionally, the discovery of biosynthetic enzymes provides powerful catalysts which may be repurposed for synthetic biology applications, or implemented with chemoenzymatic synthetic approaches. In this review, we discuss the progress that has been made toward biosynthetic pathway elucidation amongst four classes of psychoactive natural products: hallucinogens, stimulants, cannabinoids, and opioids. Compounds of diverse biosynthetic origin - terpene, amino acid, polyketide - are identified, and notable mechanisms of key scaffold transforming steps are highlighted. We also provide a description of subsequent applications of the biosynthetic machinery, with an emphasis placed on the synthetic biology and metabolic engineering strategies enabling heterologous production.
Collapse
Affiliation(s)
- Cooper S Jamieson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Joshua Misa
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Yi Tang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA. and Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - John M Billingsley
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA. and Invizyne Technologies, Inc., Monrovia, CA, USA
| |
Collapse
|
9
|
Colinas M, Pollier J, Vaneechoutte D, Malat DG, Schweizer F, De Milde L, De Clercq R, Guedes JG, Martínez-Cortés T, Molina-Hidalgo FJ, Sottomayor M, Vandepoele K, Goossens A. Subfunctionalization of Paralog Transcription Factors Contributes to Regulation of Alkaloid Pathway Branch Choice in Catharanthus roseus. FRONTIERS IN PLANT SCIENCE 2021; 12:687406. [PMID: 34113373 PMCID: PMC8186833 DOI: 10.3389/fpls.2021.687406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Catharanthus roseus produces a diverse range of specialized metabolites of the monoterpenoid indole alkaloid (MIA) class in a heavily branched pathway. Recent great progress in identification of MIA biosynthesis genes revealed that the different pathway branch genes are expressed in a highly cell type- and organ-specific and stress-dependent manner. This implies a complex control by specific transcription factors (TFs), only partly revealed today. We generated and mined a comprehensive compendium of publicly available C. roseus transcriptome data for MIA pathway branch-specific TFs. Functional analysis was performed through extensive comparative gene expression analysis and profiling of over 40 MIA metabolites in the C. roseus flower petal expression system. We identified additional members of the known BIS and ORCA regulators. Further detailed study of the ORCA TFs suggests subfunctionalization of ORCA paralogs in terms of target gene-specific regulation and synergistic activity with the central jasmonate response regulator MYC2. Moreover, we identified specific amino acid residues within the ORCA DNA-binding domains that contribute to the differential regulation of some MIA pathway branches. Our results advance our understanding of TF paralog specificity for which, despite the common occurrence of closely related paralogs in many species, comparative studies are scarce.
Collapse
Affiliation(s)
- Maite Colinas
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Jacob Pollier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Metabolomics Core, Ghent, Belgium
| | - Dries Vaneechoutte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Deniz G. Malat
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Fabian Schweizer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Liesbeth De Milde
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Rebecca De Clercq
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Joana G. Guedes
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairaão, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS–Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Teresa Martínez-Cortés
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairaão, Portugal
| | - Francisco J. Molina-Hidalgo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Mariana Sottomayor
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairaão, Portugal
- Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
10
|
Satyaveanthan MV, Suhaimi SA, Ng CL, Muhd-Noor ND, Awang A, Lam KW, Hassan M. Purification, biochemical characterisation and bioinformatic analysis of recombinant farnesol dehydrogenase from Theobroma cacao. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 161:143-155. [PMID: 33588320 DOI: 10.1016/j.plaphy.2021.01.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
The juvenile hormones (JH) in plants are suggested to act as a form of plant defensive strategy especially against insect herbivory. The oxidation of farnesol to farnesoic acid is a key step in the juvenile hormone biosynthesis pathway. We herein present the purification and characterisation of the recombinant Theobroma cacao farnesol dehydrogenase enzyme that catalyses oxidation of farnesol to farnesal. The recombinant enzyme was purified to apparent homogeneity by affinity chromatography. The purified enzyme was characterised in terms of its deduced amino acid sequences, phylogeny, substrate specificity, kinetic parameters, structural modeling, and docking simulation. The phylogenetic analysis indicated that the T. cacao farnesol dehydrogenase (TcFolDH) showed a close relationship with A. thaliana farnesol dehydrogenase gene. The TcFolDH monomer had a large N-terminal domain which adopted a typical Rossmann-fold, harboring the GxxGxG motif (NADP(H)-binding domain) and a small C-terminal domain. The enzyme was a homotrimer comprised of subunits with molecular masses of 36 kDa. The TcFolDH was highly specific to NADP+ as coenzyme. The substrate specificity studies showed trans, trans-farnesol was the most preferred substrate for the TcFolDH, suggesting that the purified enzyme was a NADP+-dependent farnesol dehydrogenase. The docking of trans, trans-farnesol and NADP+ into the active site of the enzyme showed the important residues, and their interactions involved in the substrate and coenzyme binding of TcFolDH. Considering the extensive involvement of JH in both insects and plants, an in-depth knowledge on the recombinant production of intermediate enzymes of the JH biosynthesis pathway could help provide a potential method for insect control.
Collapse
Affiliation(s)
| | - Saidi-Adha Suhaimi
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Bangi, Selangor, 43600, Malaysia
| | - Chyan Leong Ng
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Bangi, Selangor, 43600, Malaysia
| | - Noor-Dina Muhd-Noor
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Bangi, Selangor, 43600, Malaysia; Enzyme & Microbial Technology Center (EMTech), Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, 43400, Malaysia
| | - Alias Awang
- Cocoa Research & Development Centre (Bagan Datuk), Malaysian Cocoa Board, P.O. Box 30, Sg. Dulang Road, Sg. Sumun, Perak, 36307, Malaysia
| | - Kok Wai Lam
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Maizom Hassan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Bangi, Selangor, 43600, Malaysia.
| |
Collapse
|
11
|
Mo X, Zhang H, Du F, Yang S. Short-Chain Dehydrogenase NcmD Is Responsible for the C-10 Oxidation of Nocamycin F in Nocamycin Biosynthesis. Front Microbiol 2021; 11:610827. [PMID: 33391238 PMCID: PMC7773637 DOI: 10.3389/fmicb.2020.610827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/20/2020] [Indexed: 01/05/2023] Open
Abstract
Nocamycins I and II, featured with a tetramic acid scaffold, were isolated from the broth of Saccharothrix syringae NRRL B-16468. The biosynthesis of nocamycin I require an intermediate bearing a hydroxyl group at the C-10 position. A short chain dehydrogenase/reductase NcmD was proposed to catalyze the conversion of the hydroxyl group to ketone at the C-10 position. By using the λ-RED recombination technology, we generated the NcmD deletion mutant strain S. syringae MoS-1005, which produced a new intermediate nocamycin F with a hydroxyl group at C-10 position. We then overexpressed NcmD in Escherichia coli BL21 (DE3), purified the His6-tagged protein NcmD to homogeneity and conducted in vitro enzymatic assays. NcmD showed preference to the cofactor NAD+, and it effectively catalyzed the conversion from nocamyin F to nocamycin G, harboring a ketone group at C-10 position. However, NcmD showed no catalytic activity toward nocamyin II. NcmD achieved maximum catalytic activity at 45°C and pH 8.5. The kinetics of NcmD toward nocamycin F was investigated at 45°C, pH 8.5 in the presence of 2 mM NAD+. The Km and kcat values were 131 ± 13 μM and 65 ± 5 min−1, respectively. In this study, we have characterized NcmD as a dehydrogenase, which is involved in forming the ketone group at the C-10 position of nocamycin F. The results provide new insights to the nocamycin biosynthetic pathway.
Collapse
Affiliation(s)
- Xuhua Mo
- Shandong Province Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Hui Zhang
- Shandong Province Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Fengyu Du
- School of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao, China
| | - Song Yang
- Shandong Province Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
12
|
Roth S, Stockinger P, Steff J, Steimle S, Sautner V, Tittmann K, Pleiss J, Müller M. Crossing the Border: From Keto- to Imine Reduction in Short-Chain Dehydrogenases/Reductases. Chembiochem 2020; 21:2615-2619. [PMID: 32315494 PMCID: PMC7540013 DOI: 10.1002/cbic.202000233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 11/10/2022]
Abstract
The family of NAD(P)H-dependent short-chain dehydrogenases/reductases (SDRs) comprises numerous biocatalysts capable of C=O or C=C reduction. The highly homologous noroxomaritidine reductase (NR) from Narcissus sp. aff. pseudonarcissus and Zt_SDR from Zephyranthes treatiae, however, are SDRs with an extended imine substrate scope. Comparison with a similar SDR from Asparagus officinalis (Ao_SDR) exhibiting keto-reducing activity, yet negligible imine-reducing capability, and mining the Short-Chain Dehydrogenase/Reductase Engineering Database indicated that NR and Zt_SDR possess a unique active-site composition among SDRs. Adapting the active site of Ao_SDR accordingly improved its imine-reducing capability. By applying the same strategy, an unrelated SDR from Methylobacterium sp. 77 (M77_SDR) with distinct keto-reducing activity was engineered into a promiscuous enzyme with imine-reducing activity, thereby confirming that the ability to reduce imines can be rationally introduced into members of the "classical" SDR enzyme family. Thus, members of the SDR family could be a promising starting point for protein approaches to generate new imine-reducing enzymes.
Collapse
Affiliation(s)
- Sebastian Roth
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Peter Stockinger
- Institute of Biochemistry and Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| | - Jakob Steff
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Simon Steimle
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Viktor Sautner
- Department of Molecular EnzymologyUniversity of GöttingenJulia-Lermontowa-Weg 337077GöttingenGermany
| | - Kai Tittmann
- Department of Molecular EnzymologyUniversity of GöttingenJulia-Lermontowa-Weg 337077GöttingenGermany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| | - Michael Müller
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstrasse 2579104FreiburgGermany
| |
Collapse
|
13
|
Roth S, Stockinger P, Steff J, Steimle S, Sautner V, Tittmann K, Pleiss J, Müller M. Crossing the Border: From Keto- to Imine Reduction in Short-Chain Dehydrogenases/Reductases. CHEMBIOCHEM : A EUROPEAN JOURNAL OF CHEMICAL BIOLOGY 2020. [PMID: 32315494 DOI: 10.1002/cbic.202000233.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The family of NAD(P)H-dependent short-chain dehydrogenases/reductases (SDRs) comprises numerous biocatalysts capable of C=O or C=C reduction. The highly homologous noroxomaritidine reductase (NR) from Narcissus sp. aff. pseudonarcissus and Zt_SDR from Zephyranthes treatiae, however, are SDRs with an extended imine substrate scope. Comparison with a similar SDR from Asparagus officinalis (Ao_SDR) exhibiting keto-reducing activity, yet negligible imine-reducing capability, and mining the Short-Chain Dehydrogenase/Reductase Engineering Database indicated that NR and Zt_SDR possess a unique active-site composition among SDRs. Adapting the active site of Ao_SDR accordingly improved its imine-reducing capability. By applying the same strategy, an unrelated SDR from Methylobacterium sp. 77 (M77_SDR) with distinct keto-reducing activity was engineered into a promiscuous enzyme with imine-reducing activity, thereby confirming that the ability to reduce imines can be rationally introduced into members of the "classical" SDR enzyme family. Thus, members of the SDR family could be a promising starting point for protein approaches to generate new imine-reducing enzymes.
Collapse
Affiliation(s)
- Sebastian Roth
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Peter Stockinger
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Jakob Steff
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Simon Steimle
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Viktor Sautner
- Department of Molecular Enzymology, University of Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
| | - Kai Tittmann
- Department of Molecular Enzymology, University of Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Michael Müller
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| |
Collapse
|
14
|
Liu Y, Tang Q, Cheng P, Zhu M, Zhang H, Liu J, Zuo M, Huang C, Wu C, Sun Z, Liu Z. Whole-genome sequencing and analysis of the Chinese herbal plant Gelsemium elegans. Acta Pharm Sin B 2020; 10:374-382. [PMID: 32082980 PMCID: PMC7016290 DOI: 10.1016/j.apsb.2019.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/27/2019] [Accepted: 07/26/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Gelsemium elegans (G. elegans) (2n = 2x = 16) is genus of flowering plants belonging to the Gelsemicaeae family. METHOD Here, a high-quality genome assembly using the Oxford Nanopore Technologies (ONT) platform and high-throughput chromosome conformation capture techniques (Hi-C) were used. RESULTS A total of 56.11 Gb of raw GridION X5 platform ONT reads (6.23 Gb per cell) were generated. After filtering, 53.45 Gb of clean reads were obtained, giving 160 × coverage depth. The de novo genome assemblies 335.13 Mb, close to the 338 Mb estimated by k-mer analysis, was generated with contig N50 of 10.23 Mb. The vast majority (99.2%) of the G. elegans assembled sequence was anchored onto 8 pseudo-chromosomes. The genome completeness was then evaluated and 1338 of the 1440 conserved genes (92.9%) could be found in the assembly. Genome annotation revealed that 43.16% of the G. elegans genome is composed of repetitive elements and 23.9% is composed of long terminal repeat elements. We predicted 26,768 protein-coding genes, of which 84.56% were functionally annotated. CONCLUSION The genomic sequences of G. elegans could be a valuable source for comparative genomic analysis in the Gelsemicaeae family and will be useful for understanding the phylogenetic relationships of the indole alkaloid metabolism.
Collapse
|
15
|
Chen H, Yue Y, Yu R, Fan Y. A Hedychium coronarium short chain alcohol dehydrogenase is a player in allo-ocimene biosynthesis. PLANT MOLECULAR BIOLOGY 2019; 101:297-313. [PMID: 31368003 DOI: 10.1007/s11103-019-00904-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 07/23/2019] [Indexed: 05/13/2023]
Abstract
An enzyme is crucial for the formation of Hedychium coronarium scent and defense responses, which may be responsible for the biosynthesis of allo-ocimene in H. coronarium. Hedychium coronarium can emit a strong scent as its main scent constituents are monoterpenes and their derivatives. Among these derivatives, allo-ocimene is not only a very important volatile substance in flower aroma, but is also crucial to plant defense. However, the molecular mechanism of allo-ocimene biosynthesis has not been characterized in plants. In this study, a new alcohol dehydrogenase gene, HcADH, was cloned. The amino acid sequences encoded by HcADH contained the most conserved motifs of short chain alcohol dehydrogenase/reductases (SDRs), which included NAD+ binding domain, TGxxx[AG]xG and active site YxxxK. Real-time PCR analyses showed that the HcADH was highly expressed in the outer labellum but was almost undetectable in vegetative organs. The change in its expression level in petals was positively correlated with the emission pattern of allo-ocimene during flower development. HcADH expression coincides also the release level of allo-ocimene among different Hedychium species. Although HcADH is not expressed in the leaves, HcADH expression and allo-ocimene release in leaves can be induced by mechanical wounding or methyl jasmonate (MeJA) treatment. In addition, the expression of HcADH induced by mechanical wounding can be prevented by acetylsalicylic acid, a jasmonic acid biosynthesis inhibitor, suggesting that jasmonic acid might participate in the transmission of wounding signals. Using the Barley stripe mosaic virus (BSMV)-VIGS method, it was found that BSMV:HcADH335 inoculation was able to down-regulate HcADH expression, decreasing only the release of allo-ocimene in flowers while the content of other volatile substances did not decrese. In vitro characterization showed that recombinant HcADH can catalyze geraniol into citral, and citral is an intermediate of allo-ocimene biosynthesis. HcADH may be responsible for the biosynthesis of allo-ocimene in H. coronarium, which is crucial for the formation of H. coronarium scent and defense function.
Collapse
Affiliation(s)
- Hua Chen
- Department of Landscape Architecture, College of Life Science, Zhaoqing University, Zhaoqing Avenue, Duanzhou District, Zhaoqing, 526061, China
| | - Yuechong Yue
- The Research Center for Ornamental Plants, College of Horticulture, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Rangcai Yu
- The Research Center for Ornamental Plants, College of Horticulture, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Horticulture, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Wushan Road, Guangzhou, 510642, China.
| |
Collapse
|
16
|
Matzel P, Wenske S, Merdivan S, Günther S, Höhne M. Synthesis of β‐Chiral Amines by Dynamic Kinetic Resolution of α‐Branched Aldehydes Applying Imine Reductases. ChemCatChem 2019. [DOI: 10.1002/cctc.201900806] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Philipp Matzel
- Institute of BiochemistryUniversity Greifswald Greifswald 17487 Germany
| | - Sebastian Wenske
- Institute of BiochemistryUniversity Greifswald Greifswald 17487 Germany
| | - Simon Merdivan
- Institut of PharmacyUniversity of Greifswald Greifswald 17489 Germany
| | - Sebastian Günther
- Institut of PharmacyUniversity of Greifswald Greifswald 17489 Germany
| | - Matthias Höhne
- Institute of BiochemistryUniversity Greifswald Greifswald 17487 Germany
| |
Collapse
|
17
|
Roth S, Kilgore MB, Kutchan TM, Müller M. Exploiting the Catalytic Diversity of Short-Chain Dehydrogenases/Reductases: Versatile Enzymes from Plants with Extended Imine Substrate Scope. Chembiochem 2018; 19:1849-1852. [PMID: 29931726 DOI: 10.1002/cbic.201800291] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Indexed: 01/20/2023]
Abstract
Numerous short-chain dehydrogenases/reductases (SDRs) have found biocatalytic applications in C=O and C=C (enone) reduction. For NADPH-dependent C=N reduction, imine reductases (IREDs) have primarily been investigated for extension of the substrate range. Here, we show that SDRs are also suitable for a broad range of imine reductions. The SDR noroxomaritidine reductase (NR) is involved in Amaryllidaceae alkaloid biosynthesis, serving as an enone reductase. We have characterized NR by using a set of typical imine substrates and established that the enzyme is active with all four tested imine compounds (up to 99 % conversion, up to 92 % ee). Remarkably, NR reduced two keto compounds as well, thus highlighting this enzyme family's versatility. Using NR as a template, we have identified an as yet unexplored SDR from the Amaryllidacea Zephyranthes treatiae with imine-reducing activity (≤95 % ee). Our results encourage the future characterization of SDR family members as a means of discovering new imine-reducing enzymes.
Collapse
Affiliation(s)
- Sebastian Roth
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Matthew B Kilgore
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO, 63132, USA
| | - Toni M Kutchan
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO, 63132, USA
| | - Michael Müller
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| |
Collapse
|
18
|
Stavrinides AK, Tatsis EC, Dang TT, Caputi L, Stevenson CEM, Lawson DM, Schneider B, O'Connor SE. Discovery of a Short-Chain Dehydrogenase from Catharanthus roseus that Produces a New Monoterpene Indole Alkaloid. Chembiochem 2018; 19:940-948. [PMID: 29424954 PMCID: PMC6003104 DOI: 10.1002/cbic.201700621] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Indexed: 12/12/2022]
Abstract
Plant monoterpene indole alkaloids, a large class of natural products, derive from the biosynthetic intermediate strictosidine aglycone. Strictosidine aglycone, which can exist as a variety of isomers, can be reduced to form numerous different structures. We have discovered a short-chain alcohol dehydrogenase (SDR) from plant producers of monoterpene indole alkaloids (Catharanthus roseus and Rauvolfia serpentina) that reduce strictosidine aglycone and produce an alkaloid that does not correspond to any previously reported compound. Here we report the structural characterization of this product, which we have named vitrosamine, as well as the crystal structure of the SDR. This discovery highlights the structural versatility of the strictosidine aglycone biosynthetic intermediate and expands the range of enzymatic reactions that SDRs can catalyse. This discovery further highlights how a sequence-based gene mining discovery approach in plants can reveal cryptic chemistry that would not be uncovered by classical natural product chemistry approaches.
Collapse
Affiliation(s)
- Anna K Stavrinides
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.,UMR DIADE, Institut de Recherche pour le Développement, BP 64501, 34394, Montpellier, France
| | - Evangelos C Tatsis
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Thu-Thuy Dang
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Lorenzo Caputi
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Clare E M Stevenson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Bernd Schneider
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745, Jena, Germany
| | - Sarah E O'Connor
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|