1
|
Everly ME, Emehiser RG, Hrdlicka PJ. Recognition of mixed-sequence double-stranded DNA regions using chimeric Invader/LNA probes. Org Biomol Chem 2024. [PMID: 39412680 PMCID: PMC11482323 DOI: 10.1039/d4ob01403k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Development of robust oligonucleotide-based probe technologies, capable of recognizing specific regions of double-stranded DNA (dsDNA) targets, continues to attract considerable attention due to the promise of tools for modulation of gene expression, diagnostic agents, and new modalities against genetic diseases. Our laboratory pursues the development of various strand-invading probes. These include Invader probes, i.e., double-stranded oligonucleotide probes with one or more +1 interstrand zipper arrangements of intercalator-functionalized nucleotides like 2'-O-(pyren-1-yl)methyl-RNA monomers, and chimeric Invader/γPNA probes, i.e., heteroduplex probes between individual Invader strands and complementary γPNA strands. Here we report on the biophysical properties and dsDNA-recognition characteristics of a new class of chimeric probes-chimeric Invader/LNA probes-which are comprised of densely modified Invader strands and fully modified complementary LNA strands. The chimeric Invader/LNA probes form labile and distorted heteroduplexes, due to an apparent incompatibility between intercalating pyrene moieties and LNA strands. In contrast, the individual Invader and LNA strands form very stable duplexes with complementary DNA, which provides the driving force for near-stoichiometric recognition of model double-stranded DNA targets with single base-pair accuracy. The distinctive properties of chimeric Invader/LNA probes unlock exciting possibilities in molecular biology, and diagnostic and therapeutic fields.
Collapse
Affiliation(s)
- Michaela E Everly
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, USA.
| | - Raymond G Emehiser
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, USA.
| | - Patrick J Hrdlicka
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, USA.
| |
Collapse
|
2
|
Emehiser RG, Dhuri K, Shepard C, Karmakar S, Bahal R, Hrdlicka PJ. Serine-γPNA, Invader probes, and chimeras thereof: three probe chemistries that enable sequence-unrestricted recognition of double-stranded DNA. Org Biomol Chem 2022; 20:8714-8724. [PMID: 36285843 PMCID: PMC9707317 DOI: 10.1039/d2ob01567f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2023]
Abstract
Three probe chemistries are evaluated with respect to thermal denaturation temperatures, UV-Vis and fluorescence characteristics, recognition of complementary and mismatched DNA hairpin targets, and recognition of chromosomal DNA targets in the context of non-denaturing fluorescence in situ hybridization (nd-FISH) experiments: (i) serine-γPNAs (SγPNAs), i.e., single-stranded peptide nucleic acid (PNA) probes that are modified at the γ-position with (R)-hydroxymethyl moieties, (ii) Invader probes, i.e., DNA duplexes modified with +1 interstrand zippers of 2'-O-(pyren-1-yl)methyl-RNA monomers, a molecular arrangement that results in a violation of the neighbor exclusion principle, and (iii) double-stranded chimeric SγPNAs:Invader probes, i.e., duplexes between complementary SγPNA and Invader strands, which are destabilized due to the poor compatibility between intercalators and PNA:DNA duplexes. Invader probes resulted in efficient, highly specific, albeit comparatively slow recognition of the model DNA hairpin targets. Recognition was equally efficient and faster with the single-stranded SγPNA probes but far less specific, whilst the double-stranded chimeric SγPNAs:Invader probes displayed recognition characteristics that were intermediate of the parent probes. All three probe chemistries demonstrated the capacity to target chromosomal DNA in nd-FISH experiments, with Invader probes resulting in the most favorable and consistent characteristics (signals in >90% of interphase nuclei against a low background and no signal in negative control experiments). These probe chemistries constitute valuable additions to the molecular toolbox needed for DNA-targeting applications.
Collapse
Affiliation(s)
| | - Karishma Dhuri
- Pharmaceutical Sciences, University of Connecticut, Storrs, CT-06269, USA
| | - Caroline Shepard
- Department of Chemistry, University of Idaho, Moscow, ID-83844, USA.
| | - Saswata Karmakar
- Department of Chemistry, University of Idaho, Moscow, ID-83844, USA.
| | - Raman Bahal
- Pharmaceutical Sciences, University of Connecticut, Storrs, CT-06269, USA
| | | |
Collapse
|
3
|
Sequence-Specific Recognition of Double-Stranded DNA by Peptide Nucleic Acid Forming Double-Duplex Invasion Complex. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Peptide nucleic acid (PNA) is an analog of natural nucleic acids, where the sugar-phosphate backbone of DNA is replaced by an electrostatically neutral N-(2-aminoethyl)glycine backbone. This unique peptide-based backbone enables PNAs to form a very stable duplex with the complementary nucleic acids via Watson–Crick base pairing since there is no electrostatic repulsion between PNA and DNA·RNA. With this high nucleic acid affinity, PNAs have been used in a wide range of fields, from biological applications such as gene targeting, to engineering applications such as probe and sensor developments. In addition to single-stranded DNA, PNA can also recognize double-stranded DNA (dsDNA) through the formation of a double-duplex invasion complex. This double-duplex invasion is hard to achieve with other artificial nucleic acids and is expected to be a promising method to recognize dsDNA in cellula or in vivo since the invasion does not require the prior denaturation of dsDNA. In this paper, we provide basic knowledge of PNA and mainly focus on the research of PNA invasion.
Collapse
|
4
|
Adhikari SP, Karmakar S, Hrdlicka PJ. Nicked Invader probes: multistranded and sequence-unrestricted recognition of double-stranded DNA. Org Biomol Chem 2022; 20:1019-1030. [PMID: 34874037 PMCID: PMC8810728 DOI: 10.1039/d1ob02019f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Major efforts have been devoted to the development of constructs that enable sequence-specific recognition of double-stranded (ds) DNA, fueled by the promise for enabling tools for applications in molecular biology, diagnostics, and medicine. Towards this end, we have previously introduced Invader probes, i.e., short DNA duplexes with +1 interstrand zipper arrangements of intercalator-functionalized nucleotides. The individual strands of these labile probes display high affinity towards complementary DNA (cDNA), which drives sequence-unrestricted dsDNA-recognition. However, recognition of long targets is challenging due to the high stability of the corresponding probes. To address this, we recently introduced toehold Invader probes, i.e., Invader probes with 5'-single-stranded overhangs. The toehold architecture allows for shorter double-stranded segments to be used, which facilitates probe dissociation and dsDNA-recognition. As an extension thereof, we here report the biophysical and dsDNA-targeting properties of nicked Invader probes. In this probe architecture, the single-stranded overhangs of toehold Invader probes are hybridized to short intercalator-modified auxiliary strands, leading to formation of additional labile segments. The extra binding potential from the auxiliary strands imparts nicked Invader probes with greater dsDNA-affinity than the corresponding toehold or blunt-ended probes. Recognition of chromosomal DNA targets, refractory to recognition by conventional Invader probes, is demonstrated for nicked Invader probes in the context of non-denaturing FISH experiments, which highlights their utility as dsDNA-targeting tools.
Collapse
Affiliation(s)
- Shiva P Adhikari
- Department of Chemistry, University of Idaho, Moscow, ID-83844, USA.
| | - Saswata Karmakar
- Department of Chemistry, University of Idaho, Moscow, ID-83844, USA.
| | | |
Collapse
|
5
|
Aro-Heinilä A, Lepistö A, Äärelä A, Lönnberg TA, Virta P. 2-Trifluoromethyl-6-mercurianiline Nucleotide, a Sensitive 19F NMR Probe for Hg(II)-mediated Base Pairing. J Org Chem 2022; 87:137-146. [PMID: 34905374 PMCID: PMC8749955 DOI: 10.1021/acs.joc.1c02056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 01/02/2023]
Abstract
A 2-trifluoromethylaniline C-nucleoside was synthesized, incorporated in the middle of an oligonucleotide, and mercurated. The affinity of the mercurated oligonucleotide toward complementary strands placing each of the canonical nucleobases opposite to the organomercury nucleobase analogue was examined by ultraviolet (UV), circular dichroism (CD), and 19F NMR spectroscopy analyses. According to the UV melting profile analysis, the organomercury nucleobase analogue showed increased affinities in the order T > G > C > A. The CD profiles indicated the typical B-type helix in each case. The 19F resonance signal proved sensitive for the local environmental changes, showing clearly distinct signals for the duplexes with different opposing nucleobases. Furthermore, valuable information on the mercurated oligonucleotide and its binding to complementary strands at varying temperature could be obtained by 19F NMR spectroscopy.
Collapse
Affiliation(s)
- Asmo Aro-Heinilä
- Department of Chemistry, University
of Turku, Henrikinkatu 2, 20500 Turku, Finland
| | - Assi Lepistö
- Department of Chemistry, University
of Turku, Henrikinkatu 2, 20500 Turku, Finland
| | - Antti Äärelä
- Department of Chemistry, University
of Turku, Henrikinkatu 2, 20500 Turku, Finland
| | | | - Pasi Virta
- Department of Chemistry, University
of Turku, Henrikinkatu 2, 20500 Turku, Finland
| |
Collapse
|
6
|
Fujimoto K, Hirano A, Watanabe Y, Shimabara A, Nakamura S. The Inhibition Effect of Photo-Cross-Linking between Probes in Photo-Induced Double Duplex Invasion DNA. Chembiochem 2021; 22:3402-3405. [PMID: 34643012 DOI: 10.1002/cbic.202100430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/11/2021] [Indexed: 11/09/2022]
Abstract
Double duplex invasion (DDI) DNA is a useful antigene method that inhibits expression of genomic DNA. We succeeded in performing photoinduced-DDI (pDDI) using ultrafast photo-cross-linking. 5-Cyanouracil (CN U) has been used in pDDI to inhibit photo-cross-linking between probes, but its importance has not been clarified. Therefore, in this study, we evaluated the effect of spacer (S) and d-spacer (dS) that exhibit photo-cross-linking ability similar to that of CN U. CN U exhibited the highest pDDI efficiency, and S, dS, and T were not very different. The photo-cross-linking inhibitory effect was better with S and dS than with thymidine (T). Conversely, the thermal stability was significantly lower with S and dS than with T. The results suggest that the pDDI efficiency is determined by the balance between the photo-cross-linking inhibitory effect and the thermal stability, which is the introduction efficiency for double-stranded DNA. Therefore, CN U, which has a photo-cross-linking inhibitory effect and a high Tm value, showed the highest inhibitory efficiency.
Collapse
Affiliation(s)
- Kenzo Fujimoto
- School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, 923-1292 Nomi, Ishikawa, Japan
| | - Ayumu Hirano
- School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, 923-1292 Nomi, Ishikawa, Japan
| | - Yasuha Watanabe
- School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, 923-1292 Nomi, Ishikawa, Japan
| | - Ami Shimabara
- School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, 923-1292 Nomi, Ishikawa, Japan
| | - Shigetaka Nakamura
- School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, 923-1292 Nomi, Ishikawa, Japan
| |
Collapse
|
7
|
Adhikari SP, Vukelich P, Guenther DC, Karmakar S, Hrdlicka PJ. Recognition of double-stranded DNA using LNA-modified toehold Invader probes. Org Biomol Chem 2021; 19:9276-9290. [PMID: 34657934 PMCID: PMC8625219 DOI: 10.1039/d1ob01888d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Development of molecules capable of binding to specific sequences of double-stranded (ds) DNA continues to attract considerable interest, as this may yield useful tools for applications in life science, biotechnology, and medicine. We have previously demonstrated sequence-unrestricted of dsDNA using Invader probes, i.e., DNA duplexes that are energetically activated through incorporation of +1 interstrand zipper arrangements of O2'-intercalator-functionalized RNA monomers. Nonetheless, recognition of extended dsDNA target regions remains challenging due to the high stability of the corresponding probes. To address this, we introduce toehold Invader probes, i.e., Invader probes with 5'-single-stranded overhangs. This design provides access to probes with shortened double-stranded segments, which facilitates probe denaturation. The single-stranded overhangs can, furthermore, be modified with affinity-enhancing modifications like LNA (locked nucleic acid) monomers to additionally increase target affinity. Herein, we report the biophysical and dsDNA-targeting properties of different toehold Invader designs and compare them to conventional Invader probes. LNA-modified toehold Invader probes display promising recognition characteristics, including greatly improved affinity to dsDNA, excellent binding specificity, and fast recognition kinetics, which enabled recognition of chromosomal DNA targets that have proven refractory to recognition by conventional Invader probes. Thus, toehold Invader probes represent another step toward a robust, oligonucleotide-based approach for sequence-unrestricted dsDNA-recognition.
Collapse
Affiliation(s)
- Shiva P Adhikari
- Department of Chemistry, University of Idaho, Moscow, ID-83844, USA.
| | - Philip Vukelich
- Department of Chemistry, University of Idaho, Moscow, ID-83844, USA.
| | - Dale C Guenther
- Department of Chemistry, University of Idaho, Moscow, ID-83844, USA.
| | - Saswata Karmakar
- Department of Chemistry, University of Idaho, Moscow, ID-83844, USA.
| | | |
Collapse
|
8
|
Liang X, Liu M, Komiyama M. Recognition of Target Site in Various Forms of DNA and RNA by Peptide Nucleic Acid (PNA): From Fundamentals to Practical Applications. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Mengqin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| |
Collapse
|
9
|
Zheng H, Botos I, Clausse V, Nikolayevskiy H, Rastede E, Fouz M, Mazur S, Appella D. Conformational constraints of cyclopentane peptide nucleic acids facilitate tunable binding to DNA. Nucleic Acids Res 2021; 49:713-725. [PMID: 33406227 PMCID: PMC7826248 DOI: 10.1093/nar/gkaa1249] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 12/28/2022] Open
Abstract
We report a series of synthetic, nucleic acid mimics with highly customizable thermodynamic binding to DNA. Incorporation of helix-promoting cyclopentanes into peptide nucleic acids (PNAs) increases the melting temperatures (Tm) of PNA+DNA duplexes by approximately +5°C per cyclopentane. Sequential addition of cyclopentanes allows the Tm of PNA + DNA duplexes to be systematically fine-tuned from +5 to +50°C compared with the unmodified PNA. Containing only nine nucleobases and an equal number of cyclopentanes, cpPNA-9 binds to complementary DNA with a Tm around 90°C. Additional experiments reveal that the cpPNA-9 sequence specifically binds to DNA duplexes containing its complementary sequence and functions as a PCR clamp. An X-ray crystal structure of the cpPNA-9-DNA duplex revealed that cyclopentanes likely induce a right-handed helix in the PNA with conformations that promote DNA binding.
Collapse
Affiliation(s)
- Hongchao Zheng
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Room 404, Bethesda, MD 20892, USA
| | - Istvan Botos
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Victor Clausse
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Room 404, Bethesda, MD 20892, USA
| | - Herman Nikolayevskiy
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Room 404, Bethesda, MD 20892, USA
| | - Elizabeth E Rastede
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Room 404, Bethesda, MD 20892, USA
| | - Munira F Fouz
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Room 404, Bethesda, MD 20892, USA
| | - Sharlyn J Mazur
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Daniel H Appella
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Room 404, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Investigation of the Characteristics of NLS-PNA: Influence of NLS Location on Invasion Efficiency. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Peptide nucleic acid can recognise sequences in double-stranded DNA (dsDNA) through the formation of a double-duplex invasion complex. This double-duplex invasion is a promising method for the recognition of dsDNA in cellula because peptide nucleic acid (PNA) invasion does not require the prior denaturation of dsDNA. To increase its applicability, we developed PNAs modified with a nuclear localisation signal (NLS) peptide. In this study, the characteristics of NLS-modified PNAs were investigated for the future design of novel peptide-modified PNAs.
Collapse
|
11
|
Guenther DC, Emehiser RG, Inskeep A, Karmakar S, Hrdlicka PJ. Impact of non-nucleotidic bulges on recognition of mixed-sequence dsDNA by pyrene-functionalized Invader probes. Org Biomol Chem 2020; 18:4645-4655. [PMID: 32520054 PMCID: PMC7340116 DOI: 10.1039/d0ob01052a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Invader probes, i.e., DNA duplexes modified with +1 interstrand zippers of intercalator-functionalized nucleotides like 2'-O-(pyren-1-yl)methyl-RNA monomers, are energetically activated for sequence-unrestricted recognition of double-stranded DNA (dsDNA) as they are engineered to violate the neighbor exclusion principle, while displaying high affinity towards complementary DNA sequences. The impact on Invader-mediated dsDNA-recognition upon additional modification with different non-nucleotidic bulges is studied herein, based on the hypothesis that bulge-containing Invader probes will display additionally disrupted base-stacking, more extensive denaturation, and improved dsDNA-recognition efficiency. Indeed, Invader probes featuring a single central large bulge - e.g., a nonyl (C9) monomer - display improved recognition of model DNA hairpin targets vis-à-vis conventional Invader probes (C50 values ∼1.5 μM vs. ∼3.9 μM). In contrast, probes with two opposing central bulges display less favorable binding characteristics. Remarkably, C9-modified Invader probes display perfect discrimination between fully complementary dsDNA and dsDNA differing in only one of eighteen base-pairs, underscoring the high binding specificity of double-stranded probes. Cy3-labeled bulge-containing Invader probes are demonstrated to signal the presence of gender-specific DNA sequences in fluorescent in situ hybridization assays (FISH) performed under non-denaturing conditions, highlighting one potential application of dsDNA-targeting Invader probes.
Collapse
Affiliation(s)
- Dale C Guenther
- Department of Chemistry, University of Idaho, Moscow, ID-83844, USA.
| | | | - Allison Inskeep
- Department of Chemistry, University of Idaho, Moscow, ID-83844, USA.
| | - Saswata Karmakar
- Department of Chemistry, University of Idaho, Moscow, ID-83844, USA.
| | | |
Collapse
|
12
|
Emehiser RG, Hall E, Guenther DC, Karmakar S, Hrdlicka PJ. Head-to-head comparison of LNA, MPγPNA, INA and Invader probes targeting mixed-sequence double-stranded DNA. Org Biomol Chem 2020; 18:56-65. [PMID: 31681928 DOI: 10.1039/c9ob02111f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Four probe chemistries are characterized and compared with respect to thermal denaturation temperatures (Tms), thermodynamic parameters associated with duplex formation, and recognition of mixed-sequence double-stranded (ds) DNA targets: (i) oligodeoxyribonucleotides (ONs) modified with Locked Nucleic Acid (LNA) monomers, (ii) MPγPNAs, i.e., single-stranded peptide nucleic acid (PNA) probes that are functionalized at the γ-position with (R)-diethylene glycol (mini-PEG, MP) moieties, (iii) Invader probes, i.e., DNA duplexes modified with +1 interstrand zipper arrangements of 2'-O-(pyren-1-yl)methyl-RNA monomers, and (iv) intercalating nucleic acids (INAs), i.e., DNA duplexes with opposing insertions of 1-O-(1-pyrenylmethyl)glycerol bulges. Invader and INA probes, which are designed to violate the nearest-neighbor exclusion principle, denature readily, whereas the individual probe strands display exceptionally high affinity towards complementary DNA (cDNA) as indicated by increases in Tms of up to 8 °C per modification. Optimized Invader and INA probes enable efficient and highly specific recognition of mixed-sequence dsDNA targets with self-complementary regions (C50 = 30-50 nM), whereas recognition is less efficient with LNA-modified ONs and fully modified MPγPNAs due to lower cDNA affinity (LNA) and a proclivity for dimerization (LNA and MPγPNA). A Cy3-labeled Invader probe is shown to stain telomeric DNA of individual chromosomes in metaphasic spreads under non-denaturing conditions with excellent specificity.
Collapse
|
13
|
Muangkaew P, Vilaivan T. Modulation of DNA and RNA by PNA. Bioorg Med Chem Lett 2020; 30:127064. [PMID: 32147357 DOI: 10.1016/j.bmcl.2020.127064] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 02/08/2023]
Abstract
Peptide nucleic acid (PNA), a synthetic DNA mimic that is devoid of the (deoxy)ribose-phosphate backbone yet still perfectly retains the ability to recognize natural nucleic acids in a sequence-specific fashion, can be employed as a tool to modulate gene expressions via several different mechanisms. The unique strength of PNA compared to other oligonucleotide analogs is its ability to bind to nucleic acid targets with secondary structures such as double-stranded and quadruplex DNA as well as RNA. This digest aims to introduce general readers to the advancement in the area of modulation of DNA/RNA functions by PNA, its current status and future research opportunities, with emphasis on recent progress in new targeting modes of structured DNA/RNA by PNA and PNA-mediated gene editing.
Collapse
Affiliation(s)
- Penthip Muangkaew
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand.
| |
Collapse
|
14
|
Emehiser RG, Hrdlicka PJ. Chimeric γPNA-Invader probes: using intercalator-functionalized oligonucleotides to enhance the DNA-targeting properties of γPNA. Org Biomol Chem 2020; 18:1359-1368. [PMID: 31984413 DOI: 10.1039/c9ob02726b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gamma peptide nucleic acids (γPNAs), i.e., single-stranded PNA strands that are modified at the γ-position with (R)-diethylene glycol, and Invader probes, i.e., DNA duplexes with +1 interstrand zipper arrangements of 2'-O-(pyren-1-yl)methyl-RNA monomers, are two types of nucleic acid mimics that are showing promise for sequence-unrestricted recognition of double-stranded (ds) DNA targets. We recently demonstrated that recognition of dsDNA targets with self-complementary regions is challenging for single-stranded high-affinity probes like γPNAs due to their proclivity for secondary structure formation, but not so for Invader probes, which are engineered to form readily denaturing duplexes irrespective of the target sequence context. In the present study, we describe an approach that mitigates these limitations and improves the dsDNA-recognition properties of γPNAs in partially self-complementary target contexts. Chimeric probes between γPNAs and individual Invader strands are shown to form metastable duplexes that (i) are energetically activated for recognition of complementary mixed-sequence dsDNA target regions, (ii) reduce γPNA dimerization, and (iii) substantially improve the fidelity of the dsDNA-recognition process. Chimeric γPNA-Invader probes are characterized with respect to thermal denaturation properties, thermodynamic parameters associated with duplex formation, UV-Vis and fluorescence trends to establish pyrene binding modes, and dsDNA-recognition properties using DNA hairpin model targets.
Collapse
|
15
|
Adhikari SP, Emehiser RG, Karmakar S, Hrdlicka PJ. Recognition of mixed-sequence DNA targets using spermine-modified Invader probes. Org Biomol Chem 2020; 17:8795-8799. [PMID: 31469146 DOI: 10.1039/c9ob01686d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Double-stranded oligodeoxyribonucleotides with +1 interstrand zipper arrangements of 2'-O-(pyren-1-yl)methyl-RNA monomers are additionally activated for highly specific recognition of mixed-sequence DNA targets upon incorporation of non-nucleotidic spermine bulges.
Collapse
Affiliation(s)
- Shiva P Adhikari
- Department of Chemistry, University of Idaho, 875 Perimeter Drive MS2343, Moscow, ID 83844-2343, USA.
| | | | | | | |
Collapse
|
16
|
Aro-Heinilä A, Lönnberg T, Virta P. 3-Fluoro-2-mercuri-6-methylaniline Nucleotide as a High-Affinity Nucleobase-Specific Hybridization Probe. Bioconjug Chem 2019; 30:2183-2190. [PMID: 31246432 DOI: 10.1021/acs.bioconjchem.9b00405] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A 3-fluoro-6-methylaniline nucleoside was synthesized and incorporated into an oligonucleotide, and its ability to form mercury-mediated base pairs was studied. UV melting experiments revealed increased duplex stability with thymine, guanine, and cytosine opposite to the probe and a clear nucleobase-specific binding preference (T > G > C > A). Moreover, the 3-fluoro group was utilized as a spin label that showed distinct 19F NMR resonance shifts depending on the complementary nucleobase, providing more detailed information on Hg(II)-mediated base pairing.
Collapse
Affiliation(s)
- Asmo Aro-Heinilä
- Department of Chemistry , University of Turku , Vatselankatu 2 , 20014 Turku , Finland
| | - Tuomas Lönnberg
- Department of Chemistry , University of Turku , Vatselankatu 2 , 20014 Turku , Finland
| | - Pasi Virta
- Department of Chemistry , University of Turku , Vatselankatu 2 , 20014 Turku , Finland
| |
Collapse
|
17
|
Hande M, Saher O, Lundin KE, Smith CIE, Zain R, Lönnberg T. Oligonucleotide⁻Palladacycle Conjugates as Splice-Correcting Agents. Molecules 2019; 24:E1180. [PMID: 30917503 PMCID: PMC6470670 DOI: 10.3390/molecules24061180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/14/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022] Open
Abstract
2'-O-Methylribo phosphorothioate oligonucleotides incorporating cyclopalladated benzylamine conjugate groups at their 5'-termini have been prepared and their ability to hybridize with a designated target sequence was assessed by conventional UV melting experiments. The oligonucleotides were further examined in splice-switching experiments in human cervical cancer (HeLa Luc/705), human liver (HuH7_705), and human osteosarcoma (U-2 OS_705) reporter cell lines. Melting temperatures of duplexes formed by the modified oligonucleotides were approximately 5 °C lower than melting temperatures of the respective unmodified duplexes. The cyclopalladated oligonucleotides functioned as splice-correcting agents in the HeLa Luc/705 cell line somewhat more efficiently than their unmodified counterparts. Furthermore, the introduction of this chemical modification did not induce toxicity in cells. These results demonstrate the feasibility of using covalently metalated oligonucleotides as therapeutic agents.
Collapse
Affiliation(s)
- Madhuri Hande
- Department of Chemistry, University of Turku, Vatselankatu 2, FIN-20014 Turku, Finland.
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Huddinge, Sweden.
| | - Osama Saher
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Huddinge, Sweden.
- Department of Pharmaceutics and Industrial Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Karin E Lundin
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Huddinge, Sweden.
| | - C I Edvard Smith
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Huddinge, Sweden.
| | - Rula Zain
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Huddinge, Sweden.
- Department of Clinical Genetics, Centre for Rare Diseases, Karolinska University Hospital, SE-171 76 Stockholm, Sweden.
| | - Tuomas Lönnberg
- Department of Chemistry, University of Turku, Vatselankatu 2, FIN-20014 Turku, Finland.
| |
Collapse
|
18
|
Ukale DU, Lönnberg T. 2,6‐Dimercuriphenol as a Bifacial Dinuclear Organometallic Nucleobase. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Tuomas Lönnberg
- Department of ChemistryUniversity of Turku Vatselankatu 2 20014 Turku Finland
| |
Collapse
|
19
|
Ukale DU, Lönnberg T. 2,6-Dimercuriphenol as a Bifacial Dinuclear Organometallic Nucleobase. Angew Chem Int Ed Engl 2018; 57:16171-16175. [PMID: 30358071 DOI: 10.1002/anie.201809398] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/11/2018] [Indexed: 11/07/2022]
Abstract
A C-nucleoside having 2,6-dimercuriphenol as the base moiety has been synthesized and incorporated into an oligonucleotide. NMR and UV melting experiments revealed the ability of this bifacial organometallic nucleobase surrogate to form stable dinuclear HgII -mediated base triples with adenine, cytosine, and thymine (or uracil) in solution as well as within a triple-helical oligonucleotide. A single HgII -mediated base triple between 2,6-dimercuriphenol and two thymines increased both Hoogsteen and Watson-Crick melting temperatures of a 15-mer pyrimidine⋅purine*pyrimidine triple helix by more than 10 °C relative to an unmodified triple helix of the same length. This novel binding mode could be exploited in targeting certain pathogenic nucleic acids as well as in DNA nanotechnology.
Collapse
Affiliation(s)
| | - Tuomas Lönnberg
- Department of Chemistry, University of Turku, Vatselankatu 2, 20014, Turku, Finland
| |
Collapse
|