1
|
Pardhe BD, Oh TJ. Analysis of critical residues for peroxygenation and improved peroxygenase activity via in situ H 2O 2 generation in CYP105D18. Front Microbiol 2023; 14:1296202. [PMID: 38149268 PMCID: PMC10750395 DOI: 10.3389/fmicb.2023.1296202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023] Open
Abstract
Limited numbers of CYPs have been reported to work naturally as peroxygenases. The peroxide shunt pathway can be efficiently used as an alternative for the NAD(P)H and reductase systems, particularly in high hydrogen peroxide (H2O2) resistance CYPs. We reported the structural and biochemical features of CYP105D18 peroxygenase for its high H2O2 tolerance capacity. Q348 was a crucial residue for the stability of CYP105D18 during the exposure to H2O2. In addition, the role of the hydrophilic amino acid T239 from the I helix for peroxygenation and regiospecificity toward testosterone was investigated. Interestingly, T239E differs in product formation from wild type, catalyzing testosterone to androstenedione in the presence of H2O2. The other variant, T239A, worked with the Pdx/Pdr system and was unable to catalyze testosterone conversion in the presence of H2O2, suggesting the transformation of peroxygenase into monooxygenase. CYP105D18 supported the alternative method of H2O2 used for the catalysis of testosterone. The use of the same concentration of urea hydrogen peroxide adducts in place of direct H2O2 was more efficient for 2β-hydroxytestosterone conversion. Furthermore, in situ H2O2 generation using GOx/glucose system enhanced the catalytic efficiency (kcat/Km) for wild type and F184A by 1.3- and 1.9-fold, respectively, compared to direct use of H2O2 The engineering of CYP105D18, its improved peroxygenase activity, and alteration in the product oxidation facilitate CYP105D18 as a potential candidate for biotechnological applications.
Collapse
Affiliation(s)
- Bashu Dev Pardhe
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, Republic of Korea
- Genome-Based BioIT Convergence Institute, Asan, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan, Republic of Korea
| |
Collapse
|
2
|
Pardhe BD, Kwon KP, Park JK, Lee JH, Oh TJ. H 2O 2-Driven Hydroxylation of Steroids Catalyzed by Cytochrome P450 CYP105D18: Exploration of the Substrate Access Channel. Appl Environ Microbiol 2023; 89:e0158522. [PMID: 36511686 PMCID: PMC9888293 DOI: 10.1128/aem.01585-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/04/2022] [Indexed: 12/15/2022] Open
Abstract
CYP105D18 supports H2O2 as an oxygen surrogate for catalysis well and shows high H2O2 resistance capacity. We report the hydroxylation of different steroids using H2O2 as a cosubstrate. Testosterone was regiospecifically hydroxylated to 2β-hydroxytestosterone. Based on the experimental data and molecular docking, we predicted that hydroxylation of methyl testosterone and nandrolone would occur at position 2 in the A-ring, while hydroxylation of androstenedione and adrenosterone was predicted to occur in the B-ring. Further, structure-guided rational design of the substrate access channel was performed with the mutagenesis of residues S63, R82, and F184. Among the mutants, S63A showed a marked decrease in product formation, while F184A showed a significant increase in product formation in testosterone, nandrolone, methyl testosterone, androstenedione, and adrenosterone. The catalytic efficiency (kcat/Km) toward testosterone was increased 1.36-fold in the F184A mutant over that in the wild-type enzyme. These findings might facilitate the potential use of CYP105D18 and further engineering to establish the basis of biotechnological applications. IMPORTANCE The structural modification of steroids is a challenging chemical reaction. Modifying the core ring and the side chain improves the biological activity of steroids. In particular, bacterial cytochrome P450s are used as promiscuous enzymes for the activation of nonreactive carbons of steroids. In the present work, we reported the H2O2-mediated hydroxylation of steroids by CYP105D18, which also overcomes the use of expensive cofactors. Further, exploring the substrate access channel and modifying the bulky amino acid F184A increase substrate conversion while modifying the substrate recognizing amino acid S63 markedly decreases product formation. Exploring the substrate access channel and the rational design of CYP105D18 can improve the substrate conversion, which facilitates the engineering of P450s for industrial application.
Collapse
Affiliation(s)
- Bashu Dev Pardhe
- Department of Life Science and Biochemical Engineering, Sunmoon University, Asan-si, Chungnam, Republic of Korea
| | - Kyoung Pyo Kwon
- Department of Pharmaceutical Engineering and Biotechnology, Sunmoon University, Asan-si, Chungnam, Republic of Korea
| | - Jong Kook Park
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Sunmoon University, Asan-si, Chungnam, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sunmoon University, Asan-si, Chungnam, Republic of Korea
- Genome-based BioIT Convergence Institute, Asan-si, Chungnam, Republic of Korea
| |
Collapse
|
3
|
CYP108N12 initiates p-cymene biodegradation in Rhodococcus globerulus. Arch Biochem Biophys 2022; 730:109410. [PMID: 36155781 DOI: 10.1016/j.abb.2022.109410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022]
Abstract
Rhodococcus globerulus (R. globerulus) isolated from soil beneath Eucalyptus sp. was found to live on the monoterpenes 1,8-cineole, p-cymene and (R)- and (S)-limonene as sole sources of carbon and energy. Previous metabolic studies revealed that R. globerulus is capable of living on 1,8-cineole, the main monoterpene component of eucalyptus essential oil through the activity of cytochrome P450cin (CYP176A1) [1]. Genomic sequencing of R. globerulus revealed a novel putative cytochrome P450 (CYP108N12) that shares 48% sequence identity with CYP108A1 (P450terp) from Pseudomonas sp., an α-terpineol hydroxylase. Given the sequence similarity between CYP108N12 and P450terp, it was hypothesised that CYP108N12 may be responsible for initiating the biodegradation of a monoterpene structurally similar to α-terpineol such as (R)-limonene, (S)-limonene or p-cymene. Encoded within the operon containing CYP108N12 were two putative bacterial P450 redox partners and putative alcohol and aldehyde dehydrogenases, suggesting a complete catalytic system for activating these monoterpenes. Binding studies revealed that p-cymene and (R)- and (S)-limonene all bound tightly to CYP108N12 but α-terpineol did not. A catalytically active system was reconstituted using the non-native redox partner putidaredoxin and putidaredoxin reductase that act with CYP101A1 (P450cam) from Pseudomonas. This reconstituted system catalysed the hydroxylation of p-cymene to 4-isopropylbenzyl alcohol, and (R)- and (S)-limonene to (R)- and (S)-perillyl alcohol, respectively. R. globerulus was successfully grown on solely p-cymene, (R)-limonene or (S)-limonene. CYP108N12 was detected when R. globerulus was grown on p-cymene, but not either limonene enantiomer. The native function of CYP108N12 is therefore proposed to be initiation of p-cymene biodegradation by methyl oxidation and is a potentially attractive biocatalyst capable of specific benzylic and allylic hydroxylation.
Collapse
|
4
|
Kinner A, Nerke P, Siedentop R, Steinmetz T, Classen T, Rosenthal K, Nett M, Pietruszka J, Lütz S. Recent Advances in Biocatalysis for Drug Synthesis. Biomedicines 2022; 10:964. [PMID: 35625702 PMCID: PMC9138302 DOI: 10.3390/biomedicines10050964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
Biocatalysis is constantly providing novel options for the synthesis of active pharmaceutical ingredients (APIs). In addition to drug development and manufacturing, biocatalysis also plays a role in drug discovery and can support many active ingredient syntheses at an early stage to build up entire scaffolds in a targeted and preparative manner. Recent progress in recruiting new enzymes by genome mining and screening or adapting their substrate, as well as product scope, by protein engineering has made biocatalysts a competitive tool applied in academic and industrial spheres. This is especially true for the advances in the field of nonribosomal peptide synthesis and enzyme cascades that are expanding the capabilities for the discovery and synthesis of new bioactive compounds via biotransformation. Here we highlight some of the most recent developments to add to the portfolio of biocatalysis with special relevance for the synthesis and late-stage functionalization of APIs, in order to bypass pure chemical processes.
Collapse
Affiliation(s)
- Alina Kinner
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| | - Philipp Nerke
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| | - Regine Siedentop
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| | - Till Steinmetz
- Laboratory for Technical Biology, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (T.S.); (M.N.)
| | - Thomas Classen
- Institute of Bio- and Geosciences: Biotechnology (IBG-1), Forschungszentrum Jülich, 52428 Jülich, Germany; (T.C.); (J.P.)
| | - Katrin Rosenthal
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| | - Markus Nett
- Laboratory for Technical Biology, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (T.S.); (M.N.)
| | - Jörg Pietruszka
- Institute of Bio- and Geosciences: Biotechnology (IBG-1), Forschungszentrum Jülich, 52428 Jülich, Germany; (T.C.); (J.P.)
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf Located at Forschungszentrum Jülich, 52426 Jülich, Germany
| | - Stephan Lütz
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| |
Collapse
|
5
|
Pardhe BD, Do H, Jeong CS, Kim KH, Lee JH, Oh TJ. Characterization of high-H 2O 2-tolerant bacterial cytochrome P450 CYP105D18: insights into papaverine N-oxidation. IUCRJ 2021; 8:684-694. [PMID: 34258016 PMCID: PMC8256718 DOI: 10.1107/s2052252521005522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
The bacterial CYP105 family is involved in secondary metabolite biosynthetic pathways and plays essential roles in the biotransformation of xenobiotics. This study investigates the newly identified H2O2-mediated CYP105D18 from Streptomyces laurentii as the first bacterial CYP for N-oxidation. The catalytic efficiency of CYP105D18 for papaverine N-oxidation was 1.43 s-1 µM -1. The heme oxidation rate (k) was low (<0.3 min-1) in the presence of 200 mM H2O2. This high H2O2 tolerance capacity of CYP105D18 led to higher turnover prior to heme oxidation. Additionally, the high-resolution papaverine complexed structure and substrate-free structure of CYP105D18 were determined. Structural analysis and activity assay results revealed that CYP105D18 had a strong substrate preference for papaverine because of its bendable structure. These findings establish a basis for biotechnological applications of CYP105D18 in the pharmaceutical and medicinal industries.
Collapse
Affiliation(s)
- Bashu Dev Pardhe
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan 31460, Republic of Korea
| | - Hackwon Do
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Chang-Sook Jeong
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Ki-Hwa Kim
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan 31460, Republic of Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan 31460, Republic of Korea
- Genome-based BioIT Convergence Institute, Asan 31460, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan 31460, Republic of Korea
| |
Collapse
|
6
|
Subedi P, Kim KH, Hong YS, Lee JH, Oh TJ. Enzymatic Characterization and Comparison of Two Steroid Hydroxylases CYP154C3-1 and CYP154C3-2 from Streptomyces Species. J Microbiol Biotechnol 2021; 31:464-474. [PMID: 33397832 PMCID: PMC9705902 DOI: 10.4014/jmb.2010.10020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/15/2020] [Accepted: 12/31/2020] [Indexed: 12/15/2022]
Abstract
Bacterial cytochrome P450 (CYP) enzymes are responsible for the hydroxylation of diverse endogenous substances with a heme molecule used as a cofactor. This study characterized two CYP154C3 proteins from Streptomyces sp. W2061 (CYP154C3-1) and Streptomyces sp. KCCM40643 (CYP154C3-2). The enzymatic activity assays of both CYPs conducted using heterologous redox partners' putidaredoxin and putidaredoxin reductase showed substrate flexibility with different steroids and exhibited interesting product formation patterns. The enzymatic characterization revealed good activity over a pH range of 7.0 to 7.8 and the optimal temperature range for activity was 30 to 37°C. The major product was the C16-hydroxylated product and the kinetic profiles and patterns of the generated hydroxylated products differed between the two enzymes. Both enzymes showed a higher affinity toward progesterone, with CYP154C3-1 demonstrating slightly higher activity than CYP154C3-2 for most of the substrates. Oxidizing agents (diacetoxyiodo) benzene (PIDA) and hydrogen peroxide (H2O2) were also utilized to actively support the redox reactions, with optimum conversion achieved at concentrations of 3 mM and 65 mM, respectively. The oxidizing agents affected the product distribution, influencing the type and selectivity of the CYP-catalyzed reaction. Additionally, CYP154C3s also catalyzed the C-C bond cleavage of steroids. Therefore, CYP154C3s may be a good candidate for the production of modified steroids for various biological uses.
Collapse
Affiliation(s)
- Pradeep Subedi
- Department of Life Science and Biochemical Engineering, Sunmoon University, Asan 31460, Republic of Korea
| | - Ki-Hwa Kim
- Department of Life Science and Biochemical Engineering, Sunmoon University, Asan 31460, Republic of Korea
| | - Young-Soo Hong
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang-eup, Chungbuk 28116, Republic of Korea
| | - Joo-Ho Lee
- Genome-Based BioIT Convergence Institute, Asan 31460, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Sunmoon University, Asan 31460, Republic of Korea,Genome-Based BioIT Convergence Institute, Asan 31460, Republic of Korea,Department of BT-Convergent Pharmaceutical Engineering, Sunmoon University, Asan 31460, Republic of Korea,Corresponding author Phone: +82-41-530-2677 Fax: +82-41-530-2279 E-mail:
| |
Collapse
|
7
|
Zhu J, Shen C, Zhao W, Liu X, Liu J, Yu B. Regio- and stereoselective hydroxylation of testosterone by cytochrome P450 from Streptomyces griseus ATCC 13273. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1799990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Jinqian Zhu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Chen Shen
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wanli Zhao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiufeng Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jihua Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Strohmaier SJ, De Voss JJ, Jurva U, Andersson S, Gillam EMJ. Oxygen Surrogate Systems for Supporting Human Drug-Metabolizing Cytochrome P450 Enzymes. Drug Metab Dispos 2020; 48:432-437. [PMID: 32238418 DOI: 10.1124/dmd.120.090555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/12/2020] [Indexed: 01/13/2023] Open
Abstract
Oxygen surrogates (OSs) have been used to support cytochrome P450 (P450) enzymes for diverse purposes in drug metabolism research, including reaction phenotyping, mechanistic and inhibition studies, studies of redox partner interactions, and to avoid the need for NADPH or a redox partner. They also have been used in engineering P450s for more cost-effective, NADPH-independent biocatalysis. However, despite their broad application, little is known of the preference of individual P450s for different OSs or the substrate dependence of OS-supported activity. Furthermore, the biocatalytic potential of OSs other than cumene hydroperoxide (CuOOH) and hydrogen peroxide (H2O2) is yet to be explored. Here, we investigated the ability of the major human drug-metabolizing P450s, namely CYP3A4, CYP2C9, CYP2C19, CYP2D6, and CYP1A2, to use the following OSs: H2O2, tert-butyl hydroperoxide (tert-BuOOH), CuOOH, (diacetoxyiodo)benzene, and bis(trifluoroacetoxy)iodobenzene. Overall, CuOOH and tert-BuOOH were found to be the most effective at supporting these P450s. However, the ability of P450s to be supported by OSs effectively was also found to be highly dependent on the substrate used. This suggests that the choice of OS should be tailored to both the P450 and the substrate under investigation, underscoring the need to employ screening methods that reflect the activity toward the substrate of interest to the end application. SIGNIFICANCE STATEMENT: Cytochrome P450 (P450) enzymes can be supported by different oxygen surrogates (OSs), avoiding the need for a redox partner and costly NADPH. However, few data exist comparing relative activity with different OSs and substrates. This study shows that the choice of OS used to support the major drug-metabolizing P450s influences their relative activity and regioselectivity in a substrate-specific fashion and provides a model for the more efficient use of P450s for metabolite biosynthesis.
Collapse
Affiliation(s)
- Silja J Strohmaier
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia (S.J.S., J.J.D.V., E.M.J.G.); and DMPK, Early Cardiovascular, Renal and Metabolism (U.J.) and Discovery Sciences (S.A.), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia (S.J.S., J.J.D.V., E.M.J.G.); and DMPK, Early Cardiovascular, Renal and Metabolism (U.J.) and Discovery Sciences (S.A.), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ulrik Jurva
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia (S.J.S., J.J.D.V., E.M.J.G.); and DMPK, Early Cardiovascular, Renal and Metabolism (U.J.) and Discovery Sciences (S.A.), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Shalini Andersson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia (S.J.S., J.J.D.V., E.M.J.G.); and DMPK, Early Cardiovascular, Renal and Metabolism (U.J.) and Discovery Sciences (S.A.), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia (S.J.S., J.J.D.V., E.M.J.G.); and DMPK, Early Cardiovascular, Renal and Metabolism (U.J.) and Discovery Sciences (S.A.), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
9
|
Distinct Physiological Roles of the Three Ferredoxins Encoded in the Hyperthermophilic Archaeon Thermococcus kodakarensis. mBio 2019; 10:mBio.02807-18. [PMID: 30837343 PMCID: PMC6401487 DOI: 10.1128/mbio.02807-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
High-energy electrons liberated during catabolic processes can be exploited for energy-conserving mechanisms. Maximal energy gains demand these valuable electrons be accurately shuttled from electron donor to appropriate electron acceptor. Proteinaceous electron carriers such as ferredoxins offer opportunities to exploit specific ferredoxin partnerships to ensure that electron flux to critical physiological pathways is aligned with maximal energy gains. Most species encode many ferredoxin isoforms, but very little is known about the role of individual ferredoxins in most systems. Our results detail that ferredoxin isoforms make largely unique and distinct protein interactions in vivo and that flux through one ferredoxin often cannot be recovered by flux through a different ferredoxin isoform. The results obtained more broadly suggest that ferredoxin isoforms throughout biological life have evolved not as generic electron shuttles, but rather serve as selective couriers of valuable low-potential electrons from select electron donors to desirable electron acceptors. Control of electron flux is critical in both natural and bioengineered systems to maximize energy gains. Both small molecules and proteins shuttle high-energy, low-potential electrons liberated during catabolism through diverse metabolic landscapes. Ferredoxin (Fd) proteins—an abundant class of Fe-S-containing small proteins—are essential in many species for energy conservation and ATP production strategies. It remains difficult to model electron flow through complicated metabolisms and in systems in which multiple Fd proteins are present. The overlap of activity and/or limitations of electron flux through each Fd can limit physiology and metabolic engineering strategies. Here we establish the interplay, reactivity, and physiological role(s) of the three ferredoxin proteins in the model hyperthermophile Thermococcus kodakarensis. We demonstrate that the three loci encoding known Fds are subject to distinct regulatory mechanisms and that specific Fds are utilized to shuttle electrons to separate respiratory and energy production complexes during different physiological states. The results obtained argue that unique physiological roles have been established for each Fd and that continued use of T. kodakarensis and related hydrogen-evolving species as bioengineering platforms must account for the distinct Fd partnerships that limit flux to desired electron acceptors. Extrapolating our results more broadly, the retention of multiple Fd isoforms in most species argues that specialized Fd partnerships are likely to influence electron flux throughout biology.
Collapse
|
10
|
Putkaradze N, Litzenburger M, Hutter MC, Bernhardt R. CYP109E1 from Bacillus megaterium
Acts as a 24- and 25-Hydroxylase for Cholesterol. Chembiochem 2019; 20:655-658. [DOI: 10.1002/cbic.201800595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Natalia Putkaradze
- Institute of Biochemistry; Saarland University; Campus, Building B2.2 66123 Saarbrücken Germany
| | - Martin Litzenburger
- Institute of Biochemistry; Saarland University; Campus, Building B2.2 66123 Saarbrücken Germany
| | | | - Rita Bernhardt
- Institute of Biochemistry; Saarland University; Campus, Building B2.2 66123 Saarbrücken Germany
| |
Collapse
|
11
|
Dangi B, Lee CW, Kim K, Park S, Yu E, Jeong C, Park H, Lee JH, Oh T. Characterization of two steroid hydroxylases from different
Streptomyces
spp. and their ligand‐bound and ‐unbound crystal structures. FEBS J 2018; 286:1683-1699. [DOI: 10.1111/febs.14729] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/20/2018] [Accepted: 12/09/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Bikash Dangi
- Department of Life Science and Biochemical Engineering Sunmoon University Asansi Korea
| | - Chang Woo Lee
- Unit of Polar Genomics Korea Polar Research Institute Incheon Korea
- Department of Polar Sciences University of Science and Technology Incheon Korea
| | - Ki‐Hwa Kim
- Department of Life Science and Biochemical Engineering Sunmoon University Asansi Korea
| | - Sun‐Ha Park
- Unit of Polar Genomics Korea Polar Research Institute Incheon Korea
| | - Eun‐Ji Yu
- Department of Life Science and Biochemical Engineering Sunmoon University Asansi Korea
| | - Chang‐Sook Jeong
- Unit of Polar Genomics Korea Polar Research Institute Incheon Korea
- Department of Polar Sciences University of Science and Technology Incheon Korea
| | - Hyun Park
- Unit of Polar Genomics Korea Polar Research Institute Incheon Korea
- Department of Polar Sciences University of Science and Technology Incheon Korea
| | - Jun Hyuck Lee
- Unit of Polar Genomics Korea Polar Research Institute Incheon Korea
- Department of Polar Sciences University of Science and Technology Incheon Korea
| | - Tae‐Jin Oh
- Department of Life Science and Biochemical Engineering Sunmoon University Asansi Korea
- Genome‐based BioIT Convergence Institute Asansi Korea
- Department of Pharmaceutical Engineering and Biotechnology Sunmoon University Asansi Korea
| |
Collapse
|