1
|
Stavropoulou K, Papanastasiou IP. Overview of Small Molecules as Fluorescent Probes of Mycobacterium tuberculosis. ACS OMEGA 2024; 9:31220-31227. [PMID: 39072060 PMCID: PMC11270572 DOI: 10.1021/acsomega.4c01992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024]
Abstract
Tuberculosis (TB) remains one of the leading infectious causes of death worldwide. Detecting and precisely quantifying viable Mycobacterium tuberculosis (M. tuberculosis) is crucial for comprehending mycobacterial pathogenicity; the progression and outcomes of tuberculosis; and the action, efficacy, and resistance of drugs. Fluorescent probes have emerged as indispensable tools for studying the intricate structure and dynamic interactions of M. tuberculosis with its host environment. This minireview underscores the significance of small molecules as fluorescent probes in advancing our understanding of mycobacterial biology and highlights their potential for guiding the development of novel therapeutic interventions against tuberculosis.
Collapse
Affiliation(s)
- Konstantina Stavropoulou
- Division of Pharmaceutical
Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 71 Athens, Greece
| | - Ioannis P. Papanastasiou
- Division of Pharmaceutical
Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 71 Athens, Greece
| |
Collapse
|
2
|
Wuo MG, Dulberger CL, Warner TC, Brown RA, Sturm A, Ultee E, Bloom-Ackermann Z, Choi C, Zhu J, Garner EC, Briegel A, Hung DT, Rubin EJ, Kiessling LL. Fluorogenic Probes of the Mycobacterial Membrane as Reporters of Antibiotic Action. J Am Chem Soc 2024; 146:17669-17678. [PMID: 38905328 PMCID: PMC11646346 DOI: 10.1021/jacs.4c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
The genus Mycobacterium includes species such as Mycobacterium tuberculosis, which can cause deadly human diseases. These bacteria have a protective cell envelope that can be remodeled to facilitate their survival in challenging conditions. Understanding how such conditions affect membrane remodeling can facilitate antibiotic discovery and treatment. To this end, we describe an optimized fluorogenic probe, N-QTF, that reports on mycolyltransferase activity, which is vital for cell division and remodeling. N-QTF is a glycolipid probe that can reveal dynamic changes in the mycobacterial cell envelope in both fast- and slow-growing mycobacterial species. Using this probe to monitor the consequences of antibiotic treatment uncovered distinct cellular phenotypes. Even antibiotics that do not directly inhibit cell envelope biosynthesis cause conspicuous phenotypes. For instance, mycobacteria exposed to the RNA polymerase inhibitor rifampicin release fluorescent extracellular vesicles (EVs). While all mycobacteria release EVs, fluorescent EVs were detected only in the presence of RIF, indicating that exposure to the drug alters EV content. Macrophages exposed to the EVs derived from RIF-treated cells released lower levels of cytokines, suggesting the EVs moderate immune responses. These data suggest that antibiotics can alter EV content to impact immunity. Our ability to see such changes in EV constituents directly results from exploiting these chemical probes.
Collapse
Affiliation(s)
- Michael G. Wuo
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue Cambridge, MA 02139, United States
| | - Charles L. Dulberger
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health. 677 Huntington Ave, Boston, MA 02115, United States
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford St, Cambridge, MA 02138, United States
| | - Theodore C. Warner
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue Cambridge, MA 02139, United States
| | - Robert A. Brown
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue Madison, WI 53706, United States
| | - Alexander Sturm
- Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA 02142, United States
| | - Eveline Ultee
- Institute of Biology, Leiden University, Rapenburg 70, 2311 EZ Leiden, The Netherlands
| | | | - Catherine Choi
- Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA 02142, United States
| | - Junhao Zhu
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health. 677 Huntington Ave, Boston, MA 02115, United States
| | - Ethan C. Garner
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford St, Cambridge, MA 02138, United States
| | - Ariane Briegel
- Institute of Biology, Leiden University, Rapenburg 70, 2311 EZ Leiden, The Netherlands
| | - Deborah T. Hung
- Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA 02142, United States
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, United States
- Department of Genetics, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, United States
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health. 677 Huntington Ave, Boston, MA 02115, United States
| | - Laura L. Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue Cambridge, MA 02139, United States
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue Madison, WI 53706, United States
| |
Collapse
|
3
|
Banahene N, Peters-Clarke TM, Biegas KJ, Shishkova E, Hart EM, McKitterick AC, Kambitsis NH, Johnson UG, Bernhardt TG, Coon JJ, Swarts BM. Chemical Proteomics Strategies for Analyzing Protein Lipidation Reveal the Bacterial O-Mycoloylome. J Am Chem Soc 2024; 146:12138-12154. [PMID: 38635392 PMCID: PMC11066868 DOI: 10.1021/jacs.4c02278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024]
Abstract
Protein lipidation dynamically controls protein localization and function within cellular membranes. A unique form of protein O-fatty acylation in Corynebacterium, termed protein O-mycoloylation, involves the attachment of mycolic acids─unusually large and hydrophobic fatty acids─to serine residues of proteins in these organisms' outer mycomembrane. However, as with other forms of protein lipidation, the scope and functional consequences of protein O-mycoloylation are challenging to investigate due to the inherent difficulties of enriching and analyzing lipidated peptides. To facilitate the analysis of protein lipidation and enable the comprehensive profiling and site mapping of protein O-mycoloylation, we developed a chemical proteomics strategy integrating metabolic labeling, click chemistry, cleavable linkers, and a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method employing LC separation and complementary fragmentation methods tailored to the analysis of lipophilic, MS-labile O-acylated peptides. Using these tools in the model organism Corynebacterium glutamicum, we identified approximately 30 candidate O-mycoloylated proteins, including porins, mycoloyltransferases, secreted hydrolases, and other proteins with cell envelope-related functions─consistent with a role for O-mycoloylation in targeting proteins to the mycomembrane. Site mapping revealed that many of the proteins contained multiple spatially proximal modification sites, which occurred predominantly at serine residues surrounded by conformationally flexible peptide motifs. Overall, this study (i) discloses the putative protein O-mycoloylome for the first time, (ii) yields new insights into the undercharacterized proteome of the mycomembrane, which is a hallmark of important pathogens (e.g., Corynebacterium diphtheriae, Mycobacterium tuberculosis), and (iii) provides generally applicable chemical strategies for the proteomic analysis of protein lipidation.
Collapse
Affiliation(s)
- Nicholas Banahene
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
- Biochemistry,
Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount
Pleasant, Michigan 48859, United States
| | - Trenton M. Peters-Clarke
- Department
of Chemistry, University of Wisconsin, Madison, Wisconsin 53562, United States
- Department
of Biomolecular Chemistry, University of
Wisconsin, Madison, Wisconsin 53562, United States
- National
Center for Quantitative Biology of Complex Systems, University of Wisconsin, Madison, Wisconsin 53562, United States
| | - Kyle J. Biegas
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
- Biochemistry,
Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount
Pleasant, Michigan 48859, United States
| | - Evgenia Shishkova
- Department
of Biomolecular Chemistry, University of
Wisconsin, Madison, Wisconsin 53562, United States
- National
Center for Quantitative Biology of Complex Systems, University of Wisconsin, Madison, Wisconsin 53562, United States
| | - Elizabeth M. Hart
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115 United States
- Howard
Hughes Medical Institute, Chevy
Chase, Maryland 20815, United States
| | - Amelia C. McKitterick
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115 United States
- Howard
Hughes Medical Institute, Chevy
Chase, Maryland 20815, United States
| | - Nikolas H. Kambitsis
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
| | - Ulysses G. Johnson
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
- Biochemistry,
Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount
Pleasant, Michigan 48859, United States
| | - Thomas G. Bernhardt
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115 United States
- Howard
Hughes Medical Institute, Chevy
Chase, Maryland 20815, United States
| | - Joshua J. Coon
- Department
of Chemistry, University of Wisconsin, Madison, Wisconsin 53562, United States
- Department
of Biomolecular Chemistry, University of
Wisconsin, Madison, Wisconsin 53562, United States
- National
Center for Quantitative Biology of Complex Systems, University of Wisconsin, Madison, Wisconsin 53562, United States
- Morgridge
Institute for Research, Madison, Wisconsin 53562, United States
| | - Benjamin M. Swarts
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
- Biochemistry,
Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount
Pleasant, Michigan 48859, United States
| |
Collapse
|
4
|
Gaidhane IV, Biegas KJ, Erickson HE, Agarwal P, Chhonker YS, Ronning DR, Swarts BM. Chemical remodeling of the mycomembrane with chain-truncated lipids sensitizes mycobacteria to rifampicin. Chem Commun (Camb) 2023; 59:13859-13862. [PMID: 37929833 PMCID: PMC10872977 DOI: 10.1039/d3cc02364h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The outer mycomembrane of Mycobacterium tuberculosis and related pathogens is a robust permeability barrier that protects against antibiotic treatment. Here, we demonstrate that synthetic analogues of the mycomembrane biosynthetic precursor trehalose monomycolate bearing truncated lipid chains increase permeability of Mycobacterium smegmatis cells and sensitize them to treatment with the first-line anti-tubercular drug rifampicin. The reported strategy may be useful for enhancing entry of drugs and other molecules to mycobacterial cells, and represents a new way to study mycomembrane structure and function.
Collapse
Affiliation(s)
- Ishani V Gaidhane
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA.
| | - Kyle J Biegas
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA.
- Biochemistry, Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount Pleasant, MI, USA
| | - Helen E Erickson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Prachi Agarwal
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yashpal S Chhonker
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE, USA
| | - Donald R Ronning
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benjamin M Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA.
- Biochemistry, Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount Pleasant, MI, USA
| |
Collapse
|
5
|
Dzigba P, Rylski AK, Angera IJ, Banahene N, Kavunja HW, Greenlee-Wacker MC, Swarts BM. Immune Targeting of Mycobacteria through Cell Surface Glycan Engineering. ACS Chem Biol 2023; 18:1548-1556. [PMID: 37306676 PMCID: PMC10782841 DOI: 10.1021/acschembio.3c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mycobacteria and other organisms in the order Mycobacteriales cause a range of significant human diseases, including tuberculosis, leprosy, diphtheria, Buruli ulcer, and non-tuberculous mycobacterial (NTM) disease. However, the intrinsic drug tolerance engendered by the mycobacterial cell envelope undermines conventional antibiotic treatment and contributes to acquired drug resistance. Motivated by the need to augment antibiotics with novel therapeutic approaches, we developed a strategy to specifically decorate mycobacterial cell surface glycans with antibody-recruiting molecules (ARMs), which flag bacteria for binding to human-endogenous antibodies that enhance macrophage effector functions. Mycobacterium-specific ARMs consisting of a trehalose targeting moiety and a dinitrophenyl hapten (Tre-DNPs) were synthesized and shown to specifically incorporate into outer-membrane glycolipids of Mycobacterium smegmatis via trehalose metabolism, enabling recruitment of anti-DNP antibodies to the mycobacterial cell surface. Phagocytosis of Tre-DNP-modified M. smegmatis by macrophages was significantly enhanced in the presence of anti-DNP antibodies, demonstrating proof-of-concept that our strategy can augment the host immune response. Because the metabolic pathways responsible for cell surface incorporation of Tre-DNPs are conserved in all Mycobacteriales organisms but absent from other bacteria and humans, the reported tools may be enlisted to interrogate host-pathogen interactions and develop immune-targeting strategies for diverse mycobacterial pathogens.
Collapse
Affiliation(s)
- Priscilla Dzigba
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Department of Biology, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Biochemistry, Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount Pleasant, MI, 48859 United States
| | - Adrian K. Rylski
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Isaac J. Angera
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Nicholas Banahene
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Biochemistry, Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount Pleasant, MI, 48859 United States
| | - Herbert W. Kavunja
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Mallary C. Greenlee-Wacker
- Department of Biology, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Benjamin M. Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Biochemistry, Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount Pleasant, MI, 48859 United States
| |
Collapse
|
6
|
Liu Z, Lepori I, Chordia MD, Dalesandro BE, Guo T, Dong J, Siegrist MS, Pires MM. A Metabolic-Tag-Based Method for Assessing the Permeation of Small Molecules Across the Mycomembrane in Live Mycobacteria. Angew Chem Int Ed Engl 2023; 62:e202217777. [PMID: 36700874 PMCID: PMC10159989 DOI: 10.1002/anie.202217777] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/05/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
The general lack of permeability of small molecules observed for Mycobacterium tuberculosis (Mtb) is most ascribed to its unique cell envelope. More specifically, the outer mycomembrane is hypothesized to be the principal determinant for access of antibiotics to their molecular targets. We describe a novel assay that combines metabolic tagging of the peptidoglycan, which sits directly beneath the mycomembrane, click chemistry of test molecules, and a fluorescent labeling chase step, to measure the permeation of small molecules. We showed that the assay workflow was robust and compatible with high-throughput analysis in mycobacteria by testing a small panel of azide-tagged molecules. The general trend is similar across the two types of mycobacteria with some notable exceptions. We anticipate that this assay platform will lay the foundation for medicinal chemistry efforts to understand and improve uptake of both existing drugs and newly-discovered compounds into mycobacteria.
Collapse
Affiliation(s)
- Zichen Liu
- Department of Chemistry, University of Virginia, Charlottesville, United States
| | - Irene Lepori
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, United States
- Department of Microbiology, University of Massachusetts, Amherst, United States
| | - Mahendra D. Chordia
- Department of Chemistry, University of Virginia, Charlottesville, United States
| | | | - Taijie Guo
- Institute of Translational Medicine, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200232, China
| | - Jiajia Dong
- Institute of Translational Medicine, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200232, China
| | - M. Sloan Siegrist
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, United States
- Department of Microbiology, University of Massachusetts, Amherst, United States
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, United States
| |
Collapse
|
7
|
Hodges H, Obeng K, Avanzi C, Ausmus AP, Angala SK, Kalera K, Palcekova Z, Swarts BM, Jackson M. Azido Inositol Probes Enable Metabolic Labeling of Inositol-Containing Glycans and Reveal an Inositol Importer in Mycobacteria. ACS Chem Biol 2023; 18:595-604. [PMID: 36856664 PMCID: PMC10071489 DOI: 10.1021/acschembio.2c00912] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Bacteria from the genus Mycobacterium include pathogens that cause serious diseases in humans and remain as difficult infectious agents to treat. Central to these challenges are the composition and organization of the mycobacterial cell envelope, which includes unique and complex glycans. Inositol is an essential metabolite for mycobacteria due to its presence in the structural core of the immunomodulatory cell envelope glycolipids phosphatidylinositol mannoside (PIM) and PIM-anchored lipomannan (LM) and lipoarabinomannan (LAM). Despite their importance to mycobacterial physiology and pathogenesis, many aspects of PIM, LM, and LAM construction and dynamics remain poorly understood. Recently, probes that allow metabolic labeling and detection of specific mycobacterial glycans have been developed to investigate cell envelope assembly and dynamics. However, these tools have been limited to peptidoglycan, arabinogalactan, and mycolic acid-containing glycolipids. Herein, we report the development of synthetic azido inositol (InoAz) analogues as probes that can metabolically label PIMs, LM, and LAM in intact mycobacteria. Additionally, we leverage an InoAz probe to discover an inositol importer and catabolic pathway in Mycobacterium smegmatis. We anticipate that in the future, InoAz probes, in combination with bioorthogonal chemistry, will provide a valuable tool for investigating PIM, LM, and LAM biosynthesis, transport, and dynamics in diverse mycobacterial organisms.
Collapse
Affiliation(s)
- Heather Hodges
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523 USA
| | - Kwaku Obeng
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
| | - Charlotte Avanzi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523 USA
| | - Alex P. Ausmus
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
| | - Shiva Kumar Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523 USA
| | - Karishma Kalera
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
- Biochemistry, Cellular, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, 48859 USA
| | - Zuzana Palcekova
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523 USA
| | - Benjamin M. Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
- Biochemistry, Cellular, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, 48859 USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523 USA
| |
Collapse
|
8
|
Zheng Q, Chang PV. Shedding Light on Bacterial Physiology with Click Chemistry. Isr J Chem 2023; 63:e202200064. [PMID: 37841997 PMCID: PMC10569449 DOI: 10.1002/ijch.202200064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Indexed: 11/11/2022]
Abstract
Bacteria constitute a major lifeform on this planet and play numerous roles in ecology, physiology, and human disease. However, conventional methods to probe their activities are limited in their ability to visualize and identify their functions in these diverse settings. In the last two decades, the application of click chemistry to label these microbes has deepened our understanding of bacterial physiology. With the development of a plethora of chemical tools that target many biological molecules, it is possible to track these microorganisms in real-time and at unprecedented resolution. Here, we review click chemistry, including bioorthogonal reactions, and their applications in imaging bacterial glycans, lipids, proteins, and nucleic acids using chemical reporters. We also highlight significant advances that have enabled biological discoveries that have heretofore remained elusive.
Collapse
Affiliation(s)
- Qiuyu Zheng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - Pamela V Chang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
- Cornell Center for Immunology, Cornell University, Ithaca, NY 14853
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853
| |
Collapse
|
9
|
Banahene N, Gepford DM, Biegas KJ, Swanson DH, Hsu YP, Murphy BA, Taylor ZE, Lepori I, Siegrist MS, Obregón-Henao A, Van Nieuwenhze MS, Swarts BM. A Far-Red Molecular Rotor Fluorogenic Trehalose Probe for Live Mycobacteria Detection and Drug-Susceptibility Testing. Angew Chem Int Ed Engl 2023; 62:e202213563. [PMID: 36346622 PMCID: PMC9812908 DOI: 10.1002/anie.202213563] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 11/11/2022]
Abstract
Increasing the speed, specificity, sensitivity, and accessibility of mycobacteria detection tools are important challenges for tuberculosis (TB) research and diagnosis. In this regard, previously reported fluorogenic trehalose analogues have shown potential, but their green-emitting dyes may limit sensitivity and applications in complex settings. Here, we describe a trehalose-based fluorogenic probe featuring a molecular rotor turn-on fluorophore with bright far-red emission (RMR-Tre). RMR-Tre, which exploits the unique biosynthetic enzymes and environment of the mycobacterial outer membrane to achieve fluorescence activation, enables fast, no-wash, low-background fluorescence detection of live mycobacteria. Aided by the red-shifted molecular rotor fluorophore, RMR-Tre exhibited up to a 100-fold enhancement in M. tuberculosis labeling compared to existing fluorogenic trehalose probes. We show that RMR-Tre reports on M. tuberculosis drug resistance in a facile assay, demonstrating its potential as a TB diagnostic tool.
Collapse
Affiliation(s)
- Nicholas Banahene
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA
- Biochemistry, Cellular, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, USA
| | - Dana M Gepford
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA
| | - Kyle J Biegas
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA
- Biochemistry, Cellular, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, USA
| | - Daniel H Swanson
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA
| | - Yen-Pang Hsu
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Brennan A Murphy
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Zachary E Taylor
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Irene Lepori
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | - M Sloan Siegrist
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | | | - Michael S Van Nieuwenhze
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Benjamin M Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA
- Biochemistry, Cellular, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, USA
| |
Collapse
|
10
|
Pohane AA, Moore DJ, Lepori I, Gordon RA, Nathan TO, Gepford DM, Kavunja HW, Gaidhane IV, Swarts BM, Siegrist MS. A Bifunctional Chemical Reporter for in Situ Analysis of Cell Envelope Glycan Recycling in Mycobacteria. ACS Infect Dis 2022; 8:2223-2231. [PMID: 36288262 PMCID: PMC9924612 DOI: 10.1021/acsinfecdis.2c00396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In mycobacteria, the glucose-based disaccharide trehalose cycles between the cytoplasm, where it is a stress protectant and carbon source, and the cell envelope, where it is released as a byproduct of outer mycomembrane glycan biosynthesis and turnover. Trehalose recycling via the LpqY-SugABC transporter promotes virulence, antibiotic recalcitrance, and efficient adaptation to nutrient deprivation. The source(s) of trehalose and the regulation of recycling under these and other stressors are unclear. A key technical gap in addressing these questions has been the inability to trace trehalose recycling in situ, directly from its site of liberation from the cell envelope. Here we describe a bifunctional chemical reporter that simultaneously marks mycomembrane biosynthesis and subsequent trehalose recycling with alkyne and azide groups. Using this probe, we discovered that the recycling efficiency for trehalose increases upon carbon starvation, concomitant with an increase in LpqY-SugABC expression. The ability of the bifunctional reporter to probe multiple, linked steps provides a more nuanced understanding of mycobacterial cell envelope metabolism and its plasticity under stress.
Collapse
Affiliation(s)
- Amol Arunrao Pohane
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003 USA
| | - Devin J. Moore
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
| | - Irene Lepori
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003 USA
| | - Rebecca A. Gordon
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003 USA
| | - Temitope O. Nathan
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
| | - Dana M. Gepford
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
| | - Herbert W. Kavunja
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
| | - Ishani V. Gaidhane
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
| | - Benjamin M. Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
- Biochemistry, Cell, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, 48859 United States
| | - M. Sloan Siegrist
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003 USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003 USA
| |
Collapse
|
11
|
Jeanneret R, Walz C, van Meerbeek M, Coppock S, Galan MC. AuCl 3-Catalyzed Hemiacetal Activation for the Stereoselective Synthesis of 2-Deoxy Trehalose Derivatives. Org Lett 2022; 24:6304-6309. [PMID: 35994370 PMCID: PMC9442795 DOI: 10.1021/acs.orglett.2c02530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new practical, catalytic, and highly stereoselective method for directly accessing 1,1-α,α'-linked 2-deoxy trehalose analogues via AuCl3-catalyzed dehydrative glycosylation using hemiacetal glycosyl donors and acceptors is described. The method relies on the chemoselective Brønsted acid-type activation of tribenzylated 2-deoxy hemiacetals in the presence of other less reactive hemiacetals.
Collapse
Affiliation(s)
- Robin Jeanneret
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Carlo Walz
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Maarten van Meerbeek
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Sarah Coppock
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
12
|
Banahene N, Kavunja HW, Swarts BM. Chemical Reporters for Bacterial Glycans: Development and Applications. Chem Rev 2022; 122:3336-3413. [PMID: 34905344 PMCID: PMC8958928 DOI: 10.1021/acs.chemrev.1c00729] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacteria possess an extraordinary repertoire of cell envelope glycans that have critical physiological functions. Pathogenic bacteria have glycans that are essential for growth and virulence but are absent from humans, making them high-priority targets for antibiotic, vaccine, and diagnostic development. The advent of metabolic labeling with bioorthogonal chemical reporters and small-molecule fluorescent reporters has enabled the investigation and targeting of specific bacterial glycans in their native environments. These tools have opened the door to imaging glycan dynamics, assaying and inhibiting glycan biosynthesis, profiling glycoproteins and glycan-binding proteins, and targeting pathogens with diagnostic and therapeutic payload. These capabilities have been wielded in diverse commensal and pathogenic Gram-positive, Gram-negative, and mycobacterial species─including within live host organisms. Here, we review the development and applications of chemical reporters for bacterial glycans, including peptidoglycan, lipopolysaccharide, glycoproteins, teichoic acids, and capsular polysaccharides, as well as mycobacterial glycans, including trehalose glycolipids and arabinan-containing glycoconjugates. We cover in detail how bacteria-targeting chemical reporters are designed, synthesized, and evaluated, how they operate from a mechanistic standpoint, and how this information informs their judicious and innovative application. We also provide a perspective on the current state and future directions of the field, underscoring the need for interdisciplinary teams to create novel tools and extend existing tools to support fundamental and translational research on bacterial glycans.
Collapse
Affiliation(s)
- Nicholas Banahene
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
- Biochemistry, Cell, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, United States
| | - Herbert W. Kavunja
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
- Biochemistry, Cell, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, United States
| | | |
Collapse
|
13
|
Carlier M, Lesur E, Baron A, Lemétais A, Guitot K, Roupnel L, Dietrich C, Doisneau G, Urban D, Bayan N, Beau JM, Guianvarc'h D, Vauzeilles B, Bourdreux Y. Synthesis of chemical tools to label the mycomembrane of corynebacteria using a modified Iron (III) chloride-mediated protection of trehalose. Org Biomol Chem 2022; 20:1974-1981. [DOI: 10.1039/d2ob00107a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trehalose-based probes are useful tools allowing the detection of the mycomembrane of Mycobacteria through the metabolic labeling approach. Some of them are trehalose analogues conjugated to fluorescent probes and others...
Collapse
|
14
|
Li X, Geng P, Hong X, Sun Z, Liu G. Detecting Mycobacterium Tuberculosis using a nitrofuranyl calanolide-trehalose probe based on nitroreductase Rv2466c. Chem Commun (Camb) 2021; 57:13174-13177. [PMID: 34812827 DOI: 10.1039/d1cc05187c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A new Mtb fluorescent probe, NFC-Tre-5, was reported that could label single cells of Mtb under various stress conditions via a unique fluorescence off-on feature by a Rv2466c-mediated reductive mechanism. This probe effectively facilitates the rapid and specific detection of Mtb in the host cell during infection and the detection of Mtb in sputum samples from patients.
Collapse
Affiliation(s)
- Xueyuan Li
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist., Beijing 100084, P. R. China. .,Tsinghua-Peking Center for Life Sciences, Handian Dist., Beijing 100084, P. R. China
| | - Pengfei Geng
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist., Beijing 100084, P. R. China.
| | - Xiaoqiao Hong
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist., Beijing 100084, P. R. China.
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China. .,Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing 101149, China
| | - Gang Liu
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist., Beijing 100084, P. R. China.
| |
Collapse
|
15
|
Abstract
The mycobacterial cell envelope includes a unique outer membrane, also known as the mycomembrane, which is the major defense barrier that confers intrinsic drug tolerance to Mycobacterium tuberculosis (Mtb) and related bacteria. The mycomembrane is typified by long-chain mycolic acids that are esterified to various acceptors, including: (1) trehalose, forming trehalose mono- and di-mycolate; (2) arabinogalactan, forming arabinogalactan-linked mycolates; and (3) in some species, protein serine residues, forming O-mycoloylated proteins. Synthetic trehalose and trehalose monomycolate analogs have been shown to specifically and metabolically incorporate into mycomembrane components, facilitating their analysis in native contexts and opening new avenues for the specific detection and therapeutic targeting of mycobacterial pathogens in complex settings. This chapter highlights trehalose-based probes that have been developed to date, briefly discusses their applications, and describes protocols for their use in mycobacteria research.
Collapse
Affiliation(s)
- Nicholas Banahene
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA
| | - Benjamin M Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA.
| |
Collapse
|
16
|
Biegas KJ, Swarts BM. Chemical probes for tagging mycobacterial lipids. Curr Opin Chem Biol 2021; 65:57-65. [PMID: 34216933 DOI: 10.1016/j.cbpa.2021.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
Mycobacteria, which cause tuberculosis and related diseases, possess a diverse set of complex envelope lipids that provide remarkable tolerance to antibiotics and are major virulence factors that drive pathogenesis. Recently, metabolic labeling and bio-orthogonal chemistry have been harnessed to develop chemical probes for tagging specific lipids in live mycobacteria, enabling a range of new basic and translational research avenues. A toolbox of probes has been developed for labeling mycolic acids and their derivatives, including trehalose-, arabinogalactan-, and protein-linked mycolates, as well as newer probes for labeling phthiocerol dimycocerosates (PDIMs) and potentially other envelope lipids. These lipid-centric tools have yielded fresh insights into mycobacterial growth and host interactions, provided new avenues for drug target discovery and characterization, and inspired innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Kyle J Biegas
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA
| | - Benjamin M Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA.
| |
Collapse
|
17
|
Ignacio BJ, Bakkum T, Bonger KM, Martin NI, van Kasteren SI. Metabolic labeling probes for interrogation of the host-pathogen interaction. Org Biomol Chem 2021; 19:2856-2870. [PMID: 33725048 DOI: 10.1039/d0ob02517h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bacterial infections are still one of the leading causes of death worldwide; despite the near-ubiquitous availability of antibiotics. With antibiotic resistance on the rise, there is an urgent need for novel classes of antibiotic drugs. One particularly troublesome class of bacteria are those that have evolved highly efficacious mechanisms for surviving inside the host. These contribute to their virulence by immune evasion, and make them harder to treat with antibiotics due to their residence inside intracellular membrane-limited compartments. This has sparked the development of new chemical reporter molecules and bioorthogonal probes that can be metabolically incorporated into bacteria to provide insights into their activity status. In this review, we provide an overview of several classes of metabolic labeling probes capable of targeting either the peptidoglycan cell wall, the mycomembrane of mycobacteria and corynebacteria, or specific bacterial proteins. In addition, we highlight several important insights that have been made using these metabolic labeling probes.
Collapse
Affiliation(s)
- Bob J Ignacio
- Institute for Molecules and Materials, Radbout Universiteit, Nijmegen, Gelderland, Netherlands
| | | | | | | | | |
Collapse
|
18
|
Kumar G, Narayan R, Kapoor S. Chemical Tools for Illumination of Tuberculosis Biology, Virulence Mechanisms, and Diagnosis. J Med Chem 2020; 63:15308-15332. [PMID: 33307693 DOI: 10.1021/acs.jmedchem.0c01337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tuberculosis (TB) remains one of the deadliest infectious diseases and begs the scientific community to up the ante for research and exploration of completely novel therapeutic avenues. Chemical biology-inspired design of tunable chemical tools has aided in clinical diagnosis, facilitated discovery of therapeutics, and begun to enable investigation of virulence mechanisms at the host-pathogen interface of Mycobacterium tuberculosis. This Perspective highlights chemical tools specific to mycobacterial proteins and the cell lipid envelope that have furnished rapid and selective diagnostic strategies and provided unprecedented insights into the function of the mycobacterial proteome and lipidome. We discuss chemical tools that have enabled elucidating otherwise intractable biological processes by leveraging the unique lipid and metabolite repertoire of mycobacterial species. Some of these probes represent exciting starting points with the potential to illuminate poorly understood aspects of mycobacterial pathogenesis, particularly the host membrane-pathogen interactions.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, Maharashtra, India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Ponda 403 401, Goa, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, Maharashtra, India.,Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076, Maharashtra, India
| |
Collapse
|
19
|
Kalera K, Stothard AI, Woodruff PJ, Swarts BM. The role of chemoenzymatic synthesis in advancing trehalose analogues as tools for combatting bacterial pathogens. Chem Commun (Camb) 2020; 56:11528-11547. [PMID: 32914793 PMCID: PMC7919099 DOI: 10.1039/d0cc04955g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trehalose, a disaccharide of glucose, is increasingly recognized as an important contributor to virulence in major bacterial pathogens, such as Mycobacterium tuberculosis, Clostridioides difficile, and Burkholderia pseudomallei. Accordingly, bacterial trehalose metabolic pathways that are not present in humans have gained traction as targets for antibiotic and diagnostic development. Toward this goal, trehalose can be modified through a combination of rational design and synthesis to produce functionalized trehalose analogues, which can be deployed to probe or inhibit bacterial trehalose metabolism. However, the unique α,α-1,1-glycosidic bond and C2 symmetry of trehalose make analogue synthesis via traditional chemical methods very challenging. We and others have turned to the creation of chemoenzymatic synthesis methods, which in principle allow the use of nature's trehalose-synthesizing enzymes to stereo- and regioselectively couple simple, unprotected substrates to efficiently and conveniently generate trehalose analogues. Here, we provide a contextual account of our team's development of a trehalose analogue synthesis method that employs a highly substrate-tolerant, thermostable trehalose synthase enzyme, TreT from Thermoproteus tenax. Then, in three vignettes, we highlight how chemoenzymatic synthesis has accelerated the development of trehalose-based imaging probes and inhibitors that target trehalose-utilizing bacterial pathogens. We describe the role of TreT catalysis and related methods in the development of (i) tools for in vitro and in vivo imaging of mycobacteria, (ii) anti-biofilm compounds that sensitize drug-tolerant mycobacteria to clinical anti-tubercular compounds, and (iii) degradation-resistant trehalose analogues that block trehalose metabolism in C. difficile and potentially other trehalose-utilizing bacteria. We conclude by recapping progress and discussing priorities for future research in this area, including improving the scope and scale of chemoenzymatic synthesis methods to support translational research and expanding the functionality and applicability of trehalose analogues to study and target diverse bacterial pathogens.
Collapse
Affiliation(s)
- Karishma Kalera
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA.
| | - Alicyn I Stothard
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA.
| | - Peter J Woodruff
- Department of Chemistry, University of Southern Maine, Portland, ME, USA
| | - Benjamin M Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA.
| |
Collapse
|
20
|
Brown AR, Gordon RA, Hyland SN, Siegrist MS, Grimes CL. Chemical Biology Tools for Examining the Bacterial Cell Wall. Cell Chem Biol 2020; 27:1052-1062. [PMID: 32822617 DOI: 10.1016/j.chembiol.2020.07.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/06/2020] [Accepted: 07/29/2020] [Indexed: 01/22/2023]
Abstract
Bacteria surround themselves with cell walls to maintain cell rigidity and protect against environmental insults. Here we review chemical and biochemical techniques employed to study bacterial cell wall biogenesis. Recent advances including the ability to isolate critical intermediates, metabolic approaches for probe incorporation, and isotopic labeling techniques have provided critical insight into the biochemistry of cell walls. Fundamental manuscripts that have used these techniques to discover cell wall-interacting proteins, flippases, and cell wall stoichiometry are discussed in detail. The review highlights that these powerful methods and techniques have exciting potential to identify and characterize new targets for antibiotic development.
Collapse
Affiliation(s)
- Ashley R Brown
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Rebecca A Gordon
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003-9298, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst 01003-9298, USA
| | - Stephen N Hyland
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - M Sloan Siegrist
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003-9298, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst 01003-9298, USA
| | - Catherine L Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
21
|
Parbhoo T, Sampson SL, Mouton JM. Recent Developments in the Application of Flow Cytometry to Advance our Understanding of Mycobacterium tuberculosis Physiology and Pathogenesis. Cytometry A 2020; 97:683-693. [PMID: 32437069 PMCID: PMC7496436 DOI: 10.1002/cyto.a.24030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022]
Abstract
The ability of the bacterial pathogen Mycobacterium tuberculosis to adapt and survive within human cells to disseminate to other individuals and cause active disease is poorly understood. Research supports that as M. tuberculosis adapts to stressors encountered in the host, it exhibits variable physiological and metabolic states that are time and niche-dependent. Challenges associated with effective treatment and eradication of tuberculosis (TB) are in part attributed to our lack of understanding of these different mycobacterial phenotypes. This is mainly due to a lack of suitable tools to effectively identify/detect heterogeneous bacterial populations, which may include small, difficult-to-culture subpopulations. Importantly, flow cytometry allows rapid and affordable multiparametric measurements of physical and chemical characteristics of single cells, without the need to preculture cells. Here, we summarize current knowledge of flow cytometry applications that have advanced our understanding of the physiology of M. tuberculosis during TB disease. Specifically, we review how host-associated stressors influence bacterial characteristics such as metabolic activity, membrane potential, redox status and the mycobacterial cell wall. Further, we highlight that flow cytometry offers unprecedented opportunities for insight into bacterial population heterogeneity, which is increasingly appreciated as an important determinant of disease outcome. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Trisha Parbhoo
- NRF‐DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Samantha L. Sampson
- NRF‐DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Jacoba M. Mouton
- NRF‐DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| |
Collapse
|
22
|
Kavunja HW, Biegas KJ, Banahene N, Stewart JA, Piligian BF, Groenevelt JM, Sein CE, Morita YS, Niederweis M, Siegrist MS, Swarts BM. Photoactivatable Glycolipid Probes for Identifying Mycolate-Protein Interactions in Live Mycobacteria. J Am Chem Soc 2020; 142:7725-7731. [PMID: 32293873 PMCID: PMC7949286 DOI: 10.1021/jacs.0c01065] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycobacteria have a distinctive glycolipid-rich outer membrane, the mycomembrane, which is a critical target for tuberculosis drug development. However, proteins that associate with the mycomembrane, or that are involved in its metabolism and host interactions, are not well-characterized. To facilitate the study of mycomembrane-related proteins, we developed photoactivatable trehalose monomycolate analogues that metabolically incorporate into the mycomembrane in live mycobacteria, enabling in vivo photo-cross-linking and click-chemistry-mediated analysis of mycolate-interacting proteins. When deployed in Mycobacterium smegmatis with quantitative proteomics, this strategy enriched over 100 proteins, including the mycomembrane porin (MspA), several proteins with known mycomembrane synthesis or remodeling functions (CmrA, MmpL3, Ag85, Tdmh), and numerous candidate mycolate-interacting proteins. Our approach is highly versatile, as it (i) enlists click chemistry for flexible protein functionalization; (ii) in principle can be applied to any mycobacterial species to identify endogenous bacterial proteins or host proteins that interact with mycolates; and (iii) can potentially be expanded to investigate protein interactions with other mycobacterial lipids. This tool is expected to help elucidate fundamental physiological and pathological processes related to the mycomembrane and may reveal novel diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Herbert W Kavunja
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Kyle J Biegas
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Nicholas Banahene
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Jessica A Stewart
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Brent F Piligian
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Jessica M Groenevelt
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Caralyn E Sein
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Yasu S Morita
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - M Sloan Siegrist
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Benjamin M Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| |
Collapse
|
23
|
Abstract
Chemical synthesis of trehalose glycolipids such as DAT, TDM, SL-1, SL-3, and Ac2SGL from MTb, emmyguyacins from fungi, succinoyl trehalose from rhodococcus, and maradolipids from worms, as well as mycobacterial oligosaccharides is reviewed.
Collapse
Affiliation(s)
- Santanu Jana
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai
- India
| | | |
Collapse
|
24
|
Zhang ZJ, Wang YC, Yang X, Hang HC. Chemical Reporters for Exploring Microbiology and Microbiota Mechanisms. Chembiochem 2019; 21:19-32. [PMID: 31730246 DOI: 10.1002/cbic.201900535] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/14/2019] [Indexed: 12/11/2022]
Abstract
The advances made in bioorthogonal chemistry and the development of chemical reporters have afforded new strategies to explore the targets and functions of specific metabolites in biology. These metabolite chemical reporters have been applied to diverse classes of bacteria including Gram-negative, Gram-positive, mycobacteria, and more complex microbiota communities. Herein we summarize the development and application of metabolite chemical reporters to study fundamental pathways in bacteria as well as microbiota mechanisms in health and disease.
Collapse
Affiliation(s)
- Zhenrun J Zhang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Yen-Chih Wang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Xinglin Yang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
25
|
Garcia-Vilanova A, Chan J, Torrelles JB. Underestimated Manipulative Roles of Mycobacterium tuberculosis Cell Envelope Glycolipids During Infection. Front Immunol 2019; 10:2909. [PMID: 31921168 PMCID: PMC6930167 DOI: 10.3389/fimmu.2019.02909] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
The Mycobacterium tuberculosis cell envelope has been evolving over time to make the bacterium transmissible and adaptable to the human host. In this context, the M. tuberculosis cell envelope contains a peripheral barrier full of lipids, some of them unique, which confer M. tuberculosis with a unique shield against the different host environments that the bacterium will encounter at the different stages of infection. This lipid barrier is mainly composed of glycolipids that can be characterized by three different subsets: trehalose-containing, mannose-containing, and 6-deoxy-pyranose-containing glycolipids. In this review, we explore the roles of these cell envelope glycolipids in M. tuberculosis virulence and pathogenesis, drug resistance, and further, how these glycolipids may dictate the M. tuberculosis cell envelope evolution from ancient to modern strains. Finally, we address how these M. tuberculosis cell envelope glycolipids are impacted by the host lung alveolar environment, their role in vaccination and masking host immunity, and subsequently the impact of these glycolipids in shaping how M. tuberculosis interacts with host cells, manipulating their immune response to favor the establishment of an infection.
Collapse
Affiliation(s)
- Andreu Garcia-Vilanova
- Population Health Program, TB Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - John Chan
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY, United States
| | - Jordi B. Torrelles
- Population Health Program, TB Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
26
|
de Wet T, Warner DF, Mizrahi V. Harnessing Biological Insight to Accelerate Tuberculosis Drug Discovery. Acc Chem Res 2019; 52:2340-2348. [PMID: 31361123 PMCID: PMC6704484 DOI: 10.1021/acs.accounts.9b00275] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Tuberculosis (TB) is the leading cause of mortality globally resulting from an infectious disease, killing almost 1.6 million people annually and accounting for approximately 30% of deaths attributed to antimicrobial resistance (AMR). This despite the widespread administration of a neonatal vaccine, and the availability of an effective combination drug therapy against the causative agent, Mycobacterium tuberculosis (Mtb). Instead, TB prevalence worldwide is characterized by high-burden regions in which co-epidemics, such as HIV, and social and economic factors, undermine efforts to control TB. These elements additionally ensure conditions that favor the emergence of drug-resistant Mtb strains, which further threaten prospects for future TB control. To address this challenge, significant resources have been invested in developing a TB drug pipeline, an initiative given impetus by the recent regulatory approval of two new anti-TB drugs. However, both drugs have been reserved for drug-resistant disease, and the seeming inevitability of new resistance plus the recognized need to shorten the duration of chemotherapy demands continual replenishment of the pipeline with high-quality "hits" with novel mechanisms of action. This represents a massive challenge, which has been undermined by key gaps in our understanding of Mtb physiology and metabolism, especially during host infection. Whereas drug discovery for other bacterial infections can rely on predictive in vitro assays and animal models, for Mtb, inherent metabolic flexibility and uncertainties about the nutrients available to infecting bacilli in different host (micro)environments instead requires educated predictions or demonstrations of efficacy in animal models of arguable relevance to human disease. Even microbiological methods for enumeration of viable mycobacterial cells are fraught with complication. Our research has focused on elucidating those aspects of mycobacterial metabolism that contribute to the robustness of the bacillus to host immunological defenses and applied antibiotics and that, possibly, drive the emergence of drug resistance. This work has identified a handful of metabolic pathways that appear vulnerable to antibiotic targeting. Those highlighted, here, include the inter-related functions of pantothenate and coenzyme A biosynthesis and recycling and nucleotide metabolism-the last of which reinforces our view that DNA metabolism constitutes an under-explored area for new TB drug development. Although nonessential functions have traditionally been deprioritized for antibiotic development, a common theme emerging from this work is that these very functions might represent attractive targets because of the potential to cripple mechanisms critical to bacillary survival under stress (for example, the RelMtb-dependent stringent response) or to adaptability under unfavorable, potentially lethal, conditions including antibiotic therapy (for example, DnaE2-dependent SOS mutagenesis). The bar, however, is high: demonstrating convincingly the likely efficacy of this strategy will require innovative models of human TB disease. In the concluding section, we focus on the need for improved techniques to elucidate mycobacterial metabolism during infection and its impact on disease outcomes. Here, we argue that developments in other fields suggest the potential to break through this barrier by harnessing chemical-biology approaches in tandem with the most advanced technologies. As researchers based in a high-burden country, we are impelled to continue participating in this important endeavor.
Collapse
Affiliation(s)
- Timothy
J. de Wet
- SAMRC/NHLS/UCT
Molecular Mycobacteriology Research Unit and DST/NRF Centre of Excellence
for Biomedical TB Research, Department of Pathology and Institute
of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South
Africa
- Department
of Integrative Biomedical Sciences, University
of Cape Town, Observatory, Cape Town 7925, South
Africa
| | - Digby F. Warner
- SAMRC/NHLS/UCT
Molecular Mycobacteriology Research Unit and DST/NRF Centre of Excellence
for Biomedical TB Research, Department of Pathology and Institute
of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South
Africa
- Wellcome
Centre for Infectious Disease Research in Africa, University of Cape Town, Observatory, Cape Town 7925, South
Africa
| | - Valerie Mizrahi
- SAMRC/NHLS/UCT
Molecular Mycobacteriology Research Unit and DST/NRF Centre of Excellence
for Biomedical TB Research, Department of Pathology and Institute
of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South
Africa
- Wellcome
Centre for Infectious Disease Research in Africa, University of Cape Town, Observatory, Cape Town 7925, South
Africa
| |
Collapse
|
27
|
Mashabela GT, de Wet TJ, Warner DF. Mycobacterium tuberculosis Metabolism. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0067-2019. [PMID: 31350832 PMCID: PMC10957194 DOI: 10.1128/microbiolspec.gpp3-0067-2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium tuberculosis is the cause of tuberculosis (TB), a disease which continues to overwhelm health systems in endemic regions despite the existence of effective combination chemotherapy and the widespread use of a neonatal anti-TB vaccine. For a professional pathogen, M. tuberculosis retains a surprisingly large proportion of the metabolic repertoire found in nonpathogenic mycobacteria with very different lifestyles. Moreover, evidence that additional functions were acquired during the early evolution of the M. tuberculosis complex suggests the organism has adapted (and augmented) the metabolic pathways of its environmental ancestor to persistence and propagation within its obligate human host. A better understanding of M. tuberculosis pathogenicity, however, requires the elucidation of metabolic functions under disease-relevant conditions, a challenge complicated by limited knowledge of the microenvironments occupied and nutrients accessed by bacilli during host infection, as well as the reliance in experimental mycobacteriology on a restricted number of experimental models with variable relevance to clinical disease. Here, we consider M. tuberculosis metabolism within the framework of an intimate host-pathogen coevolution. Focusing on recent advances in our understanding of mycobacterial metabolic function, we highlight unusual adaptations or departures from the better-characterized model intracellular pathogens. We also discuss the impact of these mycobacterial "innovations" on the susceptibility of M. tuberculosis to existing and experimental anti-TB drugs, as well as strategies for targeting metabolic pathways. Finally, we offer some perspectives on the key gaps in the current knowledge of fundamental mycobacterial metabolism and the lessons which might be learned from other systems.
Collapse
Affiliation(s)
- Gabriel T Mashabela
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Current address: Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, University of Stellenbosch, South Africa
| | - Timothy J de Wet
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Department of Integrative Biomedical Sciences, University of Cape Town, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research in Africa, University of Cape Town, South Africa
| |
Collapse
|
28
|
Holmes N, Kavunja HW, Yang Y, Vannest BD, Ramsey CN, Gepford DM, Banahene N, Poston AW, Piligian BF, Ronning DR, Ojha AK, Swarts BM. A FRET-Based Fluorogenic Trehalose Dimycolate Analogue for Probing Mycomembrane-Remodeling Enzymes of Mycobacteria. ACS OMEGA 2019; 4:4348-4359. [PMID: 30842987 PMCID: PMC6396954 DOI: 10.1021/acsomega.9b00130] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/12/2019] [Indexed: 05/17/2023]
Abstract
The mycobacterial outer membrane, or mycomembrane, is essential for the viability and virulence of Mycobacterium tuberculosis and related pathogens. The mycomembrane is a dynamic structure, whose chemical composition and biophysical properties can change during stress to give an advantage to the bacterium. However, the mechanisms that govern mycomembrane remodeling and their significance to mycobacterial pathogenesis are still not well characterized. Recent studies have shown that trehalose dimycolate (TDM), a major glycolipid of the mycomembrane, is broken down by the mycobacteria-specific enzyme TDM hydrolase (Tdmh) in response to nutrient deprivation, a process which appears to modulate the mycomembrane to increase nutrient acquisition, but at the expense of stress tolerance. Tdmh activity thus balances the growth of M. tuberculosis during infection in a manner that is contingent upon host immunity. Current methods to probe Tdmh activity are limited, impeding the development of inhibitors and the investigation of the role of Tdmh in bacterial growth and persistence. Here, we describe the synthesis and evaluation of FRET-TDM, which is a fluorescence-quenched analogue of TDM that is designed to fluoresce upon hydrolysis by Tdmh and potentially other trehalose ester-degrading hydrolases involved in mycomembrane remodeling. We found that FRET-TDM was efficiently activated in vitro by recombinant Tdmh, generating a 100-fold increase in fluorescence. FRET-TDM was also efficiently activated in the presence of whole cells of Mycobacterium smegmatis and M. tuberculosis, but the observed signal was predominantly Tdmh-independent, suggesting that physiological levels of Tdmh are low and that other mycobacterial enzymes also hydrolyze the probe. The latter notion was confirmed by employing a native protein gel-based fluorescence assay to profile FRET-TDM-activating enzymes from M. smegmatis lysates. On the other hand, FRET-TDM was capable of detecting the activity of Tdmh in cells when it was overexpressed. Together, our data demonstrate that FRET-TDM is a convenient and sensitive in vitro probe of Tdmh activity, which will be beneficial for Tdmh enzymatic characterization and inhibitor screening. In more complex samples, for example, live cells or cell lysates, FRET-TDM can serve as a tool to probe Tdmh activity at elevated enzyme levels, and it may facilitate the identification and characterization of related hydrolases that are involved in mycomembrane remodeling. Our study also provides insights as to how the structure of FRET-TDM or related fluorogenic probes can be optimized to achieve improved specificity and sensitivity for detecting mycobacteria.
Collapse
Affiliation(s)
- Nathan
J. Holmes
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
| | - Herbert W. Kavunja
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
| | - Yong Yang
- Division
of Genetics, Wadsworth Center, New York
State Department of Health, Albany, New York 12208, United States
| | - B. Dillon Vannest
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
| | - Claudia N. Ramsey
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
| | - Dana M. Gepford
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
| | - Nicholas Banahene
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
| | - Anne W. Poston
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
| | - Brent F. Piligian
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
| | - Donald R. Ronning
- Department
of Chemistry and Biochemistry, University
of Toledo, Toledo, Ohio 43606-3390, United States
| | - Anil K. Ojha
- Division
of Genetics, Wadsworth Center, New York
State Department of Health, Albany, New York 12208, United States
- Department
of Biomedical Sciences, University at Albany, New York 12208, United States
| | - Benjamin M. Swarts
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
- E-mail:
| |
Collapse
|
29
|
Lesur E, Baron A, Dietrich C, Buchotte M, Doisneau G, Urban D, Beau JM, Bayan N, Vauzeilles B, Guianvarc’h D, Bourdreux Y. First access to a mycolic acid-based bioorthogonal reporter for the study of the mycomembrane and mycoloyltransferases in Corynebacteria. Chem Commun (Camb) 2019; 55:13074-13077. [DOI: 10.1039/c9cc05754d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study we describe the first synthesis of an alkyne-based trehalose monomycolate probe closely mimicking the complex pattern of mycolic acids and its utility for the study of mycomembrane and mycoloyltransferases in Corynebacteria.
Collapse
|