1
|
Tan X, Min R, Wang S, Ning H, Mu B, Cao N, Yan W, Jin X, Yang C. Lactonization of Diols Over Highly Efficient Metal-Based Catalysts. CHEMSUSCHEM 2024:e202400909. [PMID: 39264637 DOI: 10.1002/cssc.202400909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/01/2024] [Indexed: 09/13/2024]
Abstract
Lactones has gained increasing attention in recent years due to wide application in polymer and pharmaceutical industries. Traditional synthetic methods of lactones often involve harsh operating temperature, use of strong alkalis and toxic oxidants. Therefore, lactonization of diols under milder conditions have been viewed as the most promising route for future commercialization. A variety of metal catalysts (Ru, Pt, Ir, Au, Fe, Cu, Co, and Zn) have been developed for highly efficient oxidant-, acceptor-, base- and additive-free lactonization processes. However, only a few initial attempts have been reported with no further details on catalytic mechanism being disclosed in literature. There demands a systematic study of the mechanistic details and the structure-function relationship to guide the catalyst design. In this work, we critically reviewed and discussed the structure-function relationship, the catalytic reaction mechanism, the catalyst stability, as well as the effect of oxidant and solvent for lactonization of diols. This work may provide additional insights for the development of other oxygen-containing functional molecules for material science and technologies.
Collapse
Affiliation(s)
- Xiaomeng Tan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| | - Rui Min
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| | - Shiyu Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| | - Hui Ning
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| | - Baoquan Mu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| | - Ning Cao
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| | - Wenjuan Yan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| | - Xin Jin
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| | - Chaohe Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| |
Collapse
|
2
|
Velasco-Lozano S, Santiago-Arcos J, Grazia Rubanu M, López-Gallego F. Cell-Free Biosynthesis of ω-Hydroxy Acids Boosted by a Synergistic Combination of Alcohol Dehydrogenases. CHEMSUSCHEM 2022; 15:e202200397. [PMID: 35348296 DOI: 10.1002/cssc.202200397] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The activity orchestration of an unprecedented cell-free enzyme system with self-sufficient cofactor recycling enables the stepwise transformation of aliphatic diols into ω-hydroxy acids at the expense of molecular oxygen as electron acceptor. The efficiency of the biosynthetic route was maximized when two compatible alcohol dehydrogenases were selected as specialist biocatalysts for each one of the oxidative steps required for the oxidative lactonization of diols. The cell-free system reached up to 100 % conversion using 100 mM of linear C5 diols and performed the desymmetrization of prochiral branched diols into the corresponding ω-hydroxy acids with an exquisite enantioselectivity (ee>99 %). Green metrics demonstrate superior sustainability of this system compared to traditional metal catalysts and even to whole cells for the synthesis of 5-hydroxypetanoic acid. Finally, the cell-free system was assembled into a consortium of heterogeneous biocatalysts that allowed the enzyme reutilization. This cascade illustrates the potential of systems biocatalysis to access new heterofunctional molecules such as ω-hydroxy acids.
Collapse
Affiliation(s)
- Susana Velasco-Lozano
- Heterogeneous biocatalysis group, CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009, Donostia, Spain
| | - Javier Santiago-Arcos
- Heterogeneous biocatalysis group, CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009, Donostia, Spain
| | - Maria Grazia Rubanu
- Heterogeneous biocatalysis group, CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009, Donostia, Spain
| | - Fernando López-Gallego
- Heterogeneous biocatalysis group, CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009, Donostia, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
3
|
Chen H, Tang T, Malapit CA, Lee YS, Prater MB, Weliwatte NS, Minteer SD. One-Pot Bioelectrocatalytic Conversion of Chemically Inert Hydrocarbons to Imines. J Am Chem Soc 2022; 144:4047-4056. [DOI: 10.1021/jacs.1c13063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hui Chen
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Tianhua Tang
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Christian A. Malapit
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Yoo Seok Lee
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Matthew B. Prater
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - N. Samali Weliwatte
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
4
|
Engel J, Bornscheuer UT, Kara S. Kinetics Modeling of a Convergent Cascade Catalyzed by Monooxygenase–Alcohol Dehydrogenase Coupled Enzymes. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jennifer Engel
- Department of Engineering, Biocatalysis and Bioprocessing Group, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Uwe T. Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Greifswald University, 17489 Greifswald, Germany
| | - Selin Kara
- Department of Engineering, Biocatalysis and Bioprocessing Group, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| |
Collapse
|
5
|
Maseme MJ, Pennec A, Marwijk J, Opperman DJ, Smit MS. CYP505E3: A Novel Self‐Sufficient ω‐7 In‐Chain Hydroxylase. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mpeyake Jacob Maseme
- Department of Microbial, Biochemical and Food Biotechnology University of the Free State P.O. Box 339 Bloemfontein 9300 South Africa
- South African DST-NRF Centre of Excellence in Catalysis, c*change University of Cape Town South Africa
| | - Alizé Pennec
- Department of Microbial, Biochemical and Food Biotechnology University of the Free State P.O. Box 339 Bloemfontein 9300 South Africa
- South African DST-NRF Centre of Excellence in Catalysis, c*change University of Cape Town South Africa
| | - Jacqueline Marwijk
- Department of Microbial, Biochemical and Food Biotechnology University of the Free State P.O. Box 339 Bloemfontein 9300 South Africa
- South African DST-NRF Centre of Excellence in Catalysis, c*change University of Cape Town South Africa
| | - Diederik Johannes Opperman
- Department of Microbial, Biochemical and Food Biotechnology University of the Free State P.O. Box 339 Bloemfontein 9300 South Africa
- South African DST-NRF Centre of Excellence in Catalysis, c*change University of Cape Town South Africa
| | - Martha Sophia Smit
- Department of Microbial, Biochemical and Food Biotechnology University of the Free State P.O. Box 339 Bloemfontein 9300 South Africa
- South African DST-NRF Centre of Excellence in Catalysis, c*change University of Cape Town South Africa
| |
Collapse
|
6
|
Maseme MJ, Pennec A, Marwijk J, Opperman DJ, Smit MS. CYP505E3: A Novel Self‐Sufficient ω‐7 In‐Chain Hydroxylase. Angew Chem Int Ed Engl 2020; 59:10359-10362. [DOI: 10.1002/anie.202001055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/26/2020] [Indexed: 01/30/2023]
Affiliation(s)
- Mpeyake Jacob Maseme
- Department of Microbial, Biochemical and Food Biotechnology University of the Free State P.O. Box 339 Bloemfontein 9300 South Africa
- South African DST-NRF Centre of Excellence in Catalysis, c*change University of Cape Town South Africa
| | - Alizé Pennec
- Department of Microbial, Biochemical and Food Biotechnology University of the Free State P.O. Box 339 Bloemfontein 9300 South Africa
- South African DST-NRF Centre of Excellence in Catalysis, c*change University of Cape Town South Africa
| | - Jacqueline Marwijk
- Department of Microbial, Biochemical and Food Biotechnology University of the Free State P.O. Box 339 Bloemfontein 9300 South Africa
- South African DST-NRF Centre of Excellence in Catalysis, c*change University of Cape Town South Africa
| | - Diederik Johannes Opperman
- Department of Microbial, Biochemical and Food Biotechnology University of the Free State P.O. Box 339 Bloemfontein 9300 South Africa
- South African DST-NRF Centre of Excellence in Catalysis, c*change University of Cape Town South Africa
| | - Martha Sophia Smit
- Department of Microbial, Biochemical and Food Biotechnology University of the Free State P.O. Box 339 Bloemfontein 9300 South Africa
- South African DST-NRF Centre of Excellence in Catalysis, c*change University of Cape Town South Africa
| |
Collapse
|
7
|
Martin C, Trajkovic M, Fraaije MW. Production of Hydroxy Acids: Selective Double Oxidation of Diols by Flavoprotein Alcohol Oxidase. Angew Chem Int Ed Engl 2020; 59:4869-4872. [PMID: 31912947 PMCID: PMC7079103 DOI: 10.1002/anie.201914877] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/18/2019] [Indexed: 11/10/2022]
Abstract
Flavoprotein oxidases can catalyze oxidations of alcohols and amines by merely using molecular oxygen as the oxidant, making this class of enzymes appealing for biocatalysis. The FAD-containing (FAD=flavin adenine dinucleotide) alcohol oxidase from P. chrysosporium facilitated double and triple oxidations for a range of aliphatic diols. Interestingly, depending on the diol substrate, these reactions result in formation of either lactones or hydroxy acids. For example, diethylene glycol could be selectively and fully converted into 2-(2-hydroxyethoxy)acetic acid. Such a facile cofactor-independent biocatalytic route towards hydroxy acids opens up new avenues for the preparation of polyester building blocks.
Collapse
Affiliation(s)
- Caterina Martin
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 4GroningenThe Netherlands
| | - Milos Trajkovic
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 4GroningenThe Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 4GroningenThe Netherlands
| |
Collapse
|
8
|
Martin C, Trajkovic M, Fraaije MW. Production of Hydroxy Acids: Selective Double Oxidation of Diols by Flavoprotein Alcohol Oxidase. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Caterina Martin
- Molecular Enzymology GroupUniversity of Groningen Nijenborgh 4 Groningen The Netherlands
| | - Milos Trajkovic
- Molecular Enzymology GroupUniversity of Groningen Nijenborgh 4 Groningen The Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology GroupUniversity of Groningen Nijenborgh 4 Groningen The Netherlands
| |
Collapse
|